Effectiveness of erector spinae plane block in children with pectus excavatum deformity during minimally invasive thoracoplasty with osteosynthesis of the sternocostal complex: a prospective randomized comparative study

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Despite the widespread use of regional blocks in children, ensuring adequate perioperative pain control during minimally invasive thoracoplasty with osteosynthesis of the sternocostal complex remains a problem. The introduction of ultrasound navigation has allowed specialists to increasingly give preference to peripheral blockades; paravertebral anesthesia has proven to be effective in thoracic surgery. However, safer interfascial blocks, including erector spinae plane block, are rarely used in pediatrics, and there is no evidence base for the effectiveness of the method.

OBJECTIVE: Our aim was to compare the effectiveness of erector spinae plane block with paravertebral blockade during minimally invasive thoracoplasty with osteosynthesis of the sternocostal complex in children.

MATERIALS AND METHODS: A prospective randomized comparative study of children who underwent minimally invasive thoracoplasty with osteosynthesis of the sternocostal complex was conducted from September 2022 to April 2023. According to the inclusion criteria, the selected 39 children were divided into groups: I — paravertebral blockade, and II — erector spinae plane block. The mean arterial pressure, heart rate during the perioperative period stages, postanesthesia recovery by Aldrete scale and pain intensity by the Wong–Baker scale, and stress response markers (cortisol and lactate) were assessed.

RESULTS: No significant differences were observed in the study groups when comparing mean arterial pressure and heart rate at any of the measurement points of the perioperative period (p >0.05). Further, no significant differences were noted between the groups when comparing cortisol and lactate levels (p >0.05). The awakening level was characterized by a short recovery period and did not differ between the groups (p >0.05). The intensity of pain during the observation period did not exceed 5 points on the verbal rating scale in both groups, and the severity of pain was significantly higher in the group with blockade of the erector spinae plane block only 2 hours after surgery (p <0.05).Postoperative nausea and vomiting were more common in children with erector spinae plane block (p >0.05). No other adverse events were recorded.

CONCLUSION: Erector spinae plane block is an effective and simple method of regional anesthesia for minimally invasive thoracoplasty with osteosynthesis of the sternocostal complex and can be used as an alternative to paravertebral blockade in children.

Full Text

Restricted Access

About the authors

Artem N. Savenkov

Turner National Medical Research Center for Pediatric Traumatology and Orthopedics

Email: temaelec@mail.ru
ORCID iD: 0009-0001-5375-0134

MD, anesthesiologist-resuscitator

Russian Federation, St. Petersburg

Dmitriy V. Ryzhikov

Turner National Medical Research Center for Pediatric Traumatology and Orthopedics

Email: dryjikov@yahoo.com
ORCID iD: 0000-0002-7824-7412
SPIN-code: 7983-4270

MD, Cand. Sci. (Medicine), orthopedist-traumatologist

Russian Federation, St. Petersburg

Marat D. Ivanov

Turner National Medical Research Center for Pediatric Traumatology and Orthopedics; St. Petersburg State Pediatric Medical University

Email: 8014800@gmail.com
ORCID iD: 0000-0002-0282-4260
SPIN-code: 6395-7269

MD, department assistant

Russian Federation, St. Petersburg; St. Petersburg

Sergey V. Vissarionov

Turner National Medical Research Center for Pediatric Traumatology and Orthopedics

Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN-code: 7125-4930

MD, Dr. Sci. (Medicine), professor, Corresponding member of RAS

Russian Federation, St. Petersburg

Victor A. Koriachkin

Turner National Medical Research Center for Pediatric Traumatology and Orthopedics

Email: vakoryachkin@mail.ru
ORCID iD: 0000-0002-3400-8989
SPIN-code: 6101-0578

MD, Dr. Sci. (Medicine), professor

Russian Federation, St. Petersburg

Victor V. Pogorelchuk

St. Petersburg State Pediatric Medical University

Email: viktor-pogorelchuk@yandex.ru
ORCID iD: 0000-0002-3577-604X
SPIN-code: 6007-0558

MD, Cand. Sci. (Medicine), assistant professor

Russian Federation, St. Petersburg

Dmitrii V. Zabolotskii

Turner National Medical Research Center for Pediatric Traumatology and Orthopedics; St. Petersburg State Pediatric Medical University

Author for correspondence.
Email: zdv4330303@gmail.com
ORCID iD: 0000-0002-6127-0798
SPIN-code: 6726-2571

MD, Dr. Sci. (Medicine), professor

Russian Federation, St. Petersburg; St. Petersburg

References

  1. Pitt JB, Zeineddin S, Carter M, et al. Demographics of Anterior Chest Wall Deformity Patients: A Tertiary Children’s Hospital Experience. J Surg Res. 2024;(293):451–457. doi: 10.1016/j.jss.2023.09.040
  2. Hebra A, Calder BW, Lesher A. Minimally invasive repair of pectus excavatum. J Vis Surg. 2016;5(2):73. doi: 10.21037/jovs.2016.03.21
  3. Scalise PN, Demehri FR. The management of pectus excavatum in pediatric patients: a narrative review. Transl Pediatr. 2023;12(2):208–220. doi: 10.21037/tp-22-361
  4. Frawley G, Frawley J, Crameri J. A review of anesthetic techniques and outcomes following minimally invasive repair of pectus excavatum (Nuss procedure). Paediatr Anaesth. 2016;26(11):1082–1090. doi: 10.1111/pan.12988
  5. Belousova EI, Matinyan NV, Ordukhanyan ZS. Thoracic Paravertebral Block for Postoperative Analgesia in Pediatric Oncology. General Reanimatology. 2014;10(2):57–65. doi: 10.15360/1813-9779-2014-2-57-65
  6. Yeung JH, Gates S, Naidu BV, et al. Paravertebral block versus thoracic epidural for patients undergoing thoracotomy. Cochrane Database Syst Rev. 2016;2(2):CD009121. doi: 10.1002/14651858.CD009121.pub2
  7. Koriachkin VA, Dzhopua MA, Ezugbaia BS, et al. Regional anesthesia in coronary artery bypass grafting: a narrative review. Regional Anesthesia and Acute Pain Management. 2023;17(3):161–175. doi: 10.17816/RA568908
  8. Muñoz F, Cubillos J, Bonilla AJ, Chin KJ. Erector spinae plane block for postoperative analgesia in pediatric oncological thoracic surgery. Can J Anaesth. 2017;64(8):880–882. doi: 10.1007/s12630-017-0894-0
  9. Safin RR, Koriachkin VA, Zabolotskii DV. Forgotten pioneers of erector spinae plane block: historical digression. Regional Anesthesia and Acute Pain Management. 2023;17(2):89–99. doi: 10.17816/RA375334
  10. Adhikary SD, Bernard S, Lopez H, Chin KJ. Erector Spinae Plane Block Versus Retrolaminar Block: A Magnetic Resonance Imaging and Anatomical Study. Reg Anesth Pain Med. 2018;43(7):756–762. doi: 10.1097/AAP.0000000000000798
  11. Kaushal B, Chauhan S, Magoon R, et al. Efficacy of Bilateral Erector Spinae Plane Block in Management of Acute Postoperative Surgical Pain After Pediatric Cardiac Surgeries Through a Midline Sternotomy. J Cardiothorac Vasc Anesth. 2020;34(4):981–986. doi: 10.1053/j.jvca.2019.08.009
  12. Lakhin RE, Shapovalov PA, Shchegolev AV, et al. Effectiveness of erector spinae plane blockade in cardiac surgery: a systematic review and meta-analysis. Russian Journal of Anesthesiology and Reanimatology. 2022;(6):29–43. doi: 10.17116/anaesthesiology202206129
  13. Singh S, Jha RK, Sharma M. The analgesic effect of bilateral ultrasound-guided erector spinae plane block in paediatric lower abdominal surgeries: A randomised, prospective trial. Indian J Anaesth. 2020;64(9):762–767. doi: 10.4103/ija.IJA_630_20
  14. Darling CE, Pun SY, Caruso TJ, Tsui BCH. Successful directional thoracic erector spinae plane block after failed lumbar plexus block in hip joint and proximal femur surgery. J Clin Anesth. 2018;(49):1–2. doi: 10.1016/j.jclinane.2018.05.002
  15. Satvaldieva EA, Shakarova MU, Mitryushkina VP, Ashurova GZ. Regional interfascial blocks in pediatric practice: a literature review. Regional Anesthesia and Acute Pain Management. 2023;17(3):149–159. doi: 10.17816/RA472108
  16. Lucente M, Ragonesi G, Sanguigni M, et al. Erector spinae plane block in children: a narrative review. Korean J Anesthesiol. 2022;75(6):473–486. doi: 10.4097/kja.22279
  17. Salvız EA, Akman N, Sivrikoz N, et al. An exceptional indication for bilateral thoracic paravertebral block performance in a pediatric patient. Agri. 2015;27(3):168–169. doi: 10.5505/agri.2015.69775
  18. Hernandez MA, Palazzi L, Lapalma J, et al. Erector Spinae Plane Block for Surgery of the Posterior Thoracic Wall in a Pediatric Patient. Reg Anesth Pain Med. 2018;43(2):217–219. doi: 10.1097/AAP.0000000000000716
  19. Goyal A, Kalgudi P, Sriganesh K. Ultrasound-Guided Erector Spinae Plane Block for Perioperative Analgesia in Cervical and Thoracic Spine Surgeries — A Case Series. Neurol India. 2021;69(2):487–489. doi: 10.4103/0028-3886.314568
  20. Patel NV, Glover C, Adler AC. Erector Spinae Plane Catheter for Postoperative Analgesia After Thoracotomy in a Pediatric Patient: A Case Report. A A Pract. 2019;12(9):299–301. doi: 10.1213/XAA.0000000000000914
  21. Gad M, Abdelwahab K, Abdallah A, et al. Ultrasound-Guided Erector Spinae Plane Block Compared to Modified Pectoral Plane Block for Modified Radical Mastectomy Operations. Anesth Essays Res. 2019;13(2):334–339. doi: 10.4103/aer.AER_77_19
  22. Eason MJ, Wyatt R. Paravertebral thoracic block — a reappraisal. Anaesthesia. 1979;34(7):638–642. doi: 10.1111/j.1365-2044.1979.tb06363.x
  23. Bhararia S, Mohammed S, Kewalramani R, Patel S. Continuous erector spinae plane block for analgesia following cervical rib resection. Saudi J Anaesth. 2023;17(1):141–143. doi: 10.4103/sja.sja_546_22
  24. Vishwanath P, Deo A, Balakundi P. Continuous Erector Spinae Plane Analgesia in Kidney Transplant Recipients: A Quality Improvement Project. Cureus. 2023;15(5):e39151. doi: 10.7759/cureus.39151
  25. King M, Stambulic T, Servito M, et al. Erector spinae plane block as perioperative analgesia for midline sternotomy in cardiac surgery: A systematic review and meta-analysis. J Card Surg. 2022;37(12):5220–5229. doi: 10.1111/jocs.17005

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Changes in the concentration of cortisol in the blood serum in children of groups 1 and 2 at various stages of the study.

Download (234KB)
3. Fig. 2. Pain intensity according to the in verbal pain rating scale the postoperative period.

Download (175KB)

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ ФС 77 - 55827 от 30.10.2013 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ЭЛ № ФС 77 - 80651 от 15.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies