Application of mathematical planning of the experiment in the choosing the optimum conditions of the vapor-phase gas-chromatographic determination of formaldehyde in the urine

Cover Page

Cite item

Full Text

Abstract

Introduction. There was substantiated a method for the determination of formaldehyde by vapor-phase gas chromatography by the use of derivatizing reagent o-(2,3,4,5,6-pentafluorbenzyl)hydroxylamine. 

Material and methods. Formaldehyde in urine was derivatized to o-pentafluorobenzyloxime and recovered to the vapor phase by heating the urine sample with o-(2,3,4,5,6-pentafluorbenzyl)hydroxylamine in a sealed vial. Gas-chromatographic analysis of the vapor-air phase was performed in a mode of the temperature gradient on a capillary column HP-5 with a flame ionization detector. Identification of the analyte in the form of the derivative-o- pentafluorobenzyloxime of formaldehyde was carried out according to the absolute retention time, which was established by comparing the chromatograms of model formaldehyde mixtures in the urine of different concentrations. 

Results. The optimal conditions for gas extraction are selected using mathematical experimental planning. The most important factors of gas extraction in the vapor-phase analysis are the temperature and time of the establishment of the interphase equilibrium with heating. From the experimentally obtained curves of the analytical signal on the temperature and the heating time, the zero level and the interval of variation of these factors are chosen. A matrix for planning a 2-factor experiment was constructed. The coefficients of the mathematical model are determined. There was carried out statistical processing of the experimental data, which was reduced to the estimation of the reproducibility of the optimization parameter and to the evaluation of the significance of the coefficient of the mathematical model. The adequacy of the mathematical model was evaluated, its interpretation was carried out. 

Discussion. The peak area of the analyte increases with the elevating the temperature and heating time, due to an increase in the analyte concentration in the vapor phase. Moreover, the heating time makes a greater contribution to the formation of the analytical signal than the temperature. The step of motion along the gradient was calculated and the experiments of steep ascent were carried out.

Conclusion. According to the results of the steep ascent experiments, the optimal conditions for the gas extraction of formaldehyde in the form of a derivative were chosen.

About the authors

Аnton N. Alekseenko

East-Siberian Institute of Medical and Ecological Research

Author for correspondence.
Email: labchem99@gmail.com
ORCID iD: 0000-0003-4980-5304

MD, Ph.D., senior researcher of the Laboratory of analytical ecotoxicology and biomonitoring of the East-Siberian Institution of Medical and Ecological Research, Angarsk, 665827, Russian Federation.

e-mail: labchem99@gmail.com

Russian Federation

O. M. Zhurba

East-Siberian Institute of Medical and Ecological Research

Email: noemail@neicon.ru
ORCID iD: 0000-0002-9961-6408
Russian Federation

References

  1. Malysheva A.G., Rakhmanin Yu.A. Physico-chemical research and methods of controlling substances in environmental health. [Fiziko-khimicheskie issledovaniya i metody kontrolya veshchestv v gigiene okruzhayushchey sredy]. St. Petersburg: Professional; 2014. (in Russian)
  2. IARC Мonographs on the Еvaluation of Сarcinogenic Risks to Нumans: Volume 100F A review of human carcinogens; 2012 Available at: http://monographs.iarc.fr/ENG/Monographs/vol100F/mono100F-29.pdf
  3. Costa S., Carvalho S., Costa C., Coelho P., Silva S., Santos L.S. еt al. Increased levels of chromosomal aberrations and DNA damage in a group of workers exposed to formaldehyde. Mutagenesis. 2015; 30(4): 463–73. https://doi.org/10.1093/mutage/gev002.
  4. Pierce J.S., Abelmann A., Lotter J.T., Ruestow P. S; Unice K.M. Beckett E.M. еt al. An assessment of formaldehyde emissions from laminate flooring manufactured in China. Regul Toxicol Pharmacol. 2016; 81: 20–32. https://doi.org/10.1016/j.yrtph.2016.06.022
  5. Hosgood H.D., Zhang L., Tang X., Vermeulen R., Hao Z., Shen M. еt al. Occupational exposure to formaldehyde and alterations in lymphocyte subsets // Am J Ind Med. 2013; 56(2): 252–7. https://doi.org/10.1002/ajim.22088
  6. Formaldehyde Market For UF Resins, PF Resins, MF Resins, Polyacetal Resins, Pentaerythritol, MDI, 1,4–Butanediol, And Other Applications-Global Industry Analysis, Size, Share, Growth, Trends And Forecast; 2012–2018. Available at: https://www.prnewswire.com/news-releases/formaldehyde-market-for-uf-resins-pf-resins-f-resins-polyacetal-resins-pentaerythritol-mdi-1-4-butanediol-and-other-applications–-global-industry-analysis-size-share-growth-trends-and-forecast-2012–-2018-20223951.html
  7. Nielsen G.D., Larsen S.T., Wolkoff P.N. Re-evaluation of the WHO (2010) formaldehyde indoor air quality guideline for cancer risk assessment. Archives оf Toxicology. 2017; 91(1): 35–61. https://doi.org/10.1007/s00204-016-1733-8
  8. Kaletina N. I., ed. Toxicological chemistry. Metabolism and analysis of toxicants: tutorial [Toksikologicheskaya khimiya. Metabolizm i analiz toksikantov: uchebnoe posobie]. Moscow: GEOTAR–Media; 2008. (in Russian)
  9. Rukavishnikov V.S., Efimova N.V., Lisetskaya L.G., Taranenko N.A., Abramatets E.A., Katul’skaya O.Yu. А search for adequate biomarkers for establishing the influence of chemical factors on the health of the population. Kazanskiy meditsinskiy zhurnal. 2009; 90(4): 473–6. (in Russian)
  10. Rager J.E., Moeller B.C., Doyle-Eisele M., Kracko D., Swenberg J.A., Fry R.C. et al. Formaldehyde and epigenetic alterations: microRNA changes in the nasal epithelium of nonhuman primates. Environ. Health Perspect. 2013; 121(3): 339–44. https://doi.org/10.1289/ehp.1205582
  11. Seow W.J., Zhang L., Vermeulen R., Tang X., Hu W., Bassig B.A. еt al. Circulating immune/inflammation markers in Chinese workers occupationally exposed to formaldehyde. Carcinogenesis. 2015; 36(8): 852–7.
  12. Aydin S., Canpinar H., Ündeğer Ü., Güç D., Çolakoğlu M., Kars A. et al. Assessment of immunotoxicity and genotoxicity in workers exposed to low concentrations of formaldehyde. Archives оf Toxicology. 2013; 87(1): 145–53. https://doi.org/10.1007/s00204-012-0961-9
  13. Masnavieva L.B., Kudaeva I.V., Efimova N.V., Zhurba O.M. Individual exposure load of formaldehyde and adolescents’ organism sensibilization. Ekologiya cheloveka. 2017; 6: 3–8. (in Russian)
  14. Dorogova V.B., Taranenko N.A., Rychagova O.A. Environmental formaldehyde and its organism effects (survey). Byulleten’ VSNTs SO RAMN. 2010; 1: 32–5. (in Russian)
  15. Popkova S.M., Rakova E.B., Kichigina E.L., Nemchenko U.M., Efimova N.V., Myl’nikova I.V. et al. Microecological landscape in children of the Irkutsk region against of the hygienic characteristics background of territories. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Biologiya. Ekologiya. 2012; 5(4): 44–54. (in Russian)
  16. Rukavishnikov V.S., Efimova N.V., Mylnikova I.V., Zhurba O.M. Аssessment of the impact of admissible concentrations of formaldehyde on the functional state of the central nervous system in adolescents. Gigiena i sanitariya. 2017; 96(5): 474–8. https://doi.org/10.18821/0016-9900-2017-96-5-474-478 (in Russian)
  17. Bolt H.M. New results on formaldehyde: the 2nd International Formaldehyde Science Conference. Archives оf Toxicology. 2013; 87(1): 217–22. https://doi.org/10.1007/s00204-012-0966-4
  18. Michel O. For expert evaluation of a possible connection: formaldehyde and nasopharyngeal cancer. HNO. 2016; 64(2):122–4; https://doi.org/10.1007/s00106-015-0097-3
  19. Hara H., Naito M., Harada T., Tsuboi I., Terui T., Aizawa S. Quantitative analysis of formaldehyde-induced fluorescence in paraffin-embedded specimens of malignant melanomas and other melanocytic lesions. Acta Derm Venereol. 2016; 96(3): 309-13. https://doi.org/10.2340/00015555-2238
  20. IARC Мonographs on the Еvaluation of Сarcinogenic Risks to Нumans: Volume 100F A review of human carcinogens; 2012 Available at: http://monographs.iarc.fr/ENG/Monographs/vol100F/mono100F-29.pdf
  21. Jia X., Jia Q., Zhang Z., Gao W., Zhang X., Niu Y. еt al. Effects of formaldehyde on lymphocyte subsets and cytokines in the peripheral blood of exposed workers. Plos One. 2014; 9(8): e104069. https://doi.org/10.1371/journal.pone.0104069
  22. Bradman A., Gaspar F., Castorina R., Williams J., Hoang T., Jenkins P.L. Formaldehyde and acetaldehyde exposure and risk characterization in California early childhood education environments. Indoor Air. 2017; 27(1): 104-13. https://doi.org/10.1111/ina.12283
  23. Mundt K.A., Gallagher A.E., Dell L.D., Natelson E.A., Boffetta P., Gentry P.R. Does occupational exposure to formaldehyde cause hematotoxicity and leukemia-specific chromosome changes in cultured myeloid progenitor cells? Crit Rev Toxicol. 2017; 47(7): 592–602. https://doi.org/10.1080/10408444.2017.1301878
  24. Kochetkov P.P., Malysheva A.G., Glebov V.V. Determination of formaldehyde in water by high performance liquid chromatography with the use of solid phase extraction. Gigiena i sanitariya. 2017; 3: 281–84. https://doi.org/10.18821/0016-9900-2017-96-3-281-284 (in Russian)
  25. Determination of the mass concentration of formaldehyde, acetaldehyde, propionic aldehyde, oil aldehyde and acetone in urine samples by high-performance liquid chromatography [Opredelenie massovoj koncentracii formal’degida, acetal’degida, propionovogo al’degida, maslyanogo al’degida i acetona v probah mochi metodom vysokoehffektivnoj zhidkostnoj hromatografii МУК 4.1.2110–06]. Moscow: meditsyna; 2008. (in Russian)
  26. Cancilla D.A, Que Hee S. О-(2,3,4,5,6-pentafluorophenyl)methyl hydroxylamine hydrochloride: a versatile reagent for the determination of carbonyl-containing compounds. J. Chromatography. 1992; 627: 1–16. https://doi.org/10.1016/0021-9673(92)87181-7
  27. Vershinin V.I., Pertsev N.V. Planning and mathematical processing of the results of a chemical experiment [Planirovanie i matematicheskaya obrabotka rezul’tatov khimicheskogo eksperimenta]. Omsk: Izd-vo OmGU; 2005.
  28. Adler Yu.P., Markova E.V., Granovskiy Yu.A. Planning an experiment when searching for optimal conditions [Planirovanie eksperimenta pri poiske optimal’nykh usloviy]. Moscow: Nauka; 1971. (in Russian)
  29. Smagunova A.N., Pashkova G.V., Belykh L.I. Mathematical planning of experiment in methodological studies of analytical chemistr. [Matematicheskoe planirovanie eksperimenta v metodicheskikh issledovaniyakh analiticheskoy khimii]. Irkutsk: Izd-vo IGU; 2015. (in Russian)
  30. Vitenberg A.G. Static vapor-phase gas chromatographic analysis. Physicochemical basis and applications. Rossiyskiy khimicheskiy zhurnal. 2003; 1: 7–22. (in Russian)
  31. Kolb B. Ettre L.S. Static Headspace-Gas Chromatography. Theory and practice. New-York: Wiley-VCH; 1997.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Alekseenko А.N., Zhurba O.M.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.