Origin and evolution of apical growth in higher plants
- Authors: Romanova M.A.1, Domashkina V.V.1,2, Maksimova A.I.2, Voitsekhovskaja O.V.2
-
Affiliations:
- St. Petersburg State University
- Komarov Botanical Institute RAS
- Issue: Vol 110, No 1 (2025)
- Pages: 29-63
- Section: REVIEWS
- URL: https://rjraap.com/0006-8136/article/view/682760
- DOI: https://doi.org/10.31857/S0006813625010022
- EDN: https://elibrary.ru/EMSVVB
- ID: 682760
Cite item
Abstract
The article is devoted to the analysis of the structure, putative function and molecular genetic regulation of the apical meristems in gametophytes and sporophytes of higher plants within the framework of the question about the origin and evolution of their apical growth. The presence of several AIs and secondary plasmodesmata in the apical meristems of gametophytes of Anthocerotophyta and Marchantiophyta and in the sporophytes of Lycopodiales and Isoetales (Lycopodiopsida) indicates that the mechanism of post-cytokinetic plasmodesmata formation that enabled the evolutionary emergence of the simplex apical meristem might have arisen in the last common ancestor of higher plants. The reversion to the monoplex “algal” type of the apical meristem most likely occurred independently in the gametophytes of Bryophyta and the sporophytes of Selaginellales and Polypodiopsida as a consequence of the putative loss of this mechanism. Presence of intercalary zone of proliferating cells in the sporophytes of all bryophytes suggests that a multicellular intercalary meristem was ancestral for the diploid generation of higher plants while the transient apical meristem of the embryo of mosses could have arisen as a result of co-option and modification of the programs regulating the apical meristem of gametophytes. Among the key regulators of apical meristems, only C1KNOX transcription factors (TFs) seem to be sporophyte-specific. Presumably, they have initially regulated the delay of meiosis and diffuse cell proliferation of the ancestral multicellular sporophyte. Whereat they could control the newly evolved intercalary meristem, and the subsequent shift of their expression to the apical pole of the embryo played a key role in the emergence of the apical meristem in sporophytes. Although homologs of WOX transcription factors in bryophytes belong to the T1 superclade that is most distantly related to the T3 (or WUS) superclade of key regulators of the shoot apical meristem of angiosperms, they regulated the apical meristem in gametophytes of liverworts as their counterparts from T3 clade. Expression of WOX homologues, that are phylogenetically more close to WUS, in leaf primordia of lycophytes and root primordia of ferns suggests that the ancestral role of these TFs in sporophytes was the control of organ initiation. Presumably the role of the organizer of the apical meristem arose only in the WUS/WOX5 clade of the T3WOX superclade. Contradictory data on expression of WOX homologs in different gymnosperms do no allow to judge whether members of WUS/WOX5 clade already gained the function of the “organizer” of the shoot apical meristem in the common ancestor of seed plants or only in angiosperms. As the components of the CLE/CLAVATA module are present in the genomes and transcriptomes of the gametophytes of bryophytes and sporophytes of lycophytes, ferns and seed plants, most likely this regulatory module has evolved in the common ancestor of higher plants. Components of this module are shown to have similar functions in the regulation of apical meristems in bryophytes and angiosperms. However they have significant difference between two groups: in the latter CLE/CLAVATA module maintains the apical meristem through a feedback loop with WUS TF, while in the former this module does not interact with WOX homologs. Presence of at least two out of four of regulators of leaf development (ARP, C3HDZ, YABBY and KANADI) in hornworts, liverworts and mosses and presence of all four regulators in all bryoophytes together suggests that they all were already present in the last common ancestor of land plants. These data also indicate that the apical meristems of bryophyte gametophytes have already evolved the regulatory prerequisites for organogenesis. In sporophytes of lycophytes and ferns all the above mentioned regulators are expressed not only in primordia of lateral organs, but also in the shoot apical meristem. Together with the fact that lycophytes and some ferns have dichotomous branching, these data suggest that the program of lateral organs formation in the apical meristem could have evolved as a result of modification of the shoot dichotomy program. Presumably, the functional specificity of the same regulators in different taxa reflects the differences in the distribution and putative action of phytohormone auxin.
Full Text

About the authors
M. A. Romanova
St. Petersburg State University
Author for correspondence.
Email: m.romanova@spbu.ru
Russian Federation, St. Petersburg
V. V. Domashkina
St. Petersburg State University; Komarov Botanical Institute RAS
Email: m.romanova@spbu.ru
Russian Federation, St. Petersburg; St. Petersburg
A. I. Maksimova
Komarov Botanical Institute RAS
Email: m.romanova@spbu.ru
Russian Federation, St. Petersburg
O. V. Voitsekhovskaja
Komarov Botanical Institute RAS
Email: m.romanova@spbu.ru
Russian Federation, St. Petersburg
References
- Albert V.A. 1999. Shoot apical meristems and floral patterning: an evolutionary perspective. — Trends Plant Sci. 4(3): 84–86. https://doi.org/10.1093/plphys/kiac313
- Alvarez J.M., Bueno N., Cañas R.A., Avila C., Cánovas F.M., Ordás R.J. 2018. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in Pinus pinaster: new insights into the gene family evolution. — Plant Physiol Biochem. 123: 304–318. https://doi.org/10.1016/j.plaphy.2017.12.031
- Ambrose B.A., Vasco A. 2016. Bringing the multicellular fern meristem into focus. — New Phytol. 210(3): 790–793. https://doi.org/10.1111/nph.13825
- Arnoux-Courseaux M., Coudert Y. 2024. Re-examining meristems through the lens of evo-devo. — Trends Plant Sci. 29(4): 413–427. https://doi.org/10.1016/j.tplants
- Aso K., Kato M., Banks J.A., Hasebe M. 1999. Characterization of homeodomain-leucine zipper genes in the fern Ceratopteris richardii and the evolution of the homeodomain-leucine zipper gene family in vascular plants. — Mol. Biol. Evol. 16(4): 544–552. https://doi.org/10.1093/oxfordjournals.molbev.a026135
- Banks J.A. 1999. Gametophyte development in ferns. — Annu. Rev. Plant Biol. 50: 163–186. https://doi.org/10.1146/annurev.arplant.50.1.163
- Bartz M., Gola E.M. 2018. Meristem development and activity in gametophytes of the model fern, Ceratopteris richardii. — Developmental biology. 444(2): 107–115. https://doi.org/10.1016/j.ydbio.2018.10.005
- Bharathan G., Goliber T.E., Moore C., Kessler S., Pham T., Sinha N.R. 2002. Homologies in leaf form inferred from KNOXI gene expression during development. Science. — 296(5574): 1858–1860. https://doi.org/10.1126/science.1070343
- Bierhorst D.W. 1971. Morphology of Vascular Plants. New York. 560 p.
- Bower F.O. 1935. Primitive land plants-also known as the Archegoniatae. London. 658 p.
- Bowman J.L., Kohchi T., Yamato K.T., Jenkins J., Shu S., Ishizaki K. et al. 2017. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell. 171(2): 287–304.e15. https://doi.org/10.1016/j.cell.2017.09.030
- Bowman J.L., Sakakibara K., Furumizu C., Dierschke T. 2016. Evolution in the cycles of life. — Annu Rev Genet. 50: 133–154. https://doi.org/10.1146/annurev-genet-120215-035227
- Bowman J.L., Smyth D.R. 1999. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. — Development. 126(11): 2387–2396. https://doi.org/10.1242/dev.126.11.2387
- Brand U., Fletcher J.C., Hobe M., Meyerowitz E.M., Simon R. 2000. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. — Science. 289(5479): 617–619. https://doi.org/10.1126/science.289.5479.617
- Briginshaw L.N., Flores-Sandoval E., Dierschke T., Alvarez J.P., Bowman J.L. 2022. KANADI promotes thallus differentiation and FR-induced gametangiophore formation in the liverwort Marchantia. — New Phytol. 234(4): 1377–1393. https://doi.org/10.1111/nph.18046
- Bruce J.G. 1979. Gametophyte of Lycopodium digitatum. — Amer. J. Bot. 66(10): 1138–1150. https://doi.org/10.1002/j.1537-2197.1979.tb06333.x
- Bueno N., Alvarez J.M., Ordás R.J. 2020. Characterization of the KNOTTED1-LIKE HOMEOBOX (KNOX) gene family in Pinus pinaster Ait. — Plant Sci. 301: 110691. https://doi.org/10.1016/j.plantsci.2020.110691
- Bueno N., Cuesta C., Centeno M.L., Ordás R.J., Alvarez J.M. 2021. In vitro plant regeneration in conifers: the role of WOX and KNOX gene families. — Genes. 12(3): 438. https://doi.org/10.3390/genes12030438
- Byrne M.E., Barley R., Curtis M., Arroyo J.M., Dunham M., Hudson A., Martienssen R.A. 2000. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. — Nature. 408(6815): 967–971. https://doi.org/10.1038/35050091
- Cammarata J., Roeder A., Scanlon M.J. 2023. The ratio of auxin to cytokinin controls leaf development and meristem initiation in Physcomitrium patens. — J. of Exp B. 74(21): 6541–6550. https://doi.org/10.1093/jxb/erad299
- Chickarmane V.S., Gordon S.P., Tarr P.T., Heisler M.G., Meyerowitz E.M. 2012. Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem. — Proc. Natl. Acad. Sci. USA. 109(10): 4002–4007. https://doi.org/10.1073/pnas.1200636109
- Cook M.E., Graham L.E., Botha C., Lavin C.A. 1997. Comparative ultrastructure of plasmodesmata of Chara and selected bryophytes: toward an elucidation of the evolutionary origin of plant plasmodesmata. — Amer. J. Bot. 84(9): 1169–1178. https://doi.org/10.2307/2446040
- Cooke T.D., Tilney M.S., Tilney L.G. 1996. Plasmodesmatal networks in apical meristems and mature structures: geometric evidence for both primary and secondary formation of plasmodesmata. — In: Membranes: specialized functions in plants. Cambridge. Р. 471–488.
- Coudert Y., Novák O., Harrison C.J. 2019. A KNOX–Cytokinin regulatory module predates the origin of indeterminate vascular plants. — Curr. Biol. 29(16): 2743–2750.e5. https://doi.org/10.1016/j.cub.2019.06.083
- Daum G., Medzihradszky A., Suzaki T., Lohmann J.U. 2014. A mechanistic framework for non cell autonomous stem cell induction in Arabidopsis. Proc Natl Acad Sci USA. 111(40): 14619–14624. https://doi.org/10.1073/pnas.1406446111
- De Vries J., Fischer A.M., Roettger M., Rommel S., Schluepmann H., Bräutigam A., Carlsbecker A., Gould S.B. 2016. Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots. — New Phytol. 209(2): 705–720. https://doi.org/10.1111/nph.13630
- De Sousa e Melo F., de Sauvage F.J. 2019. Cellular plasticity in intestinal homeostasis and disease. — Cell Stem Cell. 24(1): 54–64. https://doi.org/10.1016/j.stem.2018.11.019
- Dengler N.G. 1983. The developmental basis of anisophylly in Selaginella martensii. I. Initiation and morphology of growth. Amer. J. Bot. 70(2): 181–192. https://doi.org/10.2307/2443262
- Dierschke T., Flores-Sandoval E., Rast-Somssich M.I., Althoff F., Zachgo S., Bowman J.L. 2021. Gamete expression of TALE class HD genes activates the diploid sporophyte program in Marchantia polymorpha. — eLife. 10: e57088. https://doi.org/10.7554/eLife.57088
- Ding B., Haudenshield J.S., Hull R.J., Wolf S., Beachy R.N., Lucas W.J. 1992. Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. — The Plant cell. 4(8): 915–928. https://doi.org/10.1105/tpc.4.8.915
- Ding Z., Friml J. 2010. Auxin regulates distal stem cell differentiation in Arabidopsis roots. — Proc. Natl. Acad. Sci. USA. 107(26): 12046–12051. https://doi.org/10.1073/pnas.100067210
- Donoghue P.C.J., Harrison C.J., Paps J., Schneider H. 2021. The evolutionary emergence of land plants. — Curr Biol. 31: R1281—R1298. https://doi.org/10.1016/j.cub.2021.07.038
- Du H., Ran J., Feng Y., Wang X. 2020. The flattened and needlelike leaves of the pine family (Pinaceae) share a conserved genetic network for adaxial-abaxial polarity but have diverged for photosynthetic adaptation. — BMC Evol Biol. 20(1): 131. https://doi.org/10.1186/s12862-020-01694-5
- Eklund D.M., Ishizaki K., Flores-Sandoval E., Kikuchi S., Takebayashi Y., …, Bowman J.L. 2015. Auxin produced by the Indole-3-Pyruvic acid pathway regulates development and gemmae dormancy in the liverwort Marchantia polymorpha. — The Plant cell. 27(6): 1650–1669. https://doi.org/10.1105/tpc.15.00065
- Emery J.F., Floyd S.K., Alvarez J., Eshed Y., Hawker N.P., Izhaki A., Baum S.F., Bowman J.L. 2003. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. — Curr. Biol. 13(20): 1768–1774. https://doi.org/10.1016/j.cub.2003.09.035
- Esau K. 1969. Plant anatomy. Moscow. 564 p. (In Russ.).
- Eshed Y., Izhaki A., Baum S.F., Floyd S.K., Bowman J.L. 2004. Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. — Development. 131(12): 2997–3006. https://doi.org/10.1242/dev.01186
- Evkaikina A.I., Romanova M.A., Voitsekhovskaja O.V. 2014. Evolutionary aspects of non-cell-autonomous regulation in vascular plants: structural background and models to study. — Front Plant Sci. 5: 31. https://doi.org/10.3389/fpls.2014.00031
- Evkaikina A.I., Berke L., Romanova M.A., Proux-Wéra E., Ivanova A.N., Rydin C., Pawlowski K., Voitsekhovskaja O.V. 2017. The Huperzia selago shoot tip transcriptome sheds new light on the evolution of leaves. — Genome Biol. Evol. 9(9): 2444–2460. https://doi.org/10.1093/gbe/evx169
- Finet C., Floyd S.K., Conway S.J., Zhong B., Scutt C.P., Bowman J.L. 2016. Evolution of the YABBY gene family in seed plants. — Evol. Dev. 18(2): 116–126. https://doi.org/10.1111/ede.12173
- Floyd S.K., Bowman J.L. 2006. Distinct developmental mechanisms reflect the independent origins of leaves in vascular plants. — Curr. Biol. 16: 1911–1917. https://doi.org/10.1016/j.cub.2006.07.067
- Floyd S.K., Bowman J.L. 2007. The ancestral developmental tool kit of land plants. — Int. J. Plant Sci. 168(1): 1–35. https://doi.org/10.1086/509079
- Floyd S.K., Zalewski C.S. Bowman J.L. 2006. Evolution of class III homeodomain-leucine zipper genes in streptophytes. — Genetics. 173: 373–388. https://doi.org/10.1534/genetics.105.054239
- Floyd S.K., Ryan J.G., Conway S.J., Brenner E., Burris K.P., Burris J.N., … Stevenson D.W., Neal Stewart C.Jr., Wong G.K., Bowman J.L. 2014. Origin of a novel regulatory module by duplication and degeneration of an ancient plant transcription factor. — Mol Phylogenet Evol. 81: 159–173. https://doi.org/10.1016/j.ympev.2014.06.017
- Foster A.S. 1938. Structure and growth of the shoot apex in Ginkgo biloba. — Bull. Torr. Club. 65(8): 531–556. https://doi.org/10.2307/2480793
- Foster A.S. 1939. Structure and growth of the shoot apex of Cycas revoluta. — Am. J. Bot. 26(6): 372–385. https://doi.org/10.2307/2436837
- Foster A.S. 1943. Zonal structure and growth of the shoot apex in Microcycas calocoma (Miq.) A. DC. — Amer. J. Bot. 30(1): 56–73.
- Fouracre J.P., Harrison C.J. 2022. How was apical growth regulated in the ancestral land plant? Insights from the development of non-seed plants. — Plant Physiol. 190(1): 100–112. https://doi.org/10.1093/plphys/kiac313
- Franceschi V.R., Ding B., Lucas W.J. 1994. Mechanism of plasmodesmata formation in characean algae in relation to evolution of intercellular communication in higher plants. — Planta. 192: 347–358. https://doi.org/10.1007/BF00198570
- Frangedakis E., Marron A.O., Waller M., Neubauer A., Tse S.W., Yue Y., Ruaud S., Waser L., Sakakibara K., Szövényi P. 2023. What can hornworts teach us? — Front. Plant Sci. 14: 1108027. https://doi.org/10.3389/fpls.2023.1108027
- Frank M.H., Edwards M.B., Schultz E.R., McKain M.R., Fei Z., Sørensen I., Rose J.K., Scanlon M.J. 2015. Dissecting the molecular signatures of apical cell-type shoot meristems from two ancient land plant lineages. — New Phytol. 207(3): 893–904. https://doi.org/10.1111/nph.13407
- Friedman W.E., Moore R.C., Purugganan M.D. 2004. The evolution of plant development. — Amer. J. Bot. 91: 1726–1741. https://doi.org/10.3732/ajb.91.10.1726
- Friml J., Vieten A., Sauer M., Weijers D., Schwarz H., Hamann T., Offringa R., Jürgens G. 2003. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature. 426(6963): 147–53. https://doi.org/10.1038/nature02085
- PMID: 14614497.
- Gifford E.M., Foster A.S. 1989. Morphology and Evolution of Vascular Plants. New York. 626 p.
- Gola E. 2014. Dichotomous branching: the plant form and integrity upon the apical meristem bifurcation. Front. Plant Sci. 5. https://doi.org/10.3389/fpls.2014.00263
- Gola E.M., Jernstedt J.A. 2011. Impermanency of initial cells in Huperzia lucidula (Huperziaceae) shoot apices. — Int. J. Plant. Sci. 172: 847–855. https://doi.org/10.1086/660878
- Golub S.J., Wetmore R.H. 1948a. Studies of development in the vegetative shoot of Equisetum arvense L. I. the shoot apex. — Am. J. Bot. 35: 755–767. https://doi.org/10.1002/j.1537-2197.1948.tb08146.x
- Golub S.J., Wetmore R.H. 1948b. Studies of development in the vegetative shoot of Equisetum arvense L. II. the mature shoot. — Am. J. Bot. 35: 767–781. https://doi.org/10.1002/j.1537-2197.1948.tb08147.x
- Gunadi A., Li F.W., Van Eck J. 2022. Accelerating gametophytic growth in the model hornwort Anthoceros agrestis. — Appl. Plant Sci. 10(2): e11460. https://doi.org/10.1002/aps3.11460
- Guo M., Thomas J., Collins G., Timmermans M.C.P. 2008. Direct repression of KNOX loci by the ASYMMETRIC LEAVES1 complex of Arabidopsis. — The Plant Cell. 20: 48–58. https://doi.org/10.1105/tpc.107.056127
- Harris B.J., Clark J.W., Schrempf D., Szöllősi G.J., Donoghue P., Hetherington A.M., Williams T.A. 2022. Divergent evolutionary trajectories of bryophytes and tracheophytes from a complex common ancestor of land plants. — Nat. Ecol. Evol. 6: 1634–1643. https://doi.org/10.1038/s41559-022-01885-x
- Harrison C.J. 2017a. Development and genetics in the evolution of land plant body plans. — Phil. Trans. R. Soc. B. Biol. Sci. 372:20150490. https://doi.org/10.1098/rstb.2015.0490
- Harrison C.J. 2017b. Auxin transport in the evolution of branching forms. — New Phytol. 215: 545–551. https://doi.org/10.1111/nph.14333
- Harrison C.J., Corley S.B., Moylan E.C., Alexander D.L., Scotland R.W., Langdale J.A. 2005. Independent recruitment of a conserved developmental mechanism during leaf evolution. — Nature. 434(7032): 509–514. https://doi.org/10.1038/nature03410
- Harrison C.J., Langdale J.A. 2010. The developmental pattern of shoot apices in Selaginella kraussiana (Kunze) A. Braun. — Int. J. Plant Sci. 171(6): 690–692. https://doi.org/10.1086/653134
- Harrison C.J., Morris J.L. 2018. The origin and early evolution of vascular plant shoots and leaves. — Philos. Trans. R. Soc. Lond. B. Biol. Sci. 373(1739): 20160496. https://doi.org/10.1098/rstb.2016.0496
- Harrison C.J., Rezvani M., Langdale J.A. 2007. Growth from two transient apical initials in the meristem of Selaginella kraussiana. Development 134, 881–889. https://doi.org/10.1242/dev.001008
- Harrison C.J., Roeder A., Meyerowitz E.M., Langdale J.A. 2009. Local cues and asymmetric cell divisions underpin body plan transitions in the moss Physcomitrella patens. Curr. Biol. 19: 461–471. https://doi.org/10.1016/j.cub.2009.02.050
- Hata Y., Kyozuka J. 2021. Fundamental mechanisms of the stem cell regulation in land plants: lesson from shoot apical cells in bryophytes. — Plant Mol. Biol. 107(4–5): 213–225. https://doi.org/10.1007/s11103-021-01126-y
- Hay A., Barkoulas M., Tsiantis M. 2004. PINning down the connections: transcription factors and hormones in leaf morphogenesis. — Curr Opin Plant Biol. 7(5): 575–581. https://doi.org/10.1016/j.pbi.2004.07.007
- Hedman H., Zhu T., von Arnold S., Sohlberg J. 2013. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in the conifer Picea abies reveals extensive conservation as well as dynamic patterns. — BMC Plant Biol. 13: 89. https://doi.org/10.1186/1471-2229-13-89
- Heinlein M., Epel B.L. 2004. Macromolecular transport and signaling through plasmodesmata. — Int. Rev. Cytol. 235: 93–164. https://doi.org/10.1016/S0074-7696(04)35003-5
- Hernández-Hernández B., Tapia-López R., Ambrose B.A., Vasco A. 2021. R2R3-MYB gene evolution in plants, incorporating ferns into the story. — Int. J. Plant Sci. 182: 1–8. https://doi.org/10.1086/710579
- Hirakawa Y. 2022. Evolution of meristem zonation by CLE gene duplication in land plants. — Nature Plants. 8(7): 735–740. https://doi.org/10.1038/s41477-022-01199-7
- Hirakawa Y., Uchida N., Yamaguchi Y.L., Tabata R., Ishida S., Ishizaki K., Nishihama R., Kohchi T., Sawa S., Bowman J.L. 2019. Control of proliferation in the haploid meristem by CLE peptide signaling in Marchantia polymorpha. — PLoS Genet. 15: e1007997. https://doi.org/10.1371/journal.pgen.1007997
- Hirakawa Y., Fujimoto T., Ishida S., Uchida N., Sawa S., Kiyosue T., Ishizaki K., Nishihama R., Kohchi T., Bowman J.L. 2020. Induction of multichotomous branching by CLAVATA peptide in Marchantia polymorpha. Current biology: CB. 30(19): 3833–3840.e4. https://doi.org/10.1016/j.cub.2020.07.016
- Hisanaga T., Fujimoto S., Cui Y., Sato K., Sano R., Yamaoka S., Kohchi T., Berger F., Nakajima K. 2021. Deep evolutionary origin of gamete-directed zygote activation by KNOX/BELL transcription factors in green plants. — Elife. 10: e57090. https://doi.org/10.7554/eLife.57090
- Hjortswang H.I., Sundås-Larsson A., Bharathan G., Bozhkov P.V., Arnold S., Vahala T. 2002. KNOTTED1-like homeobox genes of a gymnosperm, Norway spruce, expressed during somatic embryogenesis. — Plant Physiol. Biochem. 40: 837–843. https://doi.org/10.1016/S0981-9428(02)01445-6
- Hou G., Hill J.P. 2002. Heteroblastic root development in Ceratopteris richardii (Parkeriaceae). — Int. J. Plant Sci. 163: 341–351. https://doi.org/10.1086/339156
- Imaichi R. 2013. A new classification of the gametophyte development of homosporous ferns, focusing on meristem behaviour. — Fern Gaz. 19 (5): 141–156.
- Imaichi R., Hiratsuka R. 2007. Evolution of shoot apical meristem structures in vascular plants with respect to plasmodesmatal network. — Am.J. Bot. 94: 1911–1921. https://doi.org/10.3732/ajb.94.12.1911
- Jackson D., Veit B., Hake S. 1994. Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. — Development. 120(2): 405–413. https://doi.org/10.1242/dev.120.2.405
- Jasinski S., Piazza P., Craft J., Hay A., Woolley L., Rieu I., Phillips A., Hedden P., Tsiantis M. 2005. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. — Current biology: CB. 15(17): 1560–1565. https://doi.org/10.1016/j.cub.2005.07.023
- Jones C.S., Drinnan A.N. 2009. The developmental pattern of shoot apices in Selaginella kraussiana (Kunze) A. Braun. — Int. J. Plant Sci. 170: 1009–1018.
- Kato M., Akiyama H. 2005. Interpolation hypothesis for origin of the vegetative sporophyte of land plants. — TAXON. 54(2): 443–450. https://doi.org/10.2307/25065371
- Kawai J., Tanabe Y., Soma S., Ito M. 2010. Class 1 KNOX gene expression supports the Selaginella rhizophore concept. — J. Plant Biol. 53: 268–274. https://doi.org/10.1007/s12374-010-9113-z
- Kidston R., Lang W.H. 1920. On Old Red Sandstone plants showing structure, from the Rhynie Chert Bed, Aberdeenshire. Part III. Asteroxylon mackiei, Kidston and Lang. — Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 52(03): 643–680.
- Kim J.-Y., Yuan Z., Jackson D. 2003. Developmental regulation and significance of KNOX protein trafficking in Arabidopsis. — Development. 130: 4351–4362. https://doi.org/10.1242/dev.00618
- Kofuji R., Hasebe M. 2014. Eight types of stem cells in the life cycle of the moss Physcomitrella patens. — Curr. Opin. Plant Biol. 17: 13–21. https://doi.org/10.1016/j.pbi.2013.10.007
- Kohchi T., Yamato K.T., Ishizaki K., Yamaoka S., Nishihama R. 2021. Development and molecular genetics of Marchantia polymorpha. — Annu. Rev. Plant Biol. 72: 677–702. https://doi.org/10.1146/annurev-arplant-082520-094256
- Kurepa J., Smalle J.A. 2022. Auxin/Cytokinin antagonistic control of the shoot/root growth ratio and Its relevance for adaptation to drought and nutrient deficiency stresses. — Int. J. Mol. Sci. 23(4): 1933. https://doi.org/10.3390/ijms23041933
- Kuznetsova K., Efremova E., Dodueva I., Lebedeva M., Lutova L. 2023. Functional modules in the meristems: “tinkering” in action. — Plants (Basel, Switzerland). 12(20): 3661. https://doi.org/10.3390/plants12203661
- Larsson E., Sitbon F., Ljung K., von Arnold S. 2007. Inhibited polar auxin transport results in aberrant embryo development in Norway spruce. — New Phytol. 177(2): 356–366. https://doi.org/10.1111/j.1469-8137.2007.02289.x
- Larsson E., Sitbon F., von Arnold S. 2012. Differential regulation of Knotted1-like genes during establishment of the shoot apical meristem in Norway spruce (Picea abies). — Plant Cell. Rep. 31(6): 1053–1060. https://doi.org/10.1007/s00299-011-1224-6
- Li F.W., Nishiyama T., Waller M., Frangedakis E., Keller J., Li Z., …, Szövényi P. 2020. Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. — Nat. Plants. 6: 259–272. https://doi.org/10.1038/s41477-020-0618-2
- Ligrone R., Duckett J.G. 1998. Development of the leafy shoot in Sphagnum (Bryophyta) involves the activity of both apical and subapical meristems. — New Phytol. 140(3): 581–595. https://doi.org/10.1111/j.1469-8137.1998.00297.x
- Long J.A., Moan E.I., Medford J.I., Barton, M.K. 1996. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. — Nature. 379: 66–69. https://doi.org/10.1038/379066a0
- Ma Y., Steeves T.A. 1992. Auxin effects on vascular differentiation in ostrich fern. — Annals of Botany. 70(3): 277–282. https://doi.org/10.1093/oxfordjournals.aob.a088470
- Maksimova (Evkaikina) A.I., Berke L., Salgado M.G., Klimova E.A., Pawlowski K., Romanova M.A., Voitsekhovskaja O.V. 2021. What can the phylogeny of class I KNOX genes and their expression patterns in land plants tell us about the evolution of shoot development? — Bot. J. Linn. Soc. 195: 254–280. https://doi.org/10.1093/botlinnean/boaa088
- Manuela D., Xu M. 2020. Juvenile leaves or adult leaves: determinants for vegetative phase change in flowering plants. — Int. J. Mol. Sci. 21(24): 9753. https://doi.org/10.3390/ijms21249753
- Mazur E., Kulik I., Hajný J., Friml J. 2020. Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in Arabidopsis. — New Phytol. 226(5): 1375–1383. https://doi.org/10.1111/nph.16446
- McConnell J.R., Emery J., Eshed Y., Bao N., Bowman J., Barton M.K. 2001. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. — Nature. 411: 709–713. https://doi.org/10.1038/35079635
- Mishler B.D., Churchill S.P. 1984. A cladistic approach to the phylogeny of the “Bryophytes”. — Brittonia. 36: 406–424. https://doi.org/10.2307/2806602
- Miwa H., Kinoshita A., Fukuda H., Sawa S. 2009. Plant meristems: CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem. — J. Plant Res. 122(1): 31–39. https://doi.org/10.1007/s10265-008-0207-3
- Morris J.L., Puttick M.N., Clark J.W., Edwards D., Kenrick P., Pressel S. et al. 2018. The timescale of early land plant evolution. — Proc. Natl. Acad. Sci. USA. 115: 2274–2283. https://doi.org/10.1073/pnas.1719588115
- Nakata M., Matsumoto N., Tsugeki R., Rikirsch E., Laux T., Okada K. 2012. Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. Plant Cell 24: 519–535. https://doi.org/10.1105/tpc.111.092858
- Nardmann J., Reisewitz P., Werr W. 2009. Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms. — Mol. Biol. Evol. 26(8): 1745–1755. https://doi.org/10.1093/molbev/msp084
- Nardmann J., Werr W. 2012. The invention of WUS-like stem cell-promoting functions in plants predates leptosporangiate ferns. — Plant Mol. Biol. 78: 123–134. https://doi.org/10.1007/s11103-011-9851-4
- Nardmann J., Werr W. 2013. Symplesiomorphies in the WUSCHEL clade suggest that the last common ancestor of seed plants contained at least four independent stem cell niches. — New Phytol. 199(4): 1081–1092. https://doi.org/10.1111/nph.12343
- Naumenko A.N., Romanova M.A. 2008. Apical morphogenesis of Psilotum nudum (Psilotaceae) and Botrychium lunaria (Ophioglossaceae). — Vestn. SPb Univ. 3(2): 15–27 (In Russ.).
- Nemec-Venza Z., Madden C., Stewart A., Liu W., Novák O., Pěnčík A., Cuming A.C., Kamisugi Y., Harrison C.J. 2022. CLAVATA modulates auxin homeostasis and transport to regulate stem cell identity and plant shape in a moss. — New Phytol. 234(1): 149–163. https://doi.org/10.1111/nph.17969
- Newman I.V. 1965. Pattern in the meristems of vascular plants: III. Pursuing the patterns in the apical meristem where no cell is a permanent cell. — J. Linn. Soc. Lond. Bot. 59: 185–214. https://doi.org/10.1111/j.1095–8339.1965.tb00057.x
- Nimchuk Z.L., Tarr P.T., Ohno C., Qu X., Meyerowitz E.M. 2011. Plant stem cell signaling involves ligand-dependent trafficking of the CLAVATA1 receptor kinase. — Curr. Biol. 21: 345–352. https://doi.org/10.1016/j.cub.2011.01.039
- Palovaara J., Hallberg H., Stasolla C., Luit B., Hakman I. 2010. Expression of a gymnosperm PIN homologous gene correlates with auxin immunolocalization pattern at cotyledon formation and in demarcation of the procambium during Picea abies somatic embryo development and in seedling tissues. — Tree physiology. 30(4): 479–489. https://doi.org/10.1093/treephys/tpp126
- Paolillo D.J. 1963. The developmental anatomy of Isoetes. Urbana. 130 p.
- Pham T., Sinha N. 2003. Role of KNOX genes in shoot development of Welwitschia mirabilis. — Int. J. Plant Sci. 164(3): 333–343. https://doi.org/10.1086/374189
- Pi L., Aichinger E., van der Graaff E., Llavata-Peris C.I., Weijers D., Hennig L., Groot E., Laux T. 2015. Organizer-derived WOX5 signal maintains root columella stem sells through chromatin-mediated repression of CDF4 expression. — Dev. Cell. 33(5): 576–588. https://doi.org/10.1016/j.devcel.2015.04.024
- Plackett A., Di Stillio V.S., Langdale J.A. 2015. Ferns: the missing link in shoot evolution and development. — Front. Plant Sci. 6: 972. https://doi.org/10.3389/fpls.2015.00972
- Prigge M., Clark S. 2006. Evolution of the class III HD-Zip gene family in land plants. — Evol Dev. 8(4): 350–361. https://doi.org/10.1111/j.1525-142X.2006.00107.x
- Puttick M.N., Morris J.L., Williams T.A., Cox C.J., Edwards D., Kenrick P., Pressel S., Wellman C.H., Schneider H., Pisani D., Donoghue P.C.J. 2018. The interrelationships of land plants and the nature of the ancestral embryophyte. — Curr Biol. 28(5): 733–745.e2. https://doi.org/0.1016/j.cub.2018.01.063
- Reinhardt D., Pesce E.R., Stieger P., Mandel T., Baltensperger K., Bennett M., Traas J., Friml J., Kuhlemeier C. 2003. Regulation of phyllotaxis by polar auxin transport. — Nature. 426: 255–260. https://doi.org/10.1038/nature02081
- Richards S., Wink R.H., Simon R. 2015. Mathematical modelling of WOX5- and CLE40-mediated columella stem cell homeostasis in Arabidopsis. — J. of Exp. B. 66: 5375–5384. https://doi.org/10.1093/jxb/erv257
- Romani F., Reinheimer R., Florent S.N., Bowman J.L., Moreno J.E. 2018. Evolutionary history of HOMEODOMAIN LEUCINE ZIPPER transcription factors during plant transition to land. — New Phytol. 219(1): 408–421. https://doi.org/10.1111/nph.15133
- Romanova M.A., Borisovskaya G.M. 2004. Principles of structural organization of the vegetative body in ferns: ontogenetic approach. — Bot. Zhurn. 89 (5): 705–717 (In Russ.).
- Romanova M.A., Domashkina V.V., Bortnikova N.A. 2023. Structural and regulatory aspects of morphogenesis in Equisetum sylvaticum and Equisetum fluviatile and the issue of homology of leaves of horsetails and other ferns. — Bot. Zhurn. 108(8): 785–820.
- Romanova M., Jernstedt J. 2005. Morphogenetic events in the Ceratopteris richardii shoot apex. — Fern Gaz. 17: 204.
- Romanova M.A., Naumenko A.N., Evkaikina A.I. 2010. Peculiarities of apical morphogenesis in different taxa of non-seed plants. — Vestn. of SPb Univ. 3(3): 29–41 (In Russ.).
- Romanova M.A., Yakovleva O.V., Maximova A.I., Ivanova A.N., Domashkina V.V. 2022. Structure of shoot apical meristems and peculiarities of ultrastructure of their cells in lycophytes and ferns. — Bot. Zhurn. 107(9): 65–85 (In Russ.).
- Romanova M.A., Domashkina V.V., Maksimova A.I., Pawlowski K., Voitsekhovskaja O.V. 2023. All together now: cellular and molecular aspects of leaf development in lycophytes, ferns, and seed plants. — Front. Ecol. Evol. 11: 1097115. https://doi.org/10.3389/fevo.2023.1097115
- Romanova M.A., Maksimova A.I., Pawlowski K., Voitsekhovskaja O.V. 2021. YABBY genes in the development and evolution of land plants. — Int. J. Mol. Sci. 22(8): 4139. https://doi.org/10.3390/ijms22084139
- Sakakibara K., Nishiyama T., Deguchi H., Hasebe M. 2008. Class 1 KNOX genes are not involved in shoot development in the moss Physcomitrella patens but do function in sporophyte development. 10(5): 555–566. — Evol. Dev. 10(5): 555–566. https://doi.org/10.1111/j.1525-142X.2008.00271.x
- Sakakibara K., Reisewitz P., Aoyama T., Friedrich T., Ando S., Sato Y. 2014. WOX13-like genes are required for reprogramming of leaf and protoplast cells into stem cells in the moss Physcomitrella patens. — Development. 141(8): 1660–1670. https://doi.org/10.1242/dev.097444
- Sanders H.L, Langdale J.A. 2013. Conserved transport mechanisms but distinct auxin responses govern shoot patterning in Selaginella kraussiana. — New Phytol. 198(2): 419–428. https://doi.org/10.1111/nph.12183
- Sano R., Juárez C.M., Hass B., Sakakibara K., Ito M., Banks J.A., Hasebe M. 2005. KNOX homeobox genes potentially have similar function in both diploid unicellular and multicellular meristems, but not in haploid meristems. — Evol. Dev. 7: 69–78. https://doi.org/10.1111/j.1525–142X.2005.05008.x
- Sarkar A.K., Luijten M., Miyashima S., Lenhard M., Hashimoto T., Nakajima K., Scheres B., Heidstra R., Laux T. 2007. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. — Nature. 446: 811–814. https://doi.org/10.1038/nature05703
- Sawa S., Watanabe K., Goto K., Kanaya E., Morita E.H., Okada K. 1999. FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. — Genes Dev. 13(3): 1079–1088. https://doi.org/10.1101/gad.13.9.1079
- Schlegel J., Denay G., Wink R., Pinto K.G., Stahl Y., Schmid J., Blümke P., Simon R.G. 2021. Control of Arabidopsis shoot stem cell homeostasis by two antagonistic CLE peptide signalling pathways. — eLife 10. e70934. https://doi.org/10.7554/eLife
- Schoof H., Lenhard M., Haecker A., Mayer K.F., Jürgens G., Laux T. 2000. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. — Cell. 100(6): 635–644. https://doi.org/10.1016/s0092-8674(00)80700-x
- Shi B., Vernoux T. 2019. Patterning at the shoot apical meristem and phyllotaxis. — Curr. Top. Dev. Biol. 131: 81–107. https://doi.org/10.1016/bs.ctdb.2018.10.003
- Siegfried K.R., Eshed Y., Baum S.F., Otsuga D., Drews G.N., Bowman J.L. 1999. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126(18): 4117–4128. https://doi.org/10.1242/dev.126.18.4117
- Skupchenko V.B., Ladanova N.V. 1984. The development of Picea obovata (Pinaceae) needles. — Bot. Zhurn. 69(7): 203–206 (In Russ.).
- Snipes S.A., Rodriguez K., DeVries A.E., Miyawaki K.N., Perales M., Xie M., Reddy G.V. 2018. Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription. — PLoS genet. 14(4): e1007351. https://doi.org/10.1371/journal.pgen.1007351
- Spencer V., Venza Z.N., Harrison C.J. 2021. What can lycophytes teach us about plant evolution and development? Modern perspectives on an ancient lineage. Evol. Dev. 23: 174–196. https://doi.org/10.1111/ede.12350
- Steeves T.A., Sussex I.M. 1989. Patterns in plant development. Cambridge University Press. 15: 388 p.
- Sterling J.S. 1984. The structure of the apical meristem of Isoetes engelmannii, I. riparia and I. macrospora (Isoetales). — Bot. J. Linn. Soc. 89(1): 77–84.
- https://doi.org/10.1111/j.1095–8339.1984.tb01001.x
- Stevenson D.W. 1976. The cytohistological and cytohistochemical zonation of the shoot apex of Botrychium multifidum. — Am.J. Bot. 63(6): 852–856. https://doi.org/10.2307/2442045
- Sundås-Larsson A., Svenson M., Liao H., Engström P. 1998. A homeobox gene with potential developmental control function in the meristem of the conifer Picea abies. — Proc. Natl. Acad. Sci. USA. 95(25): 15118–15122. https://doi.org/10.1073/pnas.95.25.15118
- Suzuki H., Kato H., Iwano M., Nishihama R. 2023. Auxin signaling is essential for organogenesis but not for cell survival in the liverwort Marchantia polymorpha. — The Plant Cell. 35(3): 1058–1075. https://doi.org/10.1093/plcell/koac367
- Suzuki H., Kohchi T., Nishihama R. 2021. Auxin biology in bryophyta: a simple platform with versatile functions. — Cold Spring Harb Perspect Biol. 13(3): a040055. https://doi.org/10.1101/cshperspect.a040055
- Swentowsky K.W. 2024. A bushel of WUSCHEL is too much: uncovering the role of cytokinin cis-regulatory elements in the maize WUSCHEL promoter. — Plant Physiol. 194(4): 2183–2184. https://doi.org/10.1093/plphys/kiae016
- Szövényi P., Waller M., Kirbis A. 2019. Evolution of the plant body plan. — Curr Top Dev Biol. 131: 1–34. https://doi.org/10.1016/bs.ctdb.2018.11.005
- Tilney L.G., Cooke T.J., Connelly P.S., Tilney M.S. 1990. The distribution of plasmodesmata and its relationship to morphogenesis in fern gametophytes. — Development. 110(4): 1209–1221. https://doi.org/10.1242/dev.110.4.1209
- Timmermans M.C., Hudson A., Becraft P.W., Nelson T. 1999. ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. — Science. 284: 151–153. https://doi.org/10.1126/science.284.5411.151
- Tomescu A.M.F., Escapa I.H., Rothwell G.W., Elgorriaga A., Cúneo N.R. 2017. Developmental programmes in the evolution of Equisetum reproductive morphology: a hierarchical modularity hypothesis. — Ann. Bot. 119: 489–505. https://doi.org/10.1093/aob/mcw273
- Tomescu A.M.F., Wyatt S.E., Hasebe M., Rothwell G.R. 2014. Early evolution of the vascular plant body plan — the missing mechanisms. — Curr. Opin. Plant Biol. 17(1): 126–136. https://doi.org/10.1016/j.pbi.2013.11.016
- Tooke F., Battey N. 2003. Models of shoot apical meristem function. — New Phytol. 159(1): 37–52. https://doi.org/10.1046/j.1469-8137.2003.00803.x
- Tsiantis M., Schneeberger R., Golz J.F., Freeling M., Langdale J.A. 1999. The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. — Science. 284: 154–156. https://doi.org/10.1126/science.284.5411.154
- Tsuda K., Ito Y., Sato Y., Kurata N. 2011. Positive autoregulation of a KNOX gene is essential for shoot apical meristem maintenance in rice. — The Plant cell. 23(12): 4368–4381. https://doi.org/10.1105/tpc.111.090050
- Tsukaya H. 2021. The leaf meristem enigma: the relationship between the plate meristem and the marginal meristem. Plant Cell 33: 3194–3206. https://doi.org/10.1093/plcell/koab190
- Vasco A., Ambrose B.A. 2020. Simple and divided leaves in ferns: exploring the genetic basis for leaf morphology differences in the genus Elaphoglossum (Dryopteridaceae). — Int. J. Mol. Sci. 21(15): 5180. https://doi.org/10.3390/ijms21155180
- Vasco A., Moran R.C., Ambrose B.A. 2013. The evolution, morphology and development of fern leaves. — Front Plant Sci. 4: 345. https://doi.org/10.1111/j.1469-185X.1941.tb01096.x
- Vasco A., Smalls T.L., Graham S.W., Cooper E.D., Wong G.K., Stevenson D.W., Moran R.C., Ambrose B.A. 2016. Challenging the paradigms of leaf evolution: class III HD-Zips in ferns and lycophytes. — New Phytol. 212(3): 745–758. https://doi.org/10.1111/nph.14075
- Vernoux T., Besnard F., Traas J. 2010. Auxin at the shoot apical meristem. — Cold Spring Harb. Perspecti Biol. 2(4): a001487. https://doi.org/10.1101/cshperspect.a001487
- Wada M. 2008. Photoresponses in fern gametophytes. — Biology and Evolution of Ferns and Lycophytes (1st edn.). Cambridge. P. 3–48.
- Waites R., Selvadurai H.R., Oliver I.R., Hudson A. 1998. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. — Cell. 93(5): 779–789. https://doi.org/10.1016/s0092-8674(00)81439-7
- Wan T., Liu Z.-M., Li L.-F., Leitch A.R., Leitch I.J., Lohaus R., …, Wang X.-M. 2018. A genome for gnetophytes and early evolution of seed plants. — Nature Plants. 4: 82–89. https://doi.org/10.1038/s41477-017-0097-2
- Wardlaw C.W. 1956. Experimental and analytical studies of pteridophytes. XXXIV. On the shoot apex of the bird’s nest fern, Asplenium nidus L. — Ann. Bot. N.S. 20: 363–374.
- Wardlaw C.W. 1963. Experimental studies of the sporophytes of ferns. — J. Linn. Soc., Bot. 8: 385–400.
- Wegner L., Ehlers K. 2024. Plasmodesmata dynamics in bryophyte model organisms: secondary formation and developmental modifications of structure and function. — Planta. 260(2): 45. https://doi.org/10.1007/s00425-024-04476-1
- Whitewoods C.D. 2021. Evolution of CLE peptide signalling. — Semin. Cell Dev. Biol. 109: 12–19. https://doi.org/10.1016/j.semcdb.2020.04.022
- Whitewoods C.D., Cammarata J., Venza Z.N., Sang S., Crook A.D., Harrison C.J. 2018. CLAVATA was a genetic novelty for the morphological innovation of 3D growth in land plants. — Curr Biol.: CB, 30(13): 2645–2648. https://doi.org/10.1016/j.cub.2020.06.015
- Wickett N.J., Mirarab S., Nguyen N., Warnow T., Carpenter E., Matasci N. et al. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. — Proc. Natl. Acad. Sci. USA. 111(45): E4859—E4868. https://doi.org/10.1073/pnas.1323926111
- Winther J.L., Friedman W.E. 2008. Arbuscular mycorrhizal associations in Lycopodiaceae. — New Phytol. 177(3): 790–801. https://doi.org/10.1111/j.1469-8137.2007.02276.x
- Withers K.A., Kvamme A., Youngstrom C.E., Yarvis R.M., Orpano R., Simons G.P., Irish E.E., Cheng C.L. 2023. Auxin involvement in Ceratopteris gametophyte meristem regeneration. — Int. J. Mol. Sci. 24(21): 15832. https://doi.org/10.3390/ijms242115832
- Wu C.C., Li F.W., Kramer E.M. 2019. Large-scale phylogenomic analysis suggests three ancient superclades of the WUSCHEL-RELATED HOMEOBOX transcription factor family in plants. — PLoS One. 14(10): e0223521. https://doi.org/10.1371/journal.pone.0223521
- Wu X., Liu X., Zhang S., Zhou Y. 2023. Cell division and meristem dynamics in fern gametophytes. — Plants. 12(1): 209. https://doi.org/10.3390/plants12010209
- Yadav R.K., Perales M., Gruel J., Girke T., Jönsson H., Reddy G.V. 2011. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. — Genes. Dev. 25: 2025–2030. https://doi.org/10.1101/gad.17258511
- Yip H.K., Floyd S.K., Sakakibara K., Bowman J.L. 2016. Class III HD-Zip activity coordinates leaf development in Physcomitrella patens. — Dev. Biol. 419(1): 184–197. https://doi.org/10.1016/j.ydbio.2016.01.012
- Youngstrom C.E., Geadelmann L.F., Irish E.E., Cheng C.L. 2019. A fern WUSCHEL-RELATED HOMEOBOX gene functions in both gametophyte and sporophyte generations. — BMC Plant Biol. 19(1): 416. https://doi.org/10.1186/s12870-019-1991-8
- Youngstrom C.E., Withers K.A., Irish E.E., Cheng C.L. 2022. Vascular function of the T3/modern clade WUSCHEL-Related HOMEOBOX transcription factor genes predate apical meristem-maintenance function. — BMC plant biology. 22(1): 210. https://doi.org/10.1186/s12870-022-03590-0
- Zhang T.Q., Lian H., Zhou C.M., Xu L., Jiao Y., Wang J.W. 2017. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. — Plant Cell. 29(5): 1073–1087. https://doi.org/10.1105/tpc.16.00863
- Zumajo-Cardona C., Ambrose B.A. 2020. Phylogenetic analyses of key developmental genes provide insight into the complex evolution of seeds. Mol Phylogenet Evol. — 147: 106778. https://doi.org/10.1016/j.ympev.2020.106778
- Zumajo-Cardona C., Little D.P., Stevenson D., Ambrose B.A. 2021. Expression analyses in Ginkgo biloba provide new insights into the evolution and development of the seed. — Sci. Rep. 11(1): 21995. https://doi.org/10.1038/s41598-021-01483-0
- Zumajo-Cardona C., Vasco A., Ambrose B.A. 2019. The evolution of the KANADI gene family and leaf development in lycophytes and ferns. — Plants. 8(9): 313. https://doi.org/10.3390/plants809031
Supplementary files
