Emissivity of elements of the scandium subgroup
- Authors: Kosenkov D.V.1, Sagadeev V.V.1
-
Affiliations:
- Kazan National Research Technological University
- Issue: No 1 (2025)
- Pages: 35-45
- Section: Articles
- URL: https://rjraap.com/0235-0106/article/view/679299
- DOI: https://doi.org/10.31857/S0235010625010043
- ID: 679299
Cite item
Abstract
The results of an experimental study of the normal integral emissivity of metals of the scandium subgroup: scandium, yttrium and lanthanum in a wide range of solid–liquid temperatures, including the phase transition, are presented. The study is due to the lack of data on the normal integral emissivity of metals in periodicals and reference publications. The interest in the metals under study is also related to their unique physico-chemical properties, which make them promising for use in high-temperature systems. The authors of the article interpret the presented data as obtained for the first time, and they are preliminary in nature, requiring clarification. The measurement method is radiation, the method of heating samples is resistive. The experimental error is ± 3–5%. Measurements of the solid phase of metals were carried out in a vacuum, the liquid phase was studied in an atmosphere of specially prepared gas – argon. Graphical illustrations and numerical values of the results are presented. The obtained complex data on the normal integral emissivity within each of the phases of the metal state are monotonously increasing. This behavior of the normal integral emissivity is associated with structural changes in crystal lattices due to an increase in temperature. In the region of the solid–liquid phase transition, a jump in the normal integral emissivity was detected for each of the metals studied. In this case, the jump is associated with a sharp increase in free electrons during the restructuring of the metal structure due to melting, and the magnitude of the jump as a percentage of the solid phase is individual for each metal. All the results of the study have been analyzed and discussed. Numerical simulation based on classical electromagnetic theory using the Foot approximation is carried out, the results of which are compared with experimental values. It is concluded that the theoretical calculation of the emissivity qualitatively, but not quantitatively, makes it possible to describe the behavior of the emissivity of metals, provided that the values of the specific electrical resistance of metals in a given temperature range are known.
Keywords
Full Text

About the authors
D. V. Kosenkov
Kazan National Research Technological University
Author for correspondence.
Email: dmi-kosenkov@yandex.ru
Russian Federation, Kazan
V. V. Sagadeev
Kazan National Research Technological University
Email: dmi-kosenkov@yandex.ru
Russian Federation, Kazan
References
- Siegel R., Howell J.R. Thermal Radiation Heat Transfer. NY.: Taylor & Francis. 2010.
- Блох А.Г., Журавлев Ю.А., Рыжков Л.Н. Теплообмен излучением. М.: Энергоатомиздат. 1991.
- Michael F. Modest. Radiative heat transfer. NY.: McGraw-Hill. 1993.
- Anhalt K., Mariacarla A., Jochen M. and etc. Measuring spectral emissivity up to 4000 K // High temperatures-high pressures. 2024. 53. № 3. P. 255–270. https://doi.org/10.32908/hthp.v53.1619
- Eber A., Pichler P., Pottlacher G. Re-investigation of the normal spectral emissivity at 684,5 nm of solid and liquid molybdenum // Int. J. Thermophys. 2021. 42. № 17. P. 7.
- Fukuyama H., Higashi H., Yamano H. Normal spectral emissivity, specific heat capacity, and thermal conductivity of type 316 austenitic stainless steel containing up to 10 mass % B4C in a liquid state // Journal of Nuclear Materials. 2022. 568. № 5. Р. 12.
- Adachi M., Yamagata Y., Watanabe M. and etc. Composition dependence of normal spectral emissivity of liquid Ni – Al alloys // ISIJ International. 2021. 61. № 3. P. 684–689.
- Ishikawa T., Koyama C., Nakata Y. and etc. Spectral emissivity, hemispherical total emissivity and constant pressure heat capacity of liquid vanadium measured by an electrostatic levitator // J. Chem. Thermodynamics. 2021. 163. 106598. P. 7.
- Ishikawa T., Koyama C., Nakata Y. and etc. Spectral emissivity and constant pressure heat capacity of liquid titanium measured by an electrostatic levitator // J. Chem. Thermodynamics. 2019. 131. P. 557–562.
- Зиновьев В.Е. Теплофизические свойства металлов при высоких температурах. М.: Металлургия, 1989.
- Регель А.Р., Глазов В.М. Периодический закон и физические свойства электронных расплавов. М.: Наука, 1978.
- Зеликман А.Н., Коршунов Б.Г. Металлургия редких металлов. М.: Металлургия, 1991.
- Михайличенко А.И., Михлин Е.Б., Патрикеев Ю.Б. Редкоземельные металлы. М.: Металлургия, 1987.
- Yellapu V. Murty, Mary Anne Alvin, Jack P. Lifton. Rare earth metals and minerals industries: status and prospects. Cham: Springer, 2024.
- Косенков Д.В., Сагадеев В.В., Аляев В.А. Степень черноты ряда металлов VIII группы периодической системы // Теплофизика и аэромеханика. 2021. 28. № 6. С. 951–956.
- Косенков Д.В., Сагадеев В.В. Исследование излучательной способности циркония и гафния в широком диапазоне температур // Журнал технической физики. 2024. 24. № 8. С. 1356–1361.
- Косенков Д.В., Сагадеев В.В. Зависимость нормальной интегральной излучательной способности группы щелочных металлов от температуры // Теплофизика и аэромеханика. 2024. 31. № 4. С. 817–825.
- Новицкий П.В., Зограф И.А. Оценка погрешностей результатов измерений. Л.: Энергоатомиздат. 1991.
- Физическое металловедение. Том 1: Атомное строение металлов и сплавов / Под ред. Кана Р.У., Хаазена П. М.: Металлургия, 1987.
- Mardon P.G., Nichols J.L., Pearce J.H. and etc. Some Properties of Scandium Metal // Nature. 1961. 189. P. 566 – 568.
- Kammler D.R., Rodriguez M.A., Tissot R.G. and etc. In situ time of flight neutron diffraction study of high-temperature α-to-β phase transition in elemental scandium // Metallurgical and materials transactions A. 2008. 39. № 12. P. 2815 – 2819.
- Зиновьев В.Е. Кинетические свойства металлов при высоких температурах. М.: Металлургия. 1984.
- Излучательные свойства твердых материалов / Под ред. А.Е. Шейндлина. М.: Энергия. 1974.
- Takamichi I., Roderick I.L. Guthrie. The thermophysical properties of metallic liquids. Vol. 2: Predictive models. Oxford: Oxford University Press. 2015.
- Савицкий Е.М., Терехова В.Ф., Наумкин О.П. Физико-химические свойства редкоземельных металлов, скандия и иттрия // Успехи физических наук. 1963. 79. № 2. С. 263–293.
- Ishikawa T., Watanabe Y., Koyama C. and etc. Constant pressure heat capacity of molten yttrium measured by an electrostatic levitator // In. Journal of Microgravity Science and Application. 2023. 40. № 2. P.11.
- Ивлиев А.Д. Электрическое сопротивление редкоземельных металлов и их сплавов при высоких температурах: роль магнитного рассеяния // Физика твердого тела. 2020. 62. № 10. С. 1587–1593.
- Григорович В.К. Металлическая связь и структура металлов. М.: Наука, 1988.
- Spedding F.H., Daane A.H., Herrmann K.W Electrical resistivities and phase transformations of lanthanum, cerium, praseodymium and neodymium // JOM. 1957. 9. P. 895 – 897.
Supplementary files
