Homeostatic effect of silicon waters
- Authors: Stekhin A.A.1, Yakovleva G.V.1, Nikiforova T.I.1
-
Affiliations:
- National Medical Research Center for Rehabilitation and Balneology of the Russian Health Ministry
- Issue: Vol 102, No 3 (2023)
- Pages: 214-220
- Section: ENVIRONMENTAL HYGIENE
- Published: 24.04.2023
- URL: https://rjraap.com/0016-9900/article/view/638591
- DOI: https://doi.org/10.47470/0016-9900-2023-102-3-214-220
- ID: 638591
Cite item
Full Text
Abstract
Introduction. There are considered drinking and mineral waters in terms of homeostatic action (hormesis) of water-soluble silicon and the trends of its biological activity and possible negative effects on the human body.
Materials and methods. In studied waters the concentration of the systemic homeostatic regulator — peroxide anion-radical was measured by the kinetic chemiluminescent method. The water biological activity was assessed by the extrasubstrate synthesis of adenosine triphosphate by the ATP synthase of microorganisms E.Coli K12 TG1(pF1) with built-in genes for the complete CDABE lux operon of the bacteria V. fischeri 6E luminescent system. The parametrization of the water structural-energy state was carried out according to the cryophysical capillary technique. The study object were low-mineralized drinking water packed in 9-liter polymer containers with an initial silicon content of 12 mg/dm3.
Results. The hormetic effect of silicon waters due to self-induction of peroxide anion radicals in water manifests itself in the form of mitochondrial activity and enzyme complexes stimulation, accompanied by activation of the central nervous system, maintenance of nonspecific immunity, and the reproductive system functioning. The degree of silicon water beneficial effect due to the electron-donor and regulatory action of peroxide anion-radicals associates, depends on activation processes during the production and drinking water storage.
Limitations. Recommendations for maintaining the biological activity of silica waters do not go beyond the limits established by existing regulatory documents on the safety of drinking waters.
Conclusion. The levels of radical anion peroxide production (2.6–5.2 μg/dm3), obtained in the course of this study, correspond to the maximum changes in the biological activity of water activation in the range of 1.4–3.0 (relative to the control — distilled water) in the mode of implementing the conditions of non-local activation. With long-term storage in a polymer container, the ability to activate is lost — such water becomes biologically inert.
Compliance with ethical standards. The study does not require the submission of a biomedical ethics committee opinion or other documents.
Contribution:
Stekhin A.A. — the design of the study, verification of critical content, writing the text, approval of the final version of the article;
Yakovleva G.V. — scientific editorial staff of the manuscript text, data processing;
Nikiforova T.I. — a review of publications on the study.
All co-authors — responsibility for the integrity of all parts of the article.
Conflict of interest. The authors declare no conflict of interest.
Acknowledgement. The study had no sponsorship.
Received: December 7, 2022 / Accepted: March 24, 2023 / Published: April 20, 2023
About the authors
Anatoly A. Stekhin
National Medical Research Center for Rehabilitation and Balneology of the Russian Health Ministry
Author for correspondence.
Email: Stekhin-aa@mail.ru
ORCID iD: 0000-0002-8750-0686
Candidate of Technical Sciences, Leading Researcher, National Medical Research Center for Rehabilitation and Balneology, Russian Ministry of Health.
e-mail: Stekhin-aa@mail.ru
Russian FederationGalina V. Yakovleva
National Medical Research Center for Rehabilitation and Balneology of the Russian Health Ministry
Email: noemail@neicon.ru
ORCID iD: 0000-0002-8766-2773
Russian Federation
Tatyana I. Nikiforova
National Medical Research Center for Rehabilitation and Balneology of the Russian Health Ministry
Email: noemail@neicon.ru
ORCID iD: 0000-0003-4574-9608
Russian Federation
References
- Shu W.Q., Luo J.H., Zhang J.J. The relationship between soluble silicate acid in drinking water and food and human health. Zhonghua Yu Fang Yi Xue Za Zhi. 2020; 54(6): 702–7. https://doi.org/10.3760/cma.j.cn112150-20200318-00378 (in Chinese)
- Sadowska A., Świderski F. Sources, bioavailability and safety of silicon derived from foods and other sources added for nutritional purposes in food supplements and functional foods. Appl. Sci. 2020; 10(18): 6255. https://doi.org/10.3390/app10186255
- Kim Y.Y., Kim M.H., Choi M.K. Relationship between dietary intake and urinary excretion of silicon in free-living Korean adult men and women. Biol. Trace Elem. Res. 2019; 191(2): 286–93. https://doi.org/10.1007/s12011-018-1619-0
- Gushcha S.G., Nasibullin B.A., Nikipelova E.M., Badiuk N.S. Comparative evaluation of the effectiveness of natural silicon mineral waters and their artificial analogics on the current experimental patiology of sleeve-surface tract. J. Educ. Health Sport. 2019; 9(4): 600–10.
- Götz W., Tobiasch E., Witzleben S., Schulze M. Effects of silicon compounds on biomineralization, osteogenesis, and hard tissue formation. Pharmaceutics 2019; 11(3): 117. https://doi.org/10.3390/pharmaceutics11030117
- Wu W.Y., Chou P.L., Yang J.C., Chien C.T. Silicon-containing water intake confers antioxidant effect, gastrointestinal protection, and gut microbiota modulation in the rodents. PLoS One. 2021; 16(3): e0248508. https://doi.org/10.1371/journal.pone.0248508
- Nikiforova T.I. The use of siliceous baths for the treatment of the patients presenting with arterial hypertension. Voprosy kurortologii, fizioterapii i lechebnoy fizicheskoy kul’tury. 2013; 90(3): 16–21. https://www.elibrary.ru/qbvlxr (in Russian)
- Nikiforova T.I., Knyazeva T.A. Artificial silicious-carbon dioxide baths for the rehabilitation and secondary prophylaxis in the patients presenting with arterial hypertension associated with coronary heart disease. Voprosy kurortologii, fizioterapii i lechebnoy fizicheskoy kul’tury. 2012; 89(5): 11–5. https://www.elibrary.ru/pugvit (in Russian)
- Nikiforova T.I., Knyazeva T.A., Bobrovnitskiy I.P., Lebedeva O.D., Kotenko E.P. Method for the treatment of patients with cardiovascular diseases. Patent RF № 2543468C2; 2013. (in Russian)
- Mascarenhas S., Mutnuri S., Ganguly A. Silica – A trace geogenic element with emerging nephrotoxic potential. Sci. Total Environ. 2018; 645: 297–317. https://doi.org/10.1016/j.scitotenv.2018.07.075
- Rakhmanin Yu.A., Egorova N.A., Mikhaylova R.I., Ryzhova I.N., Kochetkova M.G. On the hygienic rating of silicon compounds in drinking water (literature review). Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2021; 100(10): 1077–83. https://doi.org/10.47470/0016-9900-2021-100-10-1077-1083 https://www.elibrary.ru/hrezgo (in Russian)
- Lykov A.P., Lykova Yu.A., Bondarenko O.V., Poveshchenko O.V., Surovtseva M.A., Gaydul’ K.V., et al. Toxic effect of the nanostructured silicon dioxide particles on marrowy multipotentny mesenchymal stem cells. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy. 2015; (5–2): 251–5. https://www.elibrary.ru/rshtug (in Russian)
- Deng Y.D., Zhang X.D., Yang X.S., Huang Z.L., Wei X., Yang X.F., et al. Subacute toxicity of mesoporous silica nanoparticles to the intestinal tract and the underlying mechanism. J. Hazard. Mater. 2021; 409: 124502. https://doi.org/10.1016/j.jhazmat.2020.124502
- Lunevich L. Aqueous silica and silica polymerization. In: Desalination-Challenges and Opportunities. IntechOpen; 2019: 1–19.
- Braun D.A., Efimova V.A., Gordova V.S., Sergeeva V.E. Changes in morphometric parameters of digestive glands under the influence of silicon intake with drinking water during three months. In: Medical Science and Practice: An Interdisciplinary Dialogue. Collection of Articles of the International Scientific and Practical Conference Dedicated to the 55th Anniversary of the Chuvash State University Named After I.N. Ulyanov [Meditsinskaya nauka i praktika: mezhdistsiplinarnyy dialog. Sbornik statey Mezhdunarodnoy nauchno-prakticheskoy konferentsii, posvyashchennoy 55-letiyu Chuvashskogo gosudarstvennogo universiteta imeni I.N. Ul’yanova]. Cheboksary; 2022: 214–7. https://www.elibrary.ru/dniyjg (in Russian)
- Duan J., Liang S., Feng L., Yu Y., Sun Z. Silica nanoparticles trigger hepatic lipid-metabolism disorder in vivo and in vitro. Int. J. Nanomedicine. 2018; 9(13): 7303–18. https://doi.org/10.2147/IJN.S185348
- Erofeeva E.A. Environmental hormesis: From cell to ecosystem. Curr. Opin. Environ. Sci. Health. 2022; 29: 100378. https://doi.org/10.1016/j.coesh.2022.100378
- Calabrese E.J., Agathokleous E. Hormesis: Transforming disciplines that rely on the dose response. 2022; 74(1): 8–23. https://doi.org/10.1002/iub.2529
- Sebastiano M., Messina S., Marasco V., Costantini D. Hormesis in ecotoxicological studies: A critical evolutionary perspective. Curr. Opin. Toxicol. 2022; 29: 25–30. https://doi.org/10.1016/j.cotox.2022.01.002
- Rix R.R., Guedes R.N.C., Cutler G.C. Hormesis dose-response contaminant-induced hormesis in animals. Curr. Opin. Toxicol. 2022; 30: 100336. https://doi.org/10.1016/j.cotox.2022.02.009
- Agathokleous E., Calabrese E.J. Environmental toxicology and ecotoxicology: How clean is clean? Rethinking dose response analysis. Sci. Total Environ. 2020; 746: 138769. https://doi.org/10.1016/j.scitotenv.2020.138769
- Agathokleous E., Wang Q., Iavicoli I., Calabrese E.J. The relevance of hormesis at higher levels of biological organization: Hormesis in microorganisms. Curr. Opin. Toxicol. 2022; 29: 1–9. https://doi.org/10.1016/j.cotox.2021.11.001
- Stekhin A.A., Rakhmanin Yu.A., Yakovleva G.V., Iksanova T.I. The role of body water in the etiology of chronic non-communicable diseases (literature review). Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2021; 100(6): 584–93. https://doi.org/10.47470/0016-9900-2021-100-10-1077-1083 https://www.elibrary.ru/hrezgo
- Rakhmanin Yu.A., Stekhin A.A., Yakovleva G.V. Biophysics of Water: Quantum Nonlocality in Water Treatment Technologies; Regulatory Role of Associated Water in Cell Metabolism; Regulation of Bioenergetic Activity of Drinking Water [Biofizika vody: Kvantovaya nelokal’nost’ v tekhnologiyakh vodopodgotovki; regulyatornaya rol’ assotsiirovannoy vody v kletochnom metabolizme; normirovanie bioenergeticheskoy aktivnosti pit’evoy vody]. Moscow: Lenand; 2016. https://www.elibrary.ru/njxuec
- Stekhin A.A., Tatarinov V.V., Yakovleva G.V. Exchange electronic interactions as the main factor of maintaining the sustainability of organism homeostasis. In: Sino-Russian ASRTU Forum Ecology and Environmental Sciences. Ekaterinburg; 2020.
- Stekhin A.A., Yakovleva G.V. Quantum Behavior of Water: Properties of the Electronic Subsystem of Water Associates. Electronic Deficiency as a Health Risk Factor [Kvantovoe povedenie vody: Svoystva elektronnoy podsistemy assotsiatov vody. Elektronnyy defitsit kak faktor riska zdorov’yu]. Moscow: Lenand; 2019. (in Russian)
- Ling G.N. Life at the Cell Level and Below the Cell: The Hidden History of the Fundamental. Revolution in Biology [Zhizn’ na urovne kletki i nizhe kletki: skrytaya istoriya fundamental’nogo. Revolyutsiya v biologii.]. New York: Pacific Press; 2001.
- Stekhin A.A., Yakovleva T.V., Marasanov A.V., Karasev A.K., Iksanova T.I., Shovkoplyas Yu.A., et al. Exchange electronic interactions as a basis for biophysical regulatory processes. Meditsina i vysokie tekhnologii. 2019; (1): 5–15. https://www.elibrary.ru/ejqquc (in Russian)
- Murbach T.S., Glávits R., Endres J.R., Clewell A.E., Hirka G., Vértesi A., et al. A toxicological evaluation of a fulvic and humic acids preparation. Toxicol. Rep. 2020; 7: 1242–54. https://doi.org/10.1016/j.toxrep.2020.08.030
- Bianconi V., Violi F., Fallarino F. et al. Is acetylsalicylic acid a safe and potentially useful choice for adult patients with COVID-19. Drugs. 2020; 80(14): 1383–96. https://doi.org/10.1007/s40265-020-01365-1
- Calabrese E.J., Kozumbo W.J. The phytoprotective agent sulforaphane prevents inflammatory degenerative diseases and age-related pathologies via Nrf2-mediated hormesis. Pharmacol. Res. 2021; 163: 105283. https://doi.org/10.1016/j.phrs.2020.105283
- Potapov V.V., Cerdan A.A., Gorev D.S. Silicic acid polymerization and SiO2 nanoparticle growth in hydrothermal solution. Polymers (Basel). 2022; 14(19): 4044. https://doi.org/10.3390/polym14194044
- Bertin M., Rodrigues D.G., Pierlot C., Albert-Mercier C., Davy C., Lambertin D., et al. Influence of cetyltrimethylammonium bromide and hydroxide ions on the interfacial tension and stability of emulsions of dodecane in aqueous silicate solutions. Colloids Surf. A: Physicochem. Eng. Asp. 2021; 628: 127306. https://doi.org/10.1016/j.colsurfa.2021.127306
- Zimoch-Korzycka A., Kulig D., Król-Kilińska Z., Zarowska B., Bobak L., Jarmoluk A. Biophysico-chemical properties of alginate oligomers obtained by acid and oxidation depolymerization. Polymers (Basel). 2021; 13(14): 2258. https://doi.org/10.3390/polym13142258
- Stekhin A.A., Yakovleva G.V., Iksanova T.I., Kamenetskaya D.B. The mechanism of water physical activation by humic substances. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy. 2019; (10): 121–6. https://www.elibrary.ru/rplpez (in Russian)
- Smirnov I.V., Mikhaylova N.V., Yakupov B.A., Volkov G.A. An analysis of the threshold parameters of acoustic cavitation inception in a liquid depending on frequency of an ultrasonic field, hydrostatic pressure and temperature. Zhurnal tekhnicheskoy fiziki. 2021; 91(11): 1631–40. https://doi.org/10.21883/JTF.2021.11.51521.352-20 https://www.elibrary.ru/lfmnpv (in Russian)
- Stekhin A.A., Yakovleva G.V. Determination of the peroxide anion radical in water by the chemiluminescent method. Gigiena i Sanitariya (Hygiene and Sanitation, Russian journal). 2023; 102(2): 191–6.
- Spravochnik khimika 21. Biological activity of water. Available at: https://www.chem21.info/info/1903798 (in Russian)
- Iksanova T.I., Stekhin A.A., Yakovleva G.V., Kamenetskaya D.B., Mikhaylova R.I., Zagaynova A.V. The impact of systemic homeostatic regulator – associates of peroxide anion radicals on the activity of microorganisms. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2022; 101(4): 368–74. https://doi.org/10.47470/0016-9900-2022-101-4-368-374 https://www.elibrary.ru/pfglfp (in Russian)
- MU 2.1.4.1184–03 on the implementation and application of sanitary and epidemiological rules and regulations SanPiN 2.1.4.1116–02 Drinking water. Hygienic requirements for the quality of water packaged in containers; 2003. (in Russian)
- Aleshina E.S., Karimov I.F., Deryabin D.G. Methods of Bioluminescent Testing: Guidelines for a Laboratory Workshop [Metody biolyuminestsentnogo testirovaniya: metodicheskie ukazaniya k laboratornomu praktikumu]. Orenburg; 2011. (in Russian)
- Stekhin A.A., Yakovleva G.V. Structured Water: Nonlinear Effects [Strukturirovannaya voda: Nelineynye effekty]. Moscow: Lenand; 2018. (in Russian)
- Picard M., McEwen B.S., Epel E.S., Sandi C. An energetic view of stress: Focus on mitochondria. Front. Neuroendocrinol. 2018; 49: 72–85. https://doi.org/10.1016/j.yfrne.2018.01.001
- Liu X., Liu C., Feng Z., Meng C. The promoter role of amines in the condensation of silicic acid: a first-principles investigation. ACS Omega. 2021; 6(35): 22811–9. https://doi.org/10.1021/acsomega.1c03235
- Lester E., Parker R. The tau of nuclear-cytoplasmic transport. Neuron. 2018; 99(5): 869–71. https://doi.org/10.1016/j.neuron.2018.08.026
- Makhdoumi P., Karimi H., Khazaei M. Review on metal-based nanoparticles: role of reactive oxygen species in renal toxicity. Chem. Res. Toxicol. 2020; 33(10): 2503–14. https://doi.org/10.1021/acs.chemrestox.9b00438
- Wróbel G., Kuder T. The role of selected environmental factors and the type of work performed on the development of urolithiasis – a review paper. Int. J. Occup. Med. Environ. Health. 2019; 32(6): 761–75. https://doi.org/10.13075/ijomeh.1896.01491
- Penido M.G.M.G., Alon U.S. Infantile urolithiasis. Pediatr. Nephrol. 2021; 36(5): 1037–40. https://doi.org/10.1007/s00467-020-04888-7
- Liu Y., Chen Y., Liao B., Luo D., Wang K., Li H., et al. Epidemiology of urolithiasis in Asia. Asian J. Urol. 2018; 5(4): 205–14. https://doi.org/10.1016/j.ajur.2018.08.007
- Drzymała J., Kalka J. Elimination of the hormesis phenomenon by the use of synthetic sea water in a toxicity test towards Aliivibrio fischeri. Chemosphere. 2020; 248: 126085. https://doi.org/10.1016/j.chemosphere.2020.126085
Supplementary files
