Specific electrical conductivity of molten (LiCl–KCl)eut – HfCl4 mixtures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Electrical conductivity is one of the most important properties that are required for the proper organization of electrolytic processes occurring in molten salts, in particular, during the production and refining of metallic hafnium and its separation from zirconium. In this work, we have measured for the first time the electrical conductivity of molten HfCl4 mixtures with a low-melting solvent (LiCl-KCl)eut, which makes it possible to lower significantly (by hundreds of degrees) the temperature of technological processes. The liquidus line of this pseudobinary system has been also constructed for the first time at the HfCl4 concentrations up to 30 mol. %. A specially designed capillary quartz cell with a constant in the range of 95.2–91.9 cm–1 and high-purity chlorides were used to measure the electrical conductivity. The resistances of the molten mixtures in the HfCl4 concentration ranges of 0–30 mol.% and temperatures of 780–1063 K were recorded using an AC bridge P-5058 at a frequency of 10 kHz, and the melt temperature was measured with a Pt/Pt–Rh thermocouple. It was found that the values of electrical conductivity of the molten (LiCl–KCl)eut.-HfCl4 mixtures increase as the temperature increases from 0.86 to 2.08 S/cm. This occurs as a result of the increased ion mobility (simple and complex) and decreased melt viscosity. With an increase in the HfCl4 concentration, the electrical conductivity decreases. In the same direction, the concentration of relatively low-mobility complex groups HfCl62– containing 6 chlorine anions tightly bound to the tetra-charged metal, increases in the melts. The concentration of the main current carriers, Li+, K+ and especially the mobile Cl anions, decreases more and more, which leads to a decrease in the electrical conductivity of the melt. In the molten (LiCl–KCl)eut.–ZrCl4 mixtures that we studied earlier, the electrical conductivity decreases less as the tetrachloride concentration increases, which indicates a lower strength of the ZrCl62– complexes compared to HfCl62–.

Full Text

Restricted Access

About the authors

A. B. Salyulev

Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: salyulev@ihte.ru
Russian Federation, Ekaterinburg

A. M. Potapov

Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Email: salyulev@ihte.ru
Russian Federation, Ekaterinburg

References

  1. Morozov I.S. Primeneniye khlora v metallurgii redkikh i tsvetnykh metallov [Application of chlorine in metallurgy of rare and non-ferrous metals]. M.: Nauka. 1966. [In Russian]
  2. Nekhamkin L.G., Ed. Metallurgiya tsirkoniya i gafniya [Metallurgy of zirconium and hafnium]. M.: Metallurgiya. 1979. [In Russian]
  3. Drobot D.V., Lysakova E.I., Reznik A.M. Izbrannyye glavy khimii i tekhnologii redkikh i rasseyannykh elementov. Khimiya i tekhnologiya tsirkoniya i gafniya [Selected chapters of chemistry and technology of rare and trace elements. Chemistry and technology of zirconium and hafnium]. M.: MITHT im. M.V. Lomonosov. 2013. [In Russian]
  4. Sheka I.A., Karlysheva K.F. Khimiya gafniya [Chemistry of hafnium]. Kiyev: Naukova dumka. 1972. [In Russian]
  5. Flengas S.N., Pint P. Potential chloride electrolytes for recovering the metals Ti, Zr and Hf by fused salt electrolysis // Canad. Metallurg. Quart. 1969. 8. № 2. P. 151−166.
  6. Flengas S.N., Block-Bolten A. Solubilities of reactive gases in molten salts. In: Advances in molten salt chemistry. Braunstein, G. Mamantov, and G. P. Smith, Eds., New York: Plenum Press, 1973. 2. P. 27−81.
  7. Wei R., Huang Z., Wei T., Wang Z., Jiao S. Review − Preparation of hafnium metal by electrolysis // J. Electrochem. Soc. 2024. 171. № 2. P. 022501.
  8. Li S., Che Y., Song J., Li C., Shu Y., He J., Yang B. Electrochemical studies on the redox behavior of Zr(IV) in the LiCl−KCl eutectic molten salt and separation of Zr and Hf // J. Electrochem. Soc. 2020. 167. № 2. P. 023502.
  9. Panfilov A.V., Korobkov A.V., Buzmakov V.V., Tereshin V.V., Ivshina A.A., Abramov A.V., Danilov D.A., Chukin A.V., Polovov I.B. Izucheniye sostava rasplava KCl–AlCl3 –ZrCl4 –HfCl4 primenitel’no k ekstraktivnoy rektifikatsii khloridov tsirkoniya i gafniya [Study of the composition of the KCl–AlCl3 ZrCl4–HfCl4 melt in relation to extractive rectification of zirconium and hafnium chlorides] // Rasplavy. 2024. № 2. P. 211−222. [In Russian]
  10. Salyulev A.B., Potapov A.M. Electrical conductivity of ZrCl4 solutions in molten LiCl, NaCl−KCl (1:1) and HfCl4 solutions in molten KCl // Z. Naturforsch. 2022. 77a. № 10. P. 941−948.
  11. Salyulev A.B., Potapov A.M. Electrical conductivity of zirconium tetrachloride solutions in molten sodium, potassium and cesium chlorides // Z. Naturforsch. 2019. 74a. № 10. P. 925−930.
  12. Salyulev A.B., Khokhlov V.A., Redkin A.A. Electrical conductivity of low-temperature NaCl−KCl−ZrCl4 melts // Russ. Metallurgy (Metally) 2014. 2014. № 8. P. 659−663.
  13. Salyulev A.B., Potapov A.M. Electrical conductivities of low-temperature KCl−ZrCl4 and CsCl−ZrCl4 molten mixtures // Z. Naturforsch. 2018. 73a. № 3. P. 259−263.
  14. Zou W., Wu Y., Wang L., Yan G., Ma Z., Zhang J. Preparation and application of a NaCl–KCl–CsCl–Cs2ZrCl6 composite electrolyte // Materials. 2023. 16. № 6. P. 2270.
  15. Smirnov M.V., Salyulev A.B., Kudyakov V.Ya. Thermodynamic properties and decomposition potential of HfCl4 solutions in molten alkali chlorides and their mixtures // Electrochim. Acta. 1984. 29. № 8. P. 1087–1100.
  16. Salyulev A.B., Potapov A.M. Electrical conductivity of ZrCl4 solutions in the molten LiCl−KCl eutectic mixture // Russ. Metallurgy (Metally). 2024. 2024. № 8. P. 204−210.
  17. Salyulev A.B., Khokhlov V.A., Moskalenko N.I. Electrical conductivity of KAlCl4−ZrCl4 molten mixtures // Russ. Metallurgy (Metally). 2017. 2017. № 2. P. 95−99.
  18. Nikolaev A.Yu., Mullabaev A.R., Suzdaltsev A.V., Kovrov V.A., Kholkina A.S., Shishkin V.Yu., Zaikov Yu.P. Purification of alkali-metal chlorides by zone recrystallization for use in pyrochemical processing of spent nuclear fuel // Atomic Energy. 2022. 131. № 8. P. 195−201.
  19. Salyulev A.B., Potapov A.M., Shishkin V.Yu., Khokhlov V.A. Electrical conductivity of quasi-binary (LiCl−KCl)eut.−CdCl2 melts // Electrochim. Acta. 2015. 182. № 10. P. 821−826.
  20. Van Artsdalen E.R., Yaffe I.S. Electrical conductance and density of molten salt systems: KCl−LiCl, KCl−NaCl and KCl−KI // J. Phys. Chem. 1955. 59. № 2. P. 118−127.
  21. Janz G.J., Tomkins R.P.T., Allen C.B., Downey J.R, Jr., Gardner G.L., Krebs U., Singer S.K. Molten salts. Chlorides and mixtures − electrical conductance, density, viscosity, and surface tension data // J. Phys. Chem. Ref. Data. 1975. 4. № 4. P. 871−1178.
  22. Salyulev A.B., Potapov A.M. Electrical conductivity of (LiCl−KCl)eut. −SrCl2 molten mixtures // J. Chem. Eng. Data. 2021. 66. № 12. P. 4563−4571.
  23. Sakamura Y., Inoue T., Iwai T., Moriyama H. Chlorination of UO2, PuO2 and rare earth oxides using ZrCl4 in LiCl–KCl eutectic melt // J. Nucl. Mater. 2005. 340. № 1. P. 39−51.
  24. Salyulev A.B., Kornyakova I.D. Spektry kombinatsionnogo rasseyaniya rasplavlennogo i paroobraznogo tetrakhlorida tsirkoniya [Raman spectra of molten and vaporous zirconium tetrachloride] // Rasplavy. 1994. № 2. P. 60−64. [In Russian]
  25. A.B. Salyulev, Zakiryanova I.D. Spektry kombinatsionnogo rasseyaniya tverdogo, rasplavlennogo i gazoobraznogo tetrakhlorida gafniya [Raman spectra of solid, molten and gaseous hafnium tetrachloride] // Rasplavy. 1995. № 3. P. 58−61. [In Russian]
  26. Salyulev A.B., Potapov A.M. Conductivity of some molten chlorides at elevated temperatures II. Electrical conductivity of molten chlorides (InCl3, ZrCl4, HfCl4) with negative temperature coefficients // J. Chem. Eng. Data. 2021. 66. № 1. P. 322−329.
  27. Smirnov M.V., Stepanov V.P., Khokhlov V.A. Ionic structure and physicochemical properties of molten halides // Rasplavy. 1988. № 1. P. 51−59.
  28. Kirillov S.A., Pavlatou E.A., Papatheodorou G.N. Instantaneous collision complexes in molten alkali halides: Picosecond dynamics from low-frequency Raman data // J. Chem. Phys. 2002. 116. № 21. P. 9341−9351.
  29. Kipouros G.J., Flint J.H., Sadoway D.R. Raman spectroscopic investigation of alkali-metal hexachloro compounds of refractory metals // Inorg. Chem. 1985. 24. № 23. P. 3881−3884.
  30. Salyulev A.B., Zakir’yanova I.D., Vovkotrub E.G. Issledovaniye produktov vzaimodeystviya ZrCl4 i HfCl4 s khloridami shchelochnykh metallov i s pentakhloridom fosfora metodom spektroskopii KR [Investigation of reaction products of ZrCl4 and HfCl4 with alkali metal chlorides and phosphorus pentachloride by Raman spectroscopy] // Rasplavy. 2012. № 5. P. 53−61. [In Russian]
  31. Yao B.-L., Liu K., Liu Y.-L., Yuan L.-Y., He H., Chai Z.-F., Shi W.-Q. Raman and electrochemical study of zirconium in LiCl−KCl−LiF−ZrCl4 // J. Electrochem. Soc. 2018. 165. № 2. P. D6−D12.
  32. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Crystallogr. 1976. A 32. P. 751−767.
  33. Chekmarev A.M. Osobennosti kompleksokhimicheskogo povedeniya ionov tsirkoniya i gafniya [Features of the complex-chemical behavior of zirconium and hafnium ions] // Koordinats. khimiya. 1981. 7. № 24. P. 819–852. [In Russian]
  34. Potapov A.M., Salyulev A.B. Sposob opredeleniya elektroprovodnosti slozhnykh mnogokomponentnykh smesey rasplavlennykh soley [Method for determining the electrical conductivity of complex multicomponent mixtures of molten salts]. Patent RU № 278859. Published 23.01.2023. [In Russian]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Electrical conductivity of molten and heterogeneous (melt + solid phase) mixtures (LiCl-KCl)eut.-HfCl4 and (LiCl-KCl)eut.-ZrCl4 [16].

Download (266KB)
3. Fig. 2. Liquidus lines of the quasi-binary systems (LiCl-KCl)eut.-HfCl4 and (LiCl-KCl)eut.-ZrCl4 [16].

Download (186KB)
4. Fig. 3. Specific conductivity isotherms of molten mixtures (LiCl-KCl)eut.-HfCl4 (dark dots) and (LiCl-KCl)eut.-ZrCl4 (light dots) [16].

Download (199KB)

Copyright (c) 2025 Russian Academy of Sciences