Immiscibility of ionic melts: a simple model with charge differences
- Authors: Tkachev N.K.1
-
Affiliations:
- Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences
- Issue: No 1 (2025)
- Pages: 46-61
- Section: Articles
- URL: https://rjraap.com/0235-0106/article/view/679300
- DOI: https://doi.org/10.31857/S0235010625010052
- ID: 679300
Cite item
Abstract
This work is devoted to the analysis of the immiscibility mechanism and the peculiarities of its manifestation in the case of mixtures of classical electrolytes. This mechanism should be deduced from the differences in the potential energy of the ions constituting the components of the mixture with respect to their surroundings. Since electrostatic interactions are shielded at a large distance from the central ion in any electrolytes, it is important for the considered mechanism what contribution to the concentration dependence of the chemical potential of a component is given by one or another sort of ions. In this paper we consider a simplified model of a binary solution in which the interaction of cations and anions in each of the ionic liquids is approximated by the model of charged hard spheres, i.e., they are considered as primitive electrolytes. Since the problem of liquid-phase immiscibility cannot be considered without taking into account the finite sizes of ions, it is necessary, firstly, to choose at least the full version of the Debye-Hückel model, and, secondly, to take into account the direct contribution of excluded volume effects or hard-sphere repulsion, for which a van der Waals-type model can be used. As a result, the reasoning about the concentration dependence of the density in a liquid-phase system and the equation of state that allows us to find it become key for describing the features of the miscibility gap. The theoretical analysis of the immiscibility problem can be carried out by considering that a cation and an anion belonging to one of the components of a binary mixture possess the same value of ionic radius and equal but opposite charge, while differing in their values for the other component of the solution. Thus, a binary restricted primitive model (RPM) is formulated to consider the effects of charge differences on the miscibility gap. In the present work, analytical expressions describing the position of the critical point in the asymptotic limit of small charge differences are derived in detail. It is shown that the critical temperature is proportional to the fourth degree of the charge mismatch, and the shift of the critical composition from equimolar occurs towards the component with smaller charge values. The latter result seems to be quite general, describing the preference in solubility of salts, which have larger charge values, in ionic melts with smaller charges on cations and anions.
Full Text

About the authors
N. K. Tkachev
Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: n.k.tkachev@gmail.com
Russian Federation, Ekaterinburg
References
- Sholokhovich M.L., Lesnykh D.S., Bukhalova G.A., Bergman A.D. O rassloyenii v rasplavakh sistem s uchastiyem soley I i II grupp (On separation in melts of systems involving salts of groups I and II) // DAN USSR. 1955. 103. № 2. с. 261–263. [In Russian]
- Margheritis Ch., Flor G., Sinistri C. Miscibility Gap in Fused Salts. VII. Systems of LiF with Alkali Halides // Z. Naturforsch. 1973. 28a. P. 1329–1334.
- Flor G., Margheritis C., Sinistri C., Solid-liquid and liquid-liquid equilibria in the reciprocal ternary-system LI,RB-BR,F // J. Chem. & Engineering Data. 1979. 24. № 4, P. 361–363.
- Flor G., Margheritis Ch., Vigano G.C., Sinistri C. Miscibility gap in fused salts. XI. Systems formed with silver halides and lithium or sodium halides // Z. Naturforsch. 1982. 37a. P. 1068–1072.
- Stepanov V.P. Adiabatic Compressibility along the Two-Phase Saturation Line for the Molten (LiF + CsCl) System // J. Chem. Thermodyn. 2019. 138. P. 345–349.
- Stepanov V.P. Electrical Conductivity of Biphasic Mixtures of Molten Silver Iodide and Lithium Fluoride, Chloride, and Bromide // Ionics. 2017. 23. P. 2055–2060.
- Lockett V.N., Rukavishnikova I.V., Stepanov V.P., Tkachev N.K. Interfacial Tension in Immiscible Mixtures of Alkali Halides // Phys. Chem. Chem. Phys. 2010. 12. P. 1139–1144.
- Stepanov V.P. Density of separating salt melts in the two-phase region // Russian Metallurgy. 2022. 8. P. 830–836.
- Stepanov V.P. Adiabatic compressibility of biphasic salt melts // Z. Naturforschung A. 2021. 76. P. 723–730.
- Stepanov V.P. Electrical conductivity of biphasic mixtures of molten silver iodide and lithium fluoride, chloride, and bromide // Ionics. 2017. 23. P. 2055–2060.
- Stepanov V.P. Electric conductivity of delaminated AgI + NaCl mixture // Russian J. Electrochem. 2018. 54. P. 101–105.
- Stepanov V.P., Babushkina L.M., Dokashenko S.I. Liquid + liquid equilibrium in mixtures of lithium fluoride with potassium and rubidium halides // J. Chem. Thermodyn. 2012. 51. P. 12–16.
- Stepanov V.P. Ultrasound velocity in stratified salt melts on the saturation curve // High Temperature. 2020. 58. P. 324–332.
- Fisher M.E. The Story of Coulombic Criticality // J. Stat. Phys. 1994. 75. P. 1–36.
- Stell S. Criticality and Phase Transitions in Ionic Fluids // J. Stat. Phys. 1995. 78. P. 197–238.
- Weingartner H., Kleemeier M., Wiegand S., Schroer W. Coulombic and non-coulombic contributions to the criticality of ionic fluids – an experimental approach // J. Stat. Phys. 1995. 78. № 1–2. p.169–196.
- Blum L. Primitive electrolytes in mean spherical approximation // In “Theoretical Chemistry: Advances and Perspectives”, eds. Eyring H., Henderson D., N.Y.: Academic Press. 1980. 5. P. 1–69.
- Debye P., Hückel E., Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen // Phys. Ztschr. 1923. № 24. P. 185–206.
- Debye P. Izbrannyye trudy. Stat’i 1909–1965 (Selected Works. Articles 1909–1965) L: Nauka. 1987. P. 163–202. [In Russian]
- Luijten E., Fisher M.E., Panagiotopoulos A.Z., The heat capacity of the restricted primitive model electrolyte // J. Chem. Phys. 2001. 114. 1. P. 5468–5471.
- Romero-Enrique J.-M., Orculas G., Panagiotopoulos A.Z., Fisher M.E. Coexistence and Criticality in Size-Asymmetric Hard-Core Electrolytes // Phys. Rev. Lett. 2000. 85. 21. P. 4558–4561.
- Zuckerman D.M., Fisher M.E., Bekiranov S. Asymmetric primitive-model electrolytes: Debye-Hückel theory, criticality, and energy bounds // Phys. Rev. E. 2001. 64. P. 011206-1–011206-13.
- Orkoulas G., Fisher M.E., Panagiotopoulos A. Z. Precise simulation of criticality in asymmetric fluids // Phys. Rev. E. 2001. 63. P. 051507-1–051507-14.
- Schröer W. A Short History of Phase Transitions in Ionic Fluids // Contrib. Plasma Phys. 2012. 52. № 1. P. 78–88.
- Schröer W. Criticality of ionic liquids in solution // In: D. Henderson (Ed.), Ionic Soft Matter: Modern Trends in Theory and Applications. Berlin: Springer-Verlag. 2005. P. 143–180.
- Schröer W., Vale V.R. Liquid–liquid phase separation in solutions of ionic liquids: phase diagrams, corresponding state analysis and comparison with simulations of the primitive model // J. Phys.: Condens. Matter. 2009. 21. 424119 (21p).
- Caccamo C., Malescio G. Phase stability of dense charged hard sphere fluid mixtures //J. Chem. Phys. 1989. 90. № 2. P. 1091–1098.
- Kenkare P.U, Hall C.K., Caccamo C. Phase instabilities in charged hard-sphere mixtures. 2. Binary mixtures of salts // J. Chem. Phys. 1995. 103. № 18. P. 8111–8123.
- Caccamo C. Integral equation theory description of phase equilibria in classical fluids // Phys. Rept. 1996. № 1–2. P. 1–105.
- Van Konynenburg P.H., Scott R.L. Critical Lines and Phase Equilibria in Binary Van Der Waals Mixtures // Phil. Trans. A. 1980. 298. P. 495–540. http://www.sklogwiki.org/SklogWiki/index.php/Binary_phase_diagrams
- Tkachev N.K. Fazovaya diagramma primitivnoy modeli binarnoy smesi ionnykh zhidkostey (Phase diagram of a primitive model of a binary mixture of ionic liquids) // Doklady RAN (RAS Reports). 1998. 362. № 1. P. 75–78. [In Russian]
- Tkachev N.K. Ogranichennaya rastvorimost’ solevykh rasplavov i razlichiya v razmerakh ionov (Limited solubility of salt melts and differences in ion sizes) // Rasplavy (Melts). 1999. № 4. P. 90–94. [In Russian]
- Raineri F.O., Routh J.P., Stell G. Phase separation in the size-asymmetric primitive model // J. de Physique IV. 2000. 10. № P5. P. 99–104.
- Ebeling W., Grigo M. Radial Distribution Function in a Modified Bjerrum Model of Associating Electrolytes // Z. Phys. Chem. (Leipzig). 1984. 265. № 6. P. 1072–1078.
- Landau L.D. Lifshitz E.M. Teoreticheskaya fizika. Statisticheskaya fizika. Chast’ 1. (Theoretical Physics. Statistical Physics. Part 1). 3rd ed., supplemented by E.M. Lifshitz and L.P. Pitaevsky. Moscow: Nauka. 1976. [In Russian]
- De Gennes P.-J. Idei skeylinga v fizike polimerov (Scaling ideas in polymer physics). Moscow: Mir. 1982. [In Russian]
- Prigogine I.R., Defey R. Khimicheskaya termodinamika (Chemical Thermodynamics). Novosibirsk: Nauka. 1966. [In Russian]
- Wilson K., Kogut J. Renormalizatsionnaya gruppa i e-razlozheniye (Renormalization Group and e-Expansion). Moscow: Mir. 1975. [In Russian]
Supplementary files
