Возникновение и эволюция апикального роста у высших растений
- Авторы: Романова М.А.1, Домашкина В.В.1,2, Максимова А.И.2, Войцеховская О.В.2
-
Учреждения:
- Санкт-Петербургский государственный университет
- Ботанический институт им. В. Л. Комарова РАН
- Выпуск: Том 110, № 1 (2025)
- Страницы: 29-63
- Раздел: ОБЗОРНЫЕ СТАТЬИ
- URL: https://rjraap.com/0006-8136/article/view/682760
- DOI: https://doi.org/10.31857/S0006813625010022
- EDN: https://elibrary.ru/EMSVVB
- ID: 682760
Цитировать
Аннотация
В контексте вопроса об эволюции апикального роста растений структура апикальных меристем гаметофитов и спорофитов сопоставлена с данными об их молекулярно-генетической регуляции. Наличие нескольких апикальных инициалей и вторичных плазмодесм в апикальных меристемах гаметофитов Anthocerotophyta и Marchantiophyta и спорофитов Lycopodiales и Isoetales (Lycopodiopsida) позволяет предположить, что постцитокинетическое формирование плазмодесм и симплексная меристема возникли у общего предка всех высших растений. У гаметофитов Bryophyta и спорофитов Selaginellales и Polypodiopsida, вероятно, произошла реверсия к моноплексному водорослевому типу, связанная с утратой механизма формирования вторичных плазмодесм. Факторы транскрипции C1KNOX специфичны для спорофитов; предположительно, исходно они регулировали диффузную пролиферацию клеток, затем интеркалярную меристему, а смещение их экспрессии на апикальный полюс зародыша сыграло ключевую роль в возникновении апикальной меристемы. Исходной функцией белков WOX была регуляция органогенеза, а роль организующего центра апикальной меристемы возникла только в WUS/WOX5-кладе суперклады T3WOX. CLE/CLAVATA-модуль появился у общего предка высших растений и, регулируя плоскость делений апикальных инициалей, сыграл ключевую роль в преобразовании пластинчатых слоевищ в трехмерные побеги. Гомологи регуляторов органогенеза (ARP, C3HDZ, YABBY и KANADI) у несеменных растений не антагонистичны регуляторам апикальной меристемы, указывая, что программа возникновения листьев могла появиться в результате модификации программы дихотомии побегов. Предположительно, функциональная специфика рассмотренных регуляторов в разных таксонах растений обусловлена различиями в распределении и регуляторной роли ауксина.
Ключевые слова
Полный текст

Об авторах
М. А. Романова
Санкт-Петербургский государственный университет
Автор, ответственный за переписку.
Email: m.romanova@spbu.ru
Россия, Санкт-Петербург
В. В. Домашкина
Санкт-Петербургский государственный университет; Ботанический институт им. В. Л. Комарова РАН
Email: m.romanova@spbu.ru
Россия, Санкт-Петербург; Санкт-Петербург
А. И. Максимова
Ботанический институт им. В. Л. Комарова РАН
Email: m.romanova@spbu.ru
Россия, Санкт-Петербург
О. В. Войцеховская
Ботанический институт им. В. Л. Комарова РАН
Email: m.romanova@spbu.ru
Россия, Санкт-Петербург
Список литературы
- Albert V.A. 1999. Shoot apical meristems and floral patterning: an evolutionary perspective. — Trends Plant Sci. 4(3): 84–86. https://doi.org/10.1093/plphys/kiac313
- Alvarez J.M., Bueno N., Cañas R.A., Avila C., Cánovas F.M., Ordás R.J. 2018. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in Pinus pinaster: new insights into the gene family evolution. — Plant Physiol Biochem. 123: 304–318. https://doi.org/10.1016/j.plaphy.2017.12.031
- Ambrose B.A., Vasco A. 2016. Bringing the multicellular fern meristem into focus. — New Phytol. 210(3): 790–793. https://doi.org/10.1111/nph.13825
- Arnoux-Courseaux M., Coudert Y. 2024. Re-examining meristems through the lens of evo-devo. — Trends Plant Sci. 29(4): 413–427. https://doi.org/10.1016/j.tplants
- Aso K., Kato M., Banks J.A., Hasebe M. 1999. Characterization of homeodomain-leucine zipper genes in the fern Ceratopteris richardii and the evolution of the homeodomain-leucine zipper gene family in vascular plants. — Mol. Biol. Evol. 16(4): 544–552. https://doi.org/10.1093/oxfordjournals.molbev.a026135
- Banks J.A. 1999. Gametophyte development in ferns. — Annu. Rev. Plant Biol. 50: 163–186. https://doi.org/10.1146/annurev.arplant.50.1.163
- Bartz M., Gola E.M. 2018. Meristem development and activity in gametophytes of the model fern, Ceratopteris richardii. — Developmental biology. 444(2): 107–115. https://doi.org/10.1016/j.ydbio.2018.10.005
- Bharathan G., Goliber T.E., Moore C., Kessler S., Pham T., Sinha N.R. 2002. Homologies in leaf form inferred from KNOXI gene expression during development. Science. — 296(5574): 1858–1860. https://doi.org/10.1126/science.1070343
- Bierhorst D.W. 1971. Morphology of Vascular Plants. New York. 560 p.
- Bower F.O. 1935. Primitive land plants-also known as the Archegoniatae. London. 658 p.
- Bowman J.L., Kohchi T., Yamato K.T., Jenkins J., Shu S., Ishizaki K. et al. 2017. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell. 171(2): 287–304.e15. https://doi.org/10.1016/j.cell.2017.09.030
- Bowman J.L., Sakakibara K., Furumizu C., Dierschke T. 2016. Evolution in the cycles of life. — Annu Rev Genet. 50: 133–154. https://doi.org/10.1146/annurev-genet-120215-035227
- Bowman J.L., Smyth D.R. 1999. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. — Development. 126(11): 2387–2396. https://doi.org/10.1242/dev.126.11.2387
- Brand U., Fletcher J.C., Hobe M., Meyerowitz E.M., Simon R. 2000. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. — Science. 289(5479): 617–619. https://doi.org/10.1126/science.289.5479.617
- Briginshaw L.N., Flores-Sandoval E., Dierschke T., Alvarez J.P., Bowman J.L. 2022. KANADI promotes thallus differentiation and FR-induced gametangiophore formation in the liverwort Marchantia. — New Phytol. 234(4): 1377–1393. https://doi.org/10.1111/nph.18046
- Bruce J.G. 1979. Gametophyte of Lycopodium digitatum. — Amer. J. Bot. 66(10): 1138–1150. https://doi.org/10.1002/j.1537-2197.1979.tb06333.x
- Bueno N., Alvarez J.M., Ordás R.J. 2020. Characterization of the KNOTTED1-LIKE HOMEOBOX (KNOX) gene family in Pinus pinaster Ait. — Plant Sci. 301: 110691. https://doi.org/10.1016/j.plantsci.2020.110691
- Bueno N., Cuesta C., Centeno M.L., Ordás R.J., Alvarez J.M. 2021. In vitro plant regeneration in conifers: the role of WOX and KNOX gene families. — Genes. 12(3): 438. https://doi.org/10.3390/genes12030438
- Byrne M.E., Barley R., Curtis M., Arroyo J.M., Dunham M., Hudson A., Martienssen R.A. 2000. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. — Nature. 408(6815): 967–971. https://doi.org/10.1038/35050091
- Cammarata J., Roeder A., Scanlon M.J. 2023. The ratio of auxin to cytokinin controls leaf development and meristem initiation in Physcomitrium patens. — J. of Exp B. 74(21): 6541–6550. https://doi.org/10.1093/jxb/erad299
- Chickarmane V.S., Gordon S.P., Tarr P.T., Heisler M.G., Meyerowitz E.M. 2012. Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem. — Proc. Natl. Acad. Sci. USA. 109(10): 4002–4007. https://doi.org/10.1073/pnas.1200636109
- Cook M.E., Graham L.E., Botha C., Lavin C.A. 1997. Comparative ultrastructure of plasmodesmata of Chara and selected bryophytes: toward an elucidation of the evolutionary origin of plant plasmodesmata. — Amer. J. Bot. 84(9): 1169–1178. https://doi.org/10.2307/2446040
- Cooke T.D., Tilney M.S., Tilney L.G. 1996. Plasmodesmatal networks in apical meristems and mature structures: geometric evidence for both primary and secondary formation of plasmodesmata. — In: Membranes: specialized functions in plants. Cambridge. Р. 471–488.
- Coudert Y., Novák O., Harrison C.J. 2019. A KNOX–Cytokinin regulatory module predates the origin of indeterminate vascular plants. — Curr. Biol. 29(16): 2743–2750.e5. https://doi.org/10.1016/j.cub.2019.06.083
- Daum G., Medzihradszky A., Suzaki T., Lohmann J.U. 2014. A mechanistic framework for non cell autonomous stem cell induction in Arabidopsis. Proc Natl Acad Sci USA. 111(40): 14619–14624. https://doi.org/10.1073/pnas.1406446111
- De Vries J., Fischer A.M., Roettger M., Rommel S., Schluepmann H., Bräutigam A., Carlsbecker A., Gould S.B. 2016. Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots. — New Phytol. 209(2): 705–720. https://doi.org/10.1111/nph.13630
- De Sousa e Melo F., de Sauvage F.J. 2019. Cellular plasticity in intestinal homeostasis and disease. — Cell Stem Cell. 24(1): 54–64. https://doi.org/10.1016/j.stem.2018.11.019
- Dengler N.G. 1983. The developmental basis of anisophylly in Selaginella martensii. I. Initiation and morphology of growth. Amer. J. Bot. 70(2): 181–192. https://doi.org/10.2307/2443262
- Dierschke T., Flores-Sandoval E., Rast-Somssich M.I., Althoff F., Zachgo S., Bowman J.L. 2021. Gamete expression of TALE class HD genes activates the diploid sporophyte program in Marchantia polymorpha. — eLife. 10: e57088. https://doi.org/10.7554/eLife.57088
- Ding B., Haudenshield J.S., Hull R.J., Wolf S., Beachy R.N., Lucas W.J. 1992. Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. — The Plant cell. 4(8): 915–928. https://doi.org/10.1105/tpc.4.8.915
- Ding Z., Friml J. 2010. Auxin regulates distal stem cell differentiation in Arabidopsis roots. — Proc. Natl. Acad. Sci. USA. 107(26): 12046–12051. https://doi.org/10.1073/pnas.100067210
- Donoghue P.C.J., Harrison C.J., Paps J., Schneider H. 2021. The evolutionary emergence of land plants. — Curr Biol. 31: R1281—R1298. https://doi.org/10.1016/j.cub.2021.07.038
- Du H., Ran J., Feng Y., Wang X. 2020. The flattened and needlelike leaves of the pine family (Pinaceae) share a conserved genetic network for adaxial-abaxial polarity but have diverged for photosynthetic adaptation. — BMC Evol Biol. 20(1): 131. https://doi.org/10.1186/s12862-020-01694-5
- Eklund D.M., Ishizaki K., Flores-Sandoval E., Kikuchi S., Takebayashi Y., …, Bowman J.L. 2015. Auxin produced by the Indole-3-Pyruvic acid pathway regulates development and gemmae dormancy in the liverwort Marchantia polymorpha. — The Plant cell. 27(6): 1650–1669. https://doi.org/10.1105/tpc.15.00065
- Emery J.F., Floyd S.K., Alvarez J., Eshed Y., Hawker N.P., Izhaki A., Baum S.F., Bowman J.L. 2003. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. — Curr. Biol. 13(20): 1768–1774. https://doi.org/10.1016/j.cub.2003.09.035
- Esau K. 1969. Plant anatomy. Moscow. 564 p. (In Russ.).
- Eshed Y., Izhaki A., Baum S.F., Floyd S.K., Bowman J.L. 2004. Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. — Development. 131(12): 2997–3006. https://doi.org/10.1242/dev.01186
- Evkaikina A.I., Romanova M.A., Voitsekhovskaja O.V. 2014. Evolutionary aspects of non-cell-autonomous regulation in vascular plants: structural background and models to study. — Front Plant Sci. 5: 31. https://doi.org/10.3389/fpls.2014.00031
- Evkaikina A.I., Berke L., Romanova M.A., Proux-Wéra E., Ivanova A.N., Rydin C., Pawlowski K., Voitsekhovskaja O.V. 2017. The Huperzia selago shoot tip transcriptome sheds new light on the evolution of leaves. — Genome Biol. Evol. 9(9): 2444–2460. https://doi.org/10.1093/gbe/evx169
- Finet C., Floyd S.K., Conway S.J., Zhong B., Scutt C.P., Bowman J.L. 2016. Evolution of the YABBY gene family in seed plants. — Evol. Dev. 18(2): 116–126. https://doi.org/10.1111/ede.12173
- Floyd S.K., Bowman J.L. 2006. Distinct developmental mechanisms reflect the independent origins of leaves in vascular plants. — Curr. Biol. 16: 1911–1917. https://doi.org/10.1016/j.cub.2006.07.067
- Floyd S.K., Bowman J.L. 2007. The ancestral developmental tool kit of land plants. — Int. J. Plant Sci. 168(1): 1–35. https://doi.org/10.1086/509079
- Floyd S.K., Zalewski C.S. Bowman J.L. 2006. Evolution of class III homeodomain-leucine zipper genes in streptophytes. — Genetics. 173: 373–388. https://doi.org/10.1534/genetics.105.054239
- Floyd S.K., Ryan J.G., Conway S.J., Brenner E., Burris K.P., Burris J.N., … Stevenson D.W., Neal Stewart C.Jr., Wong G.K., Bowman J.L. 2014. Origin of a novel regulatory module by duplication and degeneration of an ancient plant transcription factor. — Mol Phylogenet Evol. 81: 159–173. https://doi.org/10.1016/j.ympev.2014.06.017
- Foster A.S. 1938. Structure and growth of the shoot apex in Ginkgo biloba. — Bull. Torr. Club. 65(8): 531–556. https://doi.org/10.2307/2480793
- Foster A.S. 1939. Structure and growth of the shoot apex of Cycas revoluta. — Am. J. Bot. 26(6): 372–385. https://doi.org/10.2307/2436837
- Foster A.S. 1943. Zonal structure and growth of the shoot apex in Microcycas calocoma (Miq.) A. DC. — Amer. J. Bot. 30(1): 56–73.
- Fouracre J.P., Harrison C.J. 2022. How was apical growth regulated in the ancestral land plant? Insights from the development of non-seed plants. — Plant Physiol. 190(1): 100–112. https://doi.org/10.1093/plphys/kiac313
- Franceschi V.R., Ding B., Lucas W.J. 1994. Mechanism of plasmodesmata formation in characean algae in relation to evolution of intercellular communication in higher plants. — Planta. 192: 347–358. https://doi.org/10.1007/BF00198570
- Frangedakis E., Marron A.O., Waller M., Neubauer A., Tse S.W., Yue Y., Ruaud S., Waser L., Sakakibara K., Szövényi P. 2023. What can hornworts teach us? — Front. Plant Sci. 14: 1108027. https://doi.org/10.3389/fpls.2023.1108027
- Frank M.H., Edwards M.B., Schultz E.R., McKain M.R., Fei Z., Sørensen I., Rose J.K., Scanlon M.J. 2015. Dissecting the molecular signatures of apical cell-type shoot meristems from two ancient land plant lineages. — New Phytol. 207(3): 893–904. https://doi.org/10.1111/nph.13407
- Friedman W.E., Moore R.C., Purugganan M.D. 2004. The evolution of plant development. — Amer. J. Bot. 91: 1726–1741. https://doi.org/10.3732/ajb.91.10.1726
- Friml J., Vieten A., Sauer M., Weijers D., Schwarz H., Hamann T., Offringa R., Jürgens G. 2003. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature. 426(6963): 147–53. https://doi.org/10.1038/nature02085
- PMID: 14614497.
- Gifford E.M., Foster A.S. 1989. Morphology and Evolution of Vascular Plants. New York. 626 p.
- Gola E. 2014. Dichotomous branching: the plant form and integrity upon the apical meristem bifurcation. Front. Plant Sci. 5. https://doi.org/10.3389/fpls.2014.00263
- Gola E.M., Jernstedt J.A. 2011. Impermanency of initial cells in Huperzia lucidula (Huperziaceae) shoot apices. — Int. J. Plant. Sci. 172: 847–855. https://doi.org/10.1086/660878
- Golub S.J., Wetmore R.H. 1948a. Studies of development in the vegetative shoot of Equisetum arvense L. I. the shoot apex. — Am. J. Bot. 35: 755–767. https://doi.org/10.1002/j.1537-2197.1948.tb08146.x
- Golub S.J., Wetmore R.H. 1948b. Studies of development in the vegetative shoot of Equisetum arvense L. II. the mature shoot. — Am. J. Bot. 35: 767–781. https://doi.org/10.1002/j.1537-2197.1948.tb08147.x
- Gunadi A., Li F.W., Van Eck J. 2022. Accelerating gametophytic growth in the model hornwort Anthoceros agrestis. — Appl. Plant Sci. 10(2): e11460. https://doi.org/10.1002/aps3.11460
- Guo M., Thomas J., Collins G., Timmermans M.C.P. 2008. Direct repression of KNOX loci by the ASYMMETRIC LEAVES1 complex of Arabidopsis. — The Plant Cell. 20: 48–58. https://doi.org/10.1105/tpc.107.056127
- Harris B.J., Clark J.W., Schrempf D., Szöllősi G.J., Donoghue P., Hetherington A.M., Williams T.A. 2022. Divergent evolutionary trajectories of bryophytes and tracheophytes from a complex common ancestor of land plants. — Nat. Ecol. Evol. 6: 1634–1643. https://doi.org/10.1038/s41559-022-01885-x
- Harrison C.J. 2017a. Development and genetics in the evolution of land plant body plans. — Phil. Trans. R. Soc. B. Biol. Sci. 372:20150490. https://doi.org/10.1098/rstb.2015.0490
- Harrison C.J. 2017b. Auxin transport in the evolution of branching forms. — New Phytol. 215: 545–551. https://doi.org/10.1111/nph.14333
- Harrison C.J., Corley S.B., Moylan E.C., Alexander D.L., Scotland R.W., Langdale J.A. 2005. Independent recruitment of a conserved developmental mechanism during leaf evolution. — Nature. 434(7032): 509–514. https://doi.org/10.1038/nature03410
- Harrison C.J., Langdale J.A. 2010. The developmental pattern of shoot apices in Selaginella kraussiana (Kunze) A. Braun. — Int. J. Plant Sci. 171(6): 690–692. https://doi.org/10.1086/653134
- Harrison C.J., Morris J.L. 2018. The origin and early evolution of vascular plant shoots and leaves. — Philos. Trans. R. Soc. Lond. B. Biol. Sci. 373(1739): 20160496. https://doi.org/10.1098/rstb.2016.0496
- Harrison C.J., Rezvani M., Langdale J.A. 2007. Growth from two transient apical initials in the meristem of Selaginella kraussiana. Development 134, 881–889. https://doi.org/10.1242/dev.001008
- Harrison C.J., Roeder A., Meyerowitz E.M., Langdale J.A. 2009. Local cues and asymmetric cell divisions underpin body plan transitions in the moss Physcomitrella patens. Curr. Biol. 19: 461–471. https://doi.org/10.1016/j.cub.2009.02.050
- Hata Y., Kyozuka J. 2021. Fundamental mechanisms of the stem cell regulation in land plants: lesson from shoot apical cells in bryophytes. — Plant Mol. Biol. 107(4–5): 213–225. https://doi.org/10.1007/s11103-021-01126-y
- Hay A., Barkoulas M., Tsiantis M. 2004. PINning down the connections: transcription factors and hormones in leaf morphogenesis. — Curr Opin Plant Biol. 7(5): 575–581. https://doi.org/10.1016/j.pbi.2004.07.007
- Hedman H., Zhu T., von Arnold S., Sohlberg J. 2013. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in the conifer Picea abies reveals extensive conservation as well as dynamic patterns. — BMC Plant Biol. 13: 89. https://doi.org/10.1186/1471-2229-13-89
- Heinlein M., Epel B.L. 2004. Macromolecular transport and signaling through plasmodesmata. — Int. Rev. Cytol. 235: 93–164. https://doi.org/10.1016/S0074-7696(04)35003-5
- Hernández-Hernández B., Tapia-López R., Ambrose B.A., Vasco A. 2021. R2R3-MYB gene evolution in plants, incorporating ferns into the story. — Int. J. Plant Sci. 182: 1–8. https://doi.org/10.1086/710579
- Hirakawa Y. 2022. Evolution of meristem zonation by CLE gene duplication in land plants. — Nature Plants. 8(7): 735–740. https://doi.org/10.1038/s41477-022-01199-7
- Hirakawa Y., Uchida N., Yamaguchi Y.L., Tabata R., Ishida S., Ishizaki K., Nishihama R., Kohchi T., Sawa S., Bowman J.L. 2019. Control of proliferation in the haploid meristem by CLE peptide signaling in Marchantia polymorpha. — PLoS Genet. 15: e1007997. https://doi.org/10.1371/journal.pgen.1007997
- Hirakawa Y., Fujimoto T., Ishida S., Uchida N., Sawa S., Kiyosue T., Ishizaki K., Nishihama R., Kohchi T., Bowman J.L. 2020. Induction of multichotomous branching by CLAVATA peptide in Marchantia polymorpha. Current biology: CB. 30(19): 3833–3840.e4. https://doi.org/10.1016/j.cub.2020.07.016
- Hisanaga T., Fujimoto S., Cui Y., Sato K., Sano R., Yamaoka S., Kohchi T., Berger F., Nakajima K. 2021. Deep evolutionary origin of gamete-directed zygote activation by KNOX/BELL transcription factors in green plants. — Elife. 10: e57090. https://doi.org/10.7554/eLife.57090
- Hjortswang H.I., Sundås-Larsson A., Bharathan G., Bozhkov P.V., Arnold S., Vahala T. 2002. KNOTTED1-like homeobox genes of a gymnosperm, Norway spruce, expressed during somatic embryogenesis. — Plant Physiol. Biochem. 40: 837–843. https://doi.org/10.1016/S0981-9428(02)01445-6
- Hou G., Hill J.P. 2002. Heteroblastic root development in Ceratopteris richardii (Parkeriaceae). — Int. J. Plant Sci. 163: 341–351. https://doi.org/10.1086/339156
- Imaichi R. 2013. A new classification of the gametophyte development of homosporous ferns, focusing on meristem behaviour. — Fern Gaz. 19 (5): 141–156.
- Imaichi R., Hiratsuka R. 2007. Evolution of shoot apical meristem structures in vascular plants with respect to plasmodesmatal network. — Am.J. Bot. 94: 1911–1921. https://doi.org/10.3732/ajb.94.12.1911
- Jackson D., Veit B., Hake S. 1994. Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. — Development. 120(2): 405–413. https://doi.org/10.1242/dev.120.2.405
- Jasinski S., Piazza P., Craft J., Hay A., Woolley L., Rieu I., Phillips A., Hedden P., Tsiantis M. 2005. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. — Current biology: CB. 15(17): 1560–1565. https://doi.org/10.1016/j.cub.2005.07.023
- Jones C.S., Drinnan A.N. 2009. The developmental pattern of shoot apices in Selaginella kraussiana (Kunze) A. Braun. — Int. J. Plant Sci. 170: 1009–1018.
- Kato M., Akiyama H. 2005. Interpolation hypothesis for origin of the vegetative sporophyte of land plants. — TAXON. 54(2): 443–450. https://doi.org/10.2307/25065371
- Kawai J., Tanabe Y., Soma S., Ito M. 2010. Class 1 KNOX gene expression supports the Selaginella rhizophore concept. — J. Plant Biol. 53: 268–274. https://doi.org/10.1007/s12374-010-9113-z
- Kidston R., Lang W.H. 1920. On Old Red Sandstone plants showing structure, from the Rhynie Chert Bed, Aberdeenshire. Part III. Asteroxylon mackiei, Kidston and Lang. — Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 52(03): 643–680.
- Kim J.-Y., Yuan Z., Jackson D. 2003. Developmental regulation and significance of KNOX protein trafficking in Arabidopsis. — Development. 130: 4351–4362. https://doi.org/10.1242/dev.00618
- Kofuji R., Hasebe M. 2014. Eight types of stem cells in the life cycle of the moss Physcomitrella patens. — Curr. Opin. Plant Biol. 17: 13–21. https://doi.org/10.1016/j.pbi.2013.10.007
- Kohchi T., Yamato K.T., Ishizaki K., Yamaoka S., Nishihama R. 2021. Development and molecular genetics of Marchantia polymorpha. — Annu. Rev. Plant Biol. 72: 677–702. https://doi.org/10.1146/annurev-arplant-082520-094256
- Kurepa J., Smalle J.A. 2022. Auxin/Cytokinin antagonistic control of the shoot/root growth ratio and Its relevance for adaptation to drought and nutrient deficiency stresses. — Int. J. Mol. Sci. 23(4): 1933. https://doi.org/10.3390/ijms23041933
- Kuznetsova K., Efremova E., Dodueva I., Lebedeva M., Lutova L. 2023. Functional modules in the meristems: “tinkering” in action. — Plants (Basel, Switzerland). 12(20): 3661. https://doi.org/10.3390/plants12203661
- Larsson E., Sitbon F., Ljung K., von Arnold S. 2007. Inhibited polar auxin transport results in aberrant embryo development in Norway spruce. — New Phytol. 177(2): 356–366. https://doi.org/10.1111/j.1469-8137.2007.02289.x
- Larsson E., Sitbon F., von Arnold S. 2012. Differential regulation of Knotted1-like genes during establishment of the shoot apical meristem in Norway spruce (Picea abies). — Plant Cell. Rep. 31(6): 1053–1060. https://doi.org/10.1007/s00299-011-1224-6
- Li F.W., Nishiyama T., Waller M., Frangedakis E., Keller J., Li Z., …, Szövényi P. 2020. Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. — Nat. Plants. 6: 259–272. https://doi.org/10.1038/s41477-020-0618-2
- Ligrone R., Duckett J.G. 1998. Development of the leafy shoot in Sphagnum (Bryophyta) involves the activity of both apical and subapical meristems. — New Phytol. 140(3): 581–595. https://doi.org/10.1111/j.1469-8137.1998.00297.x
- Long J.A., Moan E.I., Medford J.I., Barton, M.K. 1996. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. — Nature. 379: 66–69. https://doi.org/10.1038/379066a0
- Ma Y., Steeves T.A. 1992. Auxin effects on vascular differentiation in ostrich fern. — Annals of Botany. 70(3): 277–282. https://doi.org/10.1093/oxfordjournals.aob.a088470
- Maksimova (Evkaikina) A.I., Berke L., Salgado M.G., Klimova E.A., Pawlowski K., Romanova M.A., Voitsekhovskaja O.V. 2021. What can the phylogeny of class I KNOX genes and their expression patterns in land plants tell us about the evolution of shoot development? — Bot. J. Linn. Soc. 195: 254–280. https://doi.org/10.1093/botlinnean/boaa088
- Manuela D., Xu M. 2020. Juvenile leaves or adult leaves: determinants for vegetative phase change in flowering plants. — Int. J. Mol. Sci. 21(24): 9753. https://doi.org/10.3390/ijms21249753
- Mazur E., Kulik I., Hajný J., Friml J. 2020. Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in Arabidopsis. — New Phytol. 226(5): 1375–1383. https://doi.org/10.1111/nph.16446
- McConnell J.R., Emery J., Eshed Y., Bao N., Bowman J., Barton M.K. 2001. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. — Nature. 411: 709–713. https://doi.org/10.1038/35079635
- Mishler B.D., Churchill S.P. 1984. A cladistic approach to the phylogeny of the “Bryophytes”. — Brittonia. 36: 406–424. https://doi.org/10.2307/2806602
- Miwa H., Kinoshita A., Fukuda H., Sawa S. 2009. Plant meristems: CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem. — J. Plant Res. 122(1): 31–39. https://doi.org/10.1007/s10265-008-0207-3
- Morris J.L., Puttick M.N., Clark J.W., Edwards D., Kenrick P., Pressel S. et al. 2018. The timescale of early land plant evolution. — Proc. Natl. Acad. Sci. USA. 115: 2274–2283. https://doi.org/10.1073/pnas.1719588115
- Nakata M., Matsumoto N., Tsugeki R., Rikirsch E., Laux T., Okada K. 2012. Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. Plant Cell 24: 519–535. https://doi.org/10.1105/tpc.111.092858
- Nardmann J., Reisewitz P., Werr W. 2009. Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms. — Mol. Biol. Evol. 26(8): 1745–1755. https://doi.org/10.1093/molbev/msp084
- Nardmann J., Werr W. 2012. The invention of WUS-like stem cell-promoting functions in plants predates leptosporangiate ferns. — Plant Mol. Biol. 78: 123–134. https://doi.org/10.1007/s11103-011-9851-4
- Nardmann J., Werr W. 2013. Symplesiomorphies in the WUSCHEL clade suggest that the last common ancestor of seed plants contained at least four independent stem cell niches. — New Phytol. 199(4): 1081–1092. https://doi.org/10.1111/nph.12343
- Naumenko A.N., Romanova M.A. 2008. Apical morphogenesis of Psilotum nudum (Psilotaceae) and Botrychium lunaria (Ophioglossaceae). — Vestn. SPb Univ. 3(2): 15–27 (In Russ.).
- Nemec-Venza Z., Madden C., Stewart A., Liu W., Novák O., Pěnčík A., Cuming A.C., Kamisugi Y., Harrison C.J. 2022. CLAVATA modulates auxin homeostasis and transport to regulate stem cell identity and plant shape in a moss. — New Phytol. 234(1): 149–163. https://doi.org/10.1111/nph.17969
- Newman I.V. 1965. Pattern in the meristems of vascular plants: III. Pursuing the patterns in the apical meristem where no cell is a permanent cell. — J. Linn. Soc. Lond. Bot. 59: 185–214. https://doi.org/10.1111/j.1095–8339.1965.tb00057.x
- Nimchuk Z.L., Tarr P.T., Ohno C., Qu X., Meyerowitz E.M. 2011. Plant stem cell signaling involves ligand-dependent trafficking of the CLAVATA1 receptor kinase. — Curr. Biol. 21: 345–352. https://doi.org/10.1016/j.cub.2011.01.039
- Palovaara J., Hallberg H., Stasolla C., Luit B., Hakman I. 2010. Expression of a gymnosperm PIN homologous gene correlates with auxin immunolocalization pattern at cotyledon formation and in demarcation of the procambium during Picea abies somatic embryo development and in seedling tissues. — Tree physiology. 30(4): 479–489. https://doi.org/10.1093/treephys/tpp126
- Paolillo D.J. 1963. The developmental anatomy of Isoetes. Urbana. 130 p.
- Pham T., Sinha N. 2003. Role of KNOX genes in shoot development of Welwitschia mirabilis. — Int. J. Plant Sci. 164(3): 333–343. https://doi.org/10.1086/374189
- Pi L., Aichinger E., van der Graaff E., Llavata-Peris C.I., Weijers D., Hennig L., Groot E., Laux T. 2015. Organizer-derived WOX5 signal maintains root columella stem sells through chromatin-mediated repression of CDF4 expression. — Dev. Cell. 33(5): 576–588. https://doi.org/10.1016/j.devcel.2015.04.024
- Plackett A., Di Stillio V.S., Langdale J.A. 2015. Ferns: the missing link in shoot evolution and development. — Front. Plant Sci. 6: 972. https://doi.org/10.3389/fpls.2015.00972
- Prigge M., Clark S. 2006. Evolution of the class III HD-Zip gene family in land plants. — Evol Dev. 8(4): 350–361. https://doi.org/10.1111/j.1525-142X.2006.00107.x
- Puttick M.N., Morris J.L., Williams T.A., Cox C.J., Edwards D., Kenrick P., Pressel S., Wellman C.H., Schneider H., Pisani D., Donoghue P.C.J. 2018. The interrelationships of land plants and the nature of the ancestral embryophyte. — Curr Biol. 28(5): 733–745.e2. https://doi.org/0.1016/j.cub.2018.01.063
- Reinhardt D., Pesce E.R., Stieger P., Mandel T., Baltensperger K., Bennett M., Traas J., Friml J., Kuhlemeier C. 2003. Regulation of phyllotaxis by polar auxin transport. — Nature. 426: 255–260. https://doi.org/10.1038/nature02081
- Richards S., Wink R.H., Simon R. 2015. Mathematical modelling of WOX5- and CLE40-mediated columella stem cell homeostasis in Arabidopsis. — J. of Exp. B. 66: 5375–5384. https://doi.org/10.1093/jxb/erv257
- Romani F., Reinheimer R., Florent S.N., Bowman J.L., Moreno J.E. 2018. Evolutionary history of HOMEODOMAIN LEUCINE ZIPPER transcription factors during plant transition to land. — New Phytol. 219(1): 408–421. https://doi.org/10.1111/nph.15133
- Romanova M.A., Borisovskaya G.M. 2004. Principles of structural organization of the vegetative body in ferns: ontogenetic approach. — Bot. Zhurn. 89 (5): 705–717 (In Russ.).
- Romanova M.A., Domashkina V.V., Bortnikova N.A. 2023. Structural and regulatory aspects of morphogenesis in Equisetum sylvaticum and Equisetum fluviatile and the issue of homology of leaves of horsetails and other ferns. — Bot. Zhurn. 108(8): 785–820.
- Romanova M., Jernstedt J. 2005. Morphogenetic events in the Ceratopteris richardii shoot apex. — Fern Gaz. 17: 204.
- Romanova M.A., Naumenko A.N., Evkaikina A.I. 2010. Peculiarities of apical morphogenesis in different taxa of non-seed plants. — Vestn. of SPb Univ. 3(3): 29–41 (In Russ.).
- Romanova M.A., Yakovleva O.V., Maximova A.I., Ivanova A.N., Domashkina V.V. 2022. Structure of shoot apical meristems and peculiarities of ultrastructure of their cells in lycophytes and ferns. — Bot. Zhurn. 107(9): 65–85 (In Russ.).
- Romanova M.A., Domashkina V.V., Maksimova A.I., Pawlowski K., Voitsekhovskaja O.V. 2023. All together now: cellular and molecular aspects of leaf development in lycophytes, ferns, and seed plants. — Front. Ecol. Evol. 11: 1097115. https://doi.org/10.3389/fevo.2023.1097115
- Romanova M.A., Maksimova A.I., Pawlowski K., Voitsekhovskaja O.V. 2021. YABBY genes in the development and evolution of land plants. — Int. J. Mol. Sci. 22(8): 4139. https://doi.org/10.3390/ijms22084139
- Sakakibara K., Nishiyama T., Deguchi H., Hasebe M. 2008. Class 1 KNOX genes are not involved in shoot development in the moss Physcomitrella patens but do function in sporophyte development. 10(5): 555–566. — Evol. Dev. 10(5): 555–566. https://doi.org/10.1111/j.1525-142X.2008.00271.x
- Sakakibara K., Reisewitz P., Aoyama T., Friedrich T., Ando S., Sato Y. 2014. WOX13-like genes are required for reprogramming of leaf and protoplast cells into stem cells in the moss Physcomitrella patens. — Development. 141(8): 1660–1670. https://doi.org/10.1242/dev.097444
- Sanders H.L, Langdale J.A. 2013. Conserved transport mechanisms but distinct auxin responses govern shoot patterning in Selaginella kraussiana. — New Phytol. 198(2): 419–428. https://doi.org/10.1111/nph.12183
- Sano R., Juárez C.M., Hass B., Sakakibara K., Ito M., Banks J.A., Hasebe M. 2005. KNOX homeobox genes potentially have similar function in both diploid unicellular and multicellular meristems, but not in haploid meristems. — Evol. Dev. 7: 69–78. https://doi.org/10.1111/j.1525–142X.2005.05008.x
- Sarkar A.K., Luijten M., Miyashima S., Lenhard M., Hashimoto T., Nakajima K., Scheres B., Heidstra R., Laux T. 2007. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. — Nature. 446: 811–814. https://doi.org/10.1038/nature05703
- Sawa S., Watanabe K., Goto K., Kanaya E., Morita E.H., Okada K. 1999. FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. — Genes Dev. 13(3): 1079–1088. https://doi.org/10.1101/gad.13.9.1079
- Schlegel J., Denay G., Wink R., Pinto K.G., Stahl Y., Schmid J., Blümke P., Simon R.G. 2021. Control of Arabidopsis shoot stem cell homeostasis by two antagonistic CLE peptide signalling pathways. — eLife 10. e70934. https://doi.org/10.7554/eLife
- Schoof H., Lenhard M., Haecker A., Mayer K.F., Jürgens G., Laux T. 2000. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. — Cell. 100(6): 635–644. https://doi.org/10.1016/s0092-8674(00)80700-x
- Shi B., Vernoux T. 2019. Patterning at the shoot apical meristem and phyllotaxis. — Curr. Top. Dev. Biol. 131: 81–107. https://doi.org/10.1016/bs.ctdb.2018.10.003
- Siegfried K.R., Eshed Y., Baum S.F., Otsuga D., Drews G.N., Bowman J.L. 1999. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126(18): 4117–4128. https://doi.org/10.1242/dev.126.18.4117
- Skupchenko V.B., Ladanova N.V. 1984. The development of Picea obovata (Pinaceae) needles. — Bot. Zhurn. 69(7): 203–206 (In Russ.).
- Snipes S.A., Rodriguez K., DeVries A.E., Miyawaki K.N., Perales M., Xie M., Reddy G.V. 2018. Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription. — PLoS genet. 14(4): e1007351. https://doi.org/10.1371/journal.pgen.1007351
- Spencer V., Venza Z.N., Harrison C.J. 2021. What can lycophytes teach us about plant evolution and development? Modern perspectives on an ancient lineage. Evol. Dev. 23: 174–196. https://doi.org/10.1111/ede.12350
- Steeves T.A., Sussex I.M. 1989. Patterns in plant development. Cambridge University Press. 15: 388 p.
- Sterling J.S. 1984. The structure of the apical meristem of Isoetes engelmannii, I. riparia and I. macrospora (Isoetales). — Bot. J. Linn. Soc. 89(1): 77–84.
- https://doi.org/10.1111/j.1095–8339.1984.tb01001.x
- Stevenson D.W. 1976. The cytohistological and cytohistochemical zonation of the shoot apex of Botrychium multifidum. — Am.J. Bot. 63(6): 852–856. https://doi.org/10.2307/2442045
- Sundås-Larsson A., Svenson M., Liao H., Engström P. 1998. A homeobox gene with potential developmental control function in the meristem of the conifer Picea abies. — Proc. Natl. Acad. Sci. USA. 95(25): 15118–15122. https://doi.org/10.1073/pnas.95.25.15118
- Suzuki H., Kato H., Iwano M., Nishihama R. 2023. Auxin signaling is essential for organogenesis but not for cell survival in the liverwort Marchantia polymorpha. — The Plant Cell. 35(3): 1058–1075. https://doi.org/10.1093/plcell/koac367
- Suzuki H., Kohchi T., Nishihama R. 2021. Auxin biology in bryophyta: a simple platform with versatile functions. — Cold Spring Harb Perspect Biol. 13(3): a040055. https://doi.org/10.1101/cshperspect.a040055
- Swentowsky K.W. 2024. A bushel of WUSCHEL is too much: uncovering the role of cytokinin cis-regulatory elements in the maize WUSCHEL promoter. — Plant Physiol. 194(4): 2183–2184. https://doi.org/10.1093/plphys/kiae016
- Szövényi P., Waller M., Kirbis A. 2019. Evolution of the plant body plan. — Curr Top Dev Biol. 131: 1–34. https://doi.org/10.1016/bs.ctdb.2018.11.005
- Tilney L.G., Cooke T.J., Connelly P.S., Tilney M.S. 1990. The distribution of plasmodesmata and its relationship to morphogenesis in fern gametophytes. — Development. 110(4): 1209–1221. https://doi.org/10.1242/dev.110.4.1209
- Timmermans M.C., Hudson A., Becraft P.W., Nelson T. 1999. ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. — Science. 284: 151–153. https://doi.org/10.1126/science.284.5411.151
- Tomescu A.M.F., Escapa I.H., Rothwell G.W., Elgorriaga A., Cúneo N.R. 2017. Developmental programmes in the evolution of Equisetum reproductive morphology: a hierarchical modularity hypothesis. — Ann. Bot. 119: 489–505. https://doi.org/10.1093/aob/mcw273
- Tomescu A.M.F., Wyatt S.E., Hasebe M., Rothwell G.R. 2014. Early evolution of the vascular plant body plan — the missing mechanisms. — Curr. Opin. Plant Biol. 17(1): 126–136. https://doi.org/10.1016/j.pbi.2013.11.016
- Tooke F., Battey N. 2003. Models of shoot apical meristem function. — New Phytol. 159(1): 37–52. https://doi.org/10.1046/j.1469-8137.2003.00803.x
- Tsiantis M., Schneeberger R., Golz J.F., Freeling M., Langdale J.A. 1999. The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. — Science. 284: 154–156. https://doi.org/10.1126/science.284.5411.154
- Tsuda K., Ito Y., Sato Y., Kurata N. 2011. Positive autoregulation of a KNOX gene is essential for shoot apical meristem maintenance in rice. — The Plant cell. 23(12): 4368–4381. https://doi.org/10.1105/tpc.111.090050
- Tsukaya H. 2021. The leaf meristem enigma: the relationship between the plate meristem and the marginal meristem. Plant Cell 33: 3194–3206. https://doi.org/10.1093/plcell/koab190
- Vasco A., Ambrose B.A. 2020. Simple and divided leaves in ferns: exploring the genetic basis for leaf morphology differences in the genus Elaphoglossum (Dryopteridaceae). — Int. J. Mol. Sci. 21(15): 5180. https://doi.org/10.3390/ijms21155180
- Vasco A., Moran R.C., Ambrose B.A. 2013. The evolution, morphology and development of fern leaves. — Front Plant Sci. 4: 345. https://doi.org/10.1111/j.1469-185X.1941.tb01096.x
- Vasco A., Smalls T.L., Graham S.W., Cooper E.D., Wong G.K., Stevenson D.W., Moran R.C., Ambrose B.A. 2016. Challenging the paradigms of leaf evolution: class III HD-Zips in ferns and lycophytes. — New Phytol. 212(3): 745–758. https://doi.org/10.1111/nph.14075
- Vernoux T., Besnard F., Traas J. 2010. Auxin at the shoot apical meristem. — Cold Spring Harb. Perspecti Biol. 2(4): a001487. https://doi.org/10.1101/cshperspect.a001487
- Wada M. 2008. Photoresponses in fern gametophytes. — Biology and Evolution of Ferns and Lycophytes (1st edn.). Cambridge. P. 3–48.
- Waites R., Selvadurai H.R., Oliver I.R., Hudson A. 1998. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. — Cell. 93(5): 779–789. https://doi.org/10.1016/s0092-8674(00)81439-7
- Wan T., Liu Z.-M., Li L.-F., Leitch A.R., Leitch I.J., Lohaus R., …, Wang X.-M. 2018. A genome for gnetophytes and early evolution of seed plants. — Nature Plants. 4: 82–89. https://doi.org/10.1038/s41477-017-0097-2
- Wardlaw C.W. 1956. Experimental and analytical studies of pteridophytes. XXXIV. On the shoot apex of the bird’s nest fern, Asplenium nidus L. — Ann. Bot. N.S. 20: 363–374.
- Wardlaw C.W. 1963. Experimental studies of the sporophytes of ferns. — J. Linn. Soc., Bot. 8: 385–400.
- Wegner L., Ehlers K. 2024. Plasmodesmata dynamics in bryophyte model organisms: secondary formation and developmental modifications of structure and function. — Planta. 260(2): 45. https://doi.org/10.1007/s00425-024-04476-1
- Whitewoods C.D. 2021. Evolution of CLE peptide signalling. — Semin. Cell Dev. Biol. 109: 12–19. https://doi.org/10.1016/j.semcdb.2020.04.022
- Whitewoods C.D., Cammarata J., Venza Z.N., Sang S., Crook A.D., Harrison C.J. 2018. CLAVATA was a genetic novelty for the morphological innovation of 3D growth in land plants. — Curr Biol.: CB, 30(13): 2645–2648. https://doi.org/10.1016/j.cub.2020.06.015
- Wickett N.J., Mirarab S., Nguyen N., Warnow T., Carpenter E., Matasci N. et al. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. — Proc. Natl. Acad. Sci. USA. 111(45): E4859—E4868. https://doi.org/10.1073/pnas.1323926111
- Winther J.L., Friedman W.E. 2008. Arbuscular mycorrhizal associations in Lycopodiaceae. — New Phytol. 177(3): 790–801. https://doi.org/10.1111/j.1469-8137.2007.02276.x
- Withers K.A., Kvamme A., Youngstrom C.E., Yarvis R.M., Orpano R., Simons G.P., Irish E.E., Cheng C.L. 2023. Auxin involvement in Ceratopteris gametophyte meristem regeneration. — Int. J. Mol. Sci. 24(21): 15832. https://doi.org/10.3390/ijms242115832
- Wu C.C., Li F.W., Kramer E.M. 2019. Large-scale phylogenomic analysis suggests three ancient superclades of the WUSCHEL-RELATED HOMEOBOX transcription factor family in plants. — PLoS One. 14(10): e0223521. https://doi.org/10.1371/journal.pone.0223521
- Wu X., Liu X., Zhang S., Zhou Y. 2023. Cell division and meristem dynamics in fern gametophytes. — Plants. 12(1): 209. https://doi.org/10.3390/plants12010209
- Yadav R.K., Perales M., Gruel J., Girke T., Jönsson H., Reddy G.V. 2011. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. — Genes. Dev. 25: 2025–2030. https://doi.org/10.1101/gad.17258511
- Yip H.K., Floyd S.K., Sakakibara K., Bowman J.L. 2016. Class III HD-Zip activity coordinates leaf development in Physcomitrella patens. — Dev. Biol. 419(1): 184–197. https://doi.org/10.1016/j.ydbio.2016.01.012
- Youngstrom C.E., Geadelmann L.F., Irish E.E., Cheng C.L. 2019. A fern WUSCHEL-RELATED HOMEOBOX gene functions in both gametophyte and sporophyte generations. — BMC Plant Biol. 19(1): 416. https://doi.org/10.1186/s12870-019-1991-8
- Youngstrom C.E., Withers K.A., Irish E.E., Cheng C.L. 2022. Vascular function of the T3/modern clade WUSCHEL-Related HOMEOBOX transcription factor genes predate apical meristem-maintenance function. — BMC plant biology. 22(1): 210. https://doi.org/10.1186/s12870-022-03590-0
- Zhang T.Q., Lian H., Zhou C.M., Xu L., Jiao Y., Wang J.W. 2017. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. — Plant Cell. 29(5): 1073–1087. https://doi.org/10.1105/tpc.16.00863
- Zumajo-Cardona C., Ambrose B.A. 2020. Phylogenetic analyses of key developmental genes provide insight into the complex evolution of seeds. Mol Phylogenet Evol. — 147: 106778. https://doi.org/10.1016/j.ympev.2020.106778
- Zumajo-Cardona C., Little D.P., Stevenson D., Ambrose B.A. 2021. Expression analyses in Ginkgo biloba provide new insights into the evolution and development of the seed. — Sci. Rep. 11(1): 21995. https://doi.org/10.1038/s41598-021-01483-0
- Zumajo-Cardona C., Vasco A., Ambrose B.A. 2019. The evolution of the KANADI gene family and leaf development in lycophytes and ferns. — Plants. 8(9): 313. https://doi.org/10.3390/plants809031
Дополнительные файлы
