Modeling of a solid-state laser module with pulse transverse diode pumping of Nd3+:YAG active medium
- 作者: Garnov S.V.1, Galyuk K.A.1,2, Ovcharenko B.D.1, Ushakov A.А.1, Bukin V.V.1
-
隶属关系:
- Prokhorov General Physics Institute of the Russian Academy of Sciences
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
- 期: 卷 516, 编号 1 (2024)
- 页面: 10-22
- 栏目: ФИЗИКА
- URL: https://rjraap.com/2686-7400/article/view/651780
- DOI: https://doi.org/10.31857/S2686740024030028
- EDN: https://elibrary.ru/KALOBV
- ID: 651780
如何引用文章
详细
In this work, a laser module (quantron) with transverse pulse diode pumping of a cylindrical Nd3+:YAG active element by the method of non-sequential ray tracing in the Zemax software environment is modeled. Numerically obtained distributions of the absorbed pump radiation power over the cross section of the active element and calculated the pumping efficiency of the quantron. A methodology for optimizing the quantron design is proposed, which results in an increase in the pumping efficiency of the active element.
全文:

作者简介
S. Garnov
Prokhorov General Physics Institute of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: karina272001@yandex.ru
Corresponding Member of the RAS
俄罗斯联邦, MoscowK. Galyuk
Prokhorov General Physics Institute of the Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: karina272001@yandex.ru
俄罗斯联邦, Moscow; Moscow
B. Ovcharenko
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: karina272001@yandex.ru
俄罗斯联邦, Moscow
A. Ushakov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: karina272001@yandex.ru
俄罗斯联邦, Moscow
V. Bukin
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: karina272001@yandex.ru
俄罗斯联邦, Moscow
参考
- Ross I.N., Csatári M., Hutchins S. High-performance diode-pumped Nd:YLF amplifier // Appl. Opt. 2003. V. 42. № 6. P. 1040–1047. https://doi.org/10.1364/AO.42.001040
- Koechner W. Solid-State Laser Engineering // Solid-State Laser Engineering. N.Y. (NY): Springer New York, 2006. V. 1. 750 p.
- Barnes N.P. Solid-State Lasers From an Efficiency Perspective // IEEE J. Sel. Top. Quantum Electron. 2007. V. 13. № 3. P. 435–447. https://doi.org/10.1109/JSTQE.2007.895280
- Glukhikh I.V., Dimakov S.A., Kurunov R.F., Polikarpov S.S., Frolov S.V. Powerful Solid-State Transversely Diode-Pumped YAG: Nd Lasers With Improved Radiation Quality // Tech. Phys. 2011. V. 56. № 8. P. 1129–1134. https://doi.org/10.1134/S1063784211080111
- Tulloch W.M., Rutherford T.S., Gustafson E.K., Byer R.L. A CW, high-power, conduction-cooled, edge-pumped slab laser // Solid State Lasers VIII / Ed. Scheps R. 1999. V. 3613. № May. P. 2–7. https://doi.org/10.1117/12.347664
- Lapucci A., Ciofini M., Pucci M., D’Uva M. High efficiency, Diode Pumped 170 W Nd:YAG ceramic slab laser // J. Eur. Opt. Soc. Rapid Publ. 2011. V. 6. P. 11047. DOI: 1990-2573
- Kravtsov N.V. Basic trends in the development of diode-pumped solid-state lasers // Quantum Electron. 2001. V. 31. № 8. P. 661–677. https://doi.org/10.1070/QE2001v031n08ABEH002025
- Clarkson W.A., Hardman P.J., Hanna D.C. High-power diode-bar end-pumped Nd:YLF laser at 1.053 µm // Opt. Lett. 1998. V. 23. № 17. P. 1363–1365. https://doi.org/10.1364/OL.23.001363
- Глухих И.В. и др. Мощные твердотельные лазеры на Nd:YAG с поперечной диодной накачкой и улучшенным качеством излучения // Журнал технической физики. 2011. Т. 81. №. 8. С. 70–75. https://doi.org/10.1134/s1063784211080111
- Takada A. et al. Diode laser-pumped cw Nd:YAG lasers with more than 1-kW output power // Advanced Solid State Lasers. Washington, D.C.: OSA, 1999. P. 21–23.
- Brand T. Compact 170-W continuous-wave diode-pumped Nd:YAG rod laser with a cusp-shaped reflector // Opt. Lett. 1995. V. 20. № 17. P. 1776–1778.
- Sun Z. et al. Experimental study of high-power pulse side-pumped Nd:YAG laser // Opt. Laser Technol. 2005. V. 37. № 2. P. 163–166. https://doi.org/10.1016/j.optlastec.2004.03.004
- Kashef T., Ghoniemy S., Mokhtar A. Robust modeling and performance analysis of high-power diode side-pumped solid-state laser systems // Appl. Opt. 2015. V. 54. № 36. P. 10666–10677. https://doi.org/10.1364/AO.54.010666
- Гречин С.Г., Николаев П.П. Квантроны твердотельных лазеров с поперечной полупроводниковой накачкой // Квантовая электроника. 2009. Т. 39. № 1. С. 1–17. https://doi.org/10.1070/QE2009v039n01ABEH013787
- Yu D., Tang D. Experimental study of a high-power CW side-pumped Nd:YAG laser // Opt. Laser Technol. 2003. V. 35. № 1. P. 37–42. https://doi.org/10.1016/S0030-3992(02)00121-4
- Xiong Z. et al. Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers // IEEE J. Quantum Electron. 2003. V. 39. № 8. P. 979–986. https://doi.org/10.1109/JQE.2003.814371
- Kojima T., Yasui K. Efficient diode side-pumping configuration of a Nd:YAG rod laser with a diffusive cavity // Appl. Opt. 1997. V. 36. № 21. P. 4981–4984. https://doi.org/10.1364/AO.36.004981
- Koshel R.J., Walmsley I.A. Optimal design of optically side-pumped lasers // IEEE J. Quantum Electron. 1997. V. 33. № 1. P. 94–102. https://doi.org/10.1109/3.554900
- Zendzian W., Jabczynski J.K., Kwiatkowski J. High peak power Nd:YAG laser pumped by 600-W diode laser stack // Opt. Laser Technol. 2008. V. 40. № 3. P. 441–444. https://doi.org/10.1016/j.optlastec.2007.07.007
- Sabaghzadeh J., Rahimzadeh F., Mashayekhe I. 468-W CW operation of a diode-pumped Nd:YAG rod laser with high beam quality and highly efficient concentrator of pump light // Opt. Laser Technol. 2008. V. 40. № 5. P. 748–755. https://doi.org/10.1016/j.optlastec.2007.10.006
- Moon H.-J. et al. Efficient diffusive reflector-type diode side-pumped Nd:YAG rod laser with an optical slope efficiency of 55% // Appl. Opt. 1999. V. 38. № 9. P. 1772–1776. https://doi.org/10.1364/AO.38.001772
- Wang Y., Kan H. Design of a triangular reflector for diode-pumped solid-state lasers with both high absorption efficiency and homogeneous absorption distribution // J. Opt. A Pure Appl. Opt. 2006. V. 8. № 9. P. 720–727. https://doi.org/10.1088/1464-4258/8/9/002
- Kiyko V.V et al. Optimisation of the parameters of a pump chamber for solid-state lasers with diode pumping by the optical boiler method // Quantum Electron. 2015. V. 45. № 6. P. 511–514. https://doi.org/10.1070/QE2015v045n06ABEH015287
- Sutton S.B., Albrecht G.F. Simple analytical method to calculate the radial energy deposition profile in an isotropic diode-pumped solid-state laser rod // Appl. Opt. 1996. V. 35. № 30. P. 5937–5948. https://doi.org/10.1364/AO.35.005937
- Meng J. et al. Comparison of different side-pumping configurations for high power laser diode pumped solid-state laser // Chinese Opt. Lett. 2003. V. 1. № 9. P. 538–540. https://doi.org/10.3788/COL20030109.0538
- Wang Y., Kan H. Optimization algorithm for the pump structure of diode side-pumped solid-state lasers // Opt. Lasers Eng. 2007. V. 45. № 1. P. 93–105. https://doi.org/10.1016/j.optlaseng.2006.06.005
- Walker D.R. et al. Efficient continuous-wave TEM00 operation of a transversely diode-pumped Nd:YAG laser // Opt. Lett. 1994. V. 19. № 14. P. 1055–1057. https://doi.org/10.1364/OL.19.001055
- Marshall L.R., Kaz A., Burnham R.L. Highly efficient TEM00 operation of transversely diode-pumped Nd:YAG lasers // Opt. Lett. 1992. V. 17. № 3. P. 186–188. https://doi.org/10.1364/OL.17.000186
- Qin H. et al. Extraordinary variation of pump light intensity inside a four-level solid-state laser medium // Opt. Lasers Eng. 2008. V. 46. № 8. P. 628–634. https://doi.org/10.1016/j.optlaseng.2008.03.015
- Haiyong Z. et al. Diode-side-pumped 131 W, 1319 nm single-wavelength cw Nd:YAG laser // Appl. Opt. 2007. V. 46. № 3. P. 384–388. https://doi.org/10.1364/AO.46.000384
- Kandasamy R., Raghavachari S., Misra P., Nathan. T.P.S. Highly efficient continuous-wave operation of a Nd:YAG rod laser that is side pumped by p-polarized diode laser bars // Appl. Opt. 2004. V. 43. № 31. P. 5855–5859. https://doi.org/10.1364/AO.43.005855
- Phua P.B., Lai K.S., Wu R.F. Linearly polarised 100-W output from a diode-pumped Nd: YALO laser // Advanced Solid State Lasers. Washington, D.C.: Optica Publishing Group, 2000. V. 39. № 3. P. 431–434. https://doi.org/10.1364/ASSL.2000.WC7
- Du K. et al. Neodymium:YAG 30-W cw laser side pumped by three diode laser bars // Appl. Opt. 1998. V. 37. № 12. P. 2361–2364. https://doi.org/10.1364/AO.37.002361
- Liu X., Zhao W., Xiong L., Liu H. Packaging of High Power Semiconductor Lasers // Packaging of High Power Semiconductor Lasers. N.Y. (NY): Springer New York, 2015. 402 p.
- Amzajerdian F. et al. Improving reliability of high power quasi-CW laser diode arrays for pumping solid state lasers // Lidar Remote Sensing for Environmental Monitoring VI / ed. Singh U.N. 2005. V. 5887. № February 2015. P. 58870E1–58870E7. https://doi.org/10.1117/12.620102
- Пат. RU 184832 U1. Оптическая усилительная головка с диодной накачкой / Багдасаров В.Х., Бельков С.А., Букин В.В., Гаранин С.Г., Гарнов С.В., Кудашева Н.А., Овчаренко Б.Д., Цветков В.Б.; заявитель и патентообладатель ФГБУН Институт общей физики им. А.М. Прохорова Российской академии наук (ИОФ РАН); опубл. 12.11.2018.
- URL: https://omlc.org/spectra/lasermedia/html/052.html (дата обращения: 15.12.2023).
- Schiling B.W. et al. End-pumped 1,5 µm monoblock laser for broad temperature operation // Appl. Opt. 2006. V. 45. № 25. P. 6607–6615. https://doi.org/10.1364/AO.45.00660
补充文件
