Modeling of a solid-state laser module with pulse transverse diode pumping of Nd3+:YAG active medium

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this work, a laser module (quantron) with transverse pulse diode pumping of a cylindrical Nd3+:YAG active element by the method of non-sequential ray tracing in the Zemax software environment is modeled. Numerically obtained distributions of the absorbed pump radiation power over the cross section of the active element and calculated the pumping efficiency of the quantron. A methodology for optimizing the quantron design is proposed, which results in an increase in the pumping efficiency of the active element.

全文:

受限制的访问

作者简介

S. Garnov

Prokhorov General Physics Institute of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: karina272001@yandex.ru

Corresponding Member of the RAS

俄罗斯联邦, Moscow

K. Galyuk

Prokhorov General Physics Institute of the Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: karina272001@yandex.ru
俄罗斯联邦, Moscow; Moscow

B. Ovcharenko

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: karina272001@yandex.ru
俄罗斯联邦, Moscow

A. Ushakov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: karina272001@yandex.ru
俄罗斯联邦, Moscow

V. Bukin

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: karina272001@yandex.ru
俄罗斯联邦, Moscow

参考

  1. Ross I.N., Csatári M., Hutchins S. High-performance diode-pumped Nd:YLF amplifier // Appl. Opt. 2003. V. 42. № 6. P. 1040–1047. https://doi.org/10.1364/AO.42.001040
  2. Koechner W. Solid-State Laser Engineering // Solid-State Laser Engineering. N.Y. (NY): Springer New York, 2006. V. 1. 750 p.
  3. Barnes N.P. Solid-State Lasers From an Efficiency Perspective // IEEE J. Sel. Top. Quantum Electron. 2007. V. 13. № 3. P. 435–447. https://doi.org/10.1109/JSTQE.2007.895280
  4. Glukhikh I.V., Dimakov S.A., Kurunov R.F., Polikarpov S.S., Frolov S.V. Powerful Solid-State Transversely Diode-Pumped YAG: Nd Lasers With Improved Radiation Quality // Tech. Phys. 2011. V. 56. № 8. P. 1129–1134. https://doi.org/10.1134/S1063784211080111
  5. Tulloch W.M., Rutherford T.S., Gustafson E.K., Byer R.L. A CW, high-power, conduction-cooled, edge-pumped slab laser // Solid State Lasers VIII / Ed. Scheps R. 1999. V. 3613. № May. P. 2–7. https://doi.org/10.1117/12.347664
  6. Lapucci A., Ciofini M., Pucci M., D’Uva M. High efficiency, Diode Pumped 170 W Nd:YAG ceramic slab laser // J. Eur. Opt. Soc. Rapid Publ. 2011. V. 6. P. 11047. DOI: 1990-2573
  7. Kravtsov N.V. Basic trends in the development of diode-pumped solid-state lasers // Quantum Electron. 2001. V. 31. № 8. P. 661–677. https://doi.org/10.1070/QE2001v031n08ABEH002025
  8. Clarkson W.A., Hardman P.J., Hanna D.C. High-power diode-bar end-pumped Nd:YLF laser at 1.053 µm // Opt. Lett. 1998. V. 23. № 17. P. 1363–1365. https://doi.org/10.1364/OL.23.001363
  9. Глухих И.В. и др. Мощные твердотельные лазеры на Nd:YAG с поперечной диодной накачкой и улучшенным качеством излучения // Журнал технической физики. 2011. Т. 81. №. 8. С. 70–75. https://doi.org/10.1134/s1063784211080111
  10. Takada A. et al. Diode laser-pumped cw Nd:YAG lasers with more than 1-kW output power // Advanced Solid State Lasers. Washington, D.C.: OSA, 1999. P. 21–23.
  11. Brand T. Compact 170-W continuous-wave diode-pumped Nd:YAG rod laser with a cusp-shaped reflector // Opt. Lett. 1995. V. 20. № 17. P. 1776–1778.
  12. Sun Z. et al. Experimental study of high-power pulse side-pumped Nd:YAG laser // Opt. Laser Technol. 2005. V. 37. № 2. P. 163–166. https://doi.org/10.1016/j.optlastec.2004.03.004
  13. Kashef T., Ghoniemy S., Mokhtar A. Robust modeling and performance analysis of high-power diode side-pumped solid-state laser systems // Appl. Opt. 2015. V. 54. № 36. P. 10666–10677. https://doi.org/10.1364/AO.54.010666
  14. Гречин С.Г., Николаев П.П. Квантроны твердотельных лазеров с поперечной полупроводниковой накачкой // Квантовая электроника. 2009. Т. 39. № 1. С. 1–17. https://doi.org/10.1070/QE2009v039n01ABEH013787
  15. Yu D., Tang D. Experimental study of a high-power CW side-pumped Nd:YAG laser // Opt. Laser Technol. 2003. V. 35. № 1. P. 37–42. https://doi.org/10.1016/S0030-3992(02)00121-4
  16. Xiong Z. et al. Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers // IEEE J. Quantum Electron. 2003. V. 39. № 8. P. 979–986. https://doi.org/10.1109/JQE.2003.814371
  17. Kojima T., Yasui K. Efficient diode side-pumping configuration of a Nd:YAG rod laser with a diffusive cavity // Appl. Opt. 1997. V. 36. № 21. P. 4981–4984. https://doi.org/10.1364/AO.36.004981
  18. Koshel R.J., Walmsley I.A. Optimal design of optically side-pumped lasers // IEEE J. Quantum Electron. 1997. V. 33. № 1. P. 94–102. https://doi.org/10.1109/3.554900
  19. Zendzian W., Jabczynski J.K., Kwiatkowski J. High peak power Nd:YAG laser pumped by 600-W diode laser stack // Opt. Laser Technol. 2008. V. 40. № 3. P. 441–444. https://doi.org/10.1016/j.optlastec.2007.07.007
  20. Sabaghzadeh J., Rahimzadeh F., Mashayekhe I. 468-W CW operation of a diode-pumped Nd:YAG rod laser with high beam quality and highly efficient concentrator of pump light // Opt. Laser Technol. 2008. V. 40. № 5. P. 748–755. https://doi.org/10.1016/j.optlastec.2007.10.006
  21. Moon H.-J. et al. Efficient diffusive reflector-type diode side-pumped Nd:YAG rod laser with an optical slope efficiency of 55% // Appl. Opt. 1999. V. 38. № 9. P. 1772–1776. https://doi.org/10.1364/AO.38.001772
  22. Wang Y., Kan H. Design of a triangular reflector for diode-pumped solid-state lasers with both high absorption efficiency and homogeneous absorption distribution // J. Opt. A Pure Appl. Opt. 2006. V. 8. № 9. P. 720–727. https://doi.org/10.1088/1464-4258/8/9/002
  23. Kiyko V.V et al. Optimisation of the parameters of a pump chamber for solid-state lasers with diode pumping by the optical boiler method // Quantum Electron. 2015. V. 45. № 6. P. 511–514. https://doi.org/10.1070/QE2015v045n06ABEH015287
  24. Sutton S.B., Albrecht G.F. Simple analytical method to calculate the radial energy deposition profile in an isotropic diode-pumped solid-state laser rod // Appl. Opt. 1996. V. 35. № 30. P. 5937–5948. https://doi.org/10.1364/AO.35.005937
  25. Meng J. et al. Comparison of different side-pumping configurations for high power laser diode pumped solid-state laser // Chinese Opt. Lett. 2003. V. 1. № 9. P. 538–540. https://doi.org/10.3788/COL20030109.0538
  26. Wang Y., Kan H. Optimization algorithm for the pump structure of diode side-pumped solid-state lasers // Opt. Lasers Eng. 2007. V. 45. № 1. P. 93–105. https://doi.org/10.1016/j.optlaseng.2006.06.005
  27. Walker D.R. et al. Efficient continuous-wave TEM00 operation of a transversely diode-pumped Nd:YAG laser // Opt. Lett. 1994. V. 19. № 14. P. 1055–1057. https://doi.org/10.1364/OL.19.001055
  28. Marshall L.R., Kaz A., Burnham R.L. Highly efficient TEM00 operation of transversely diode-pumped Nd:YAG lasers // Opt. Lett. 1992. V. 17. № 3. P. 186–188. https://doi.org/10.1364/OL.17.000186
  29. Qin H. et al. Extraordinary variation of pump light intensity inside a four-level solid-state laser medium // Opt. Lasers Eng. 2008. V. 46. № 8. P. 628–634. https://doi.org/10.1016/j.optlaseng.2008.03.015
  30. Haiyong Z. et al. Diode-side-pumped 131 W, 1319 nm single-wavelength cw Nd:YAG laser // Appl. Opt. 2007. V. 46. № 3. P. 384–388. https://doi.org/10.1364/AO.46.000384
  31. Kandasamy R., Raghavachari S., Misra P., Nathan. T.P.S. Highly efficient continuous-wave operation of a Nd:YAG rod laser that is side pumped by p-polarized diode laser bars // Appl. Opt. 2004. V. 43. № 31. P. 5855–5859. https://doi.org/10.1364/AO.43.005855
  32. Phua P.B., Lai K.S., Wu R.F. Linearly polarised 100-W output from a diode-pumped Nd: YALO laser // Advanced Solid State Lasers. Washington, D.C.: Optica Publishing Group, 2000. V. 39. № 3. P. 431–434. https://doi.org/10.1364/ASSL.2000.WC7
  33. Du K. et al. Neodymium:YAG 30-W cw laser side pumped by three diode laser bars // Appl. Opt. 1998. V. 37. № 12. P. 2361–2364. https://doi.org/10.1364/AO.37.002361
  34. Liu X., Zhao W., Xiong L., Liu H. Packaging of High Power Semiconductor Lasers // Packaging of High Power Semiconductor Lasers. N.Y. (NY): Springer New York, 2015. 402 p.
  35. Amzajerdian F. et al. Improving reliability of high power quasi-CW laser diode arrays for pumping solid state lasers // Lidar Remote Sensing for Environmental Monitoring VI / ed. Singh U.N. 2005. V. 5887. № February 2015. P. 58870E1–58870E7. https://doi.org/10.1117/12.620102
  36. Пат. RU 184832 U1. Оптическая усилительная головка с диодной накачкой / Багдасаров В.Х., Бельков С.А., Букин В.В., Гаранин С.Г., Гарнов С.В., Кудашева Н.А., Овчаренко Б.Д., Цветков В.Б.; заявитель и патентообладатель ФГБУН Институт общей физики им. А.М. Прохорова Российской академии наук (ИОФ РАН); опубл. 12.11.2018.
  37. URL: https://omlc.org/spectra/lasermedia/html/052.html (дата обращения: 15.12.2023).
  38. Schiling B.W. et al. End-pumped 1,5 µm monoblock laser for broad temperature operation // Appl. Opt. 2006. V. 45. № 25. P. 6607–6615. https://doi.org/10.1364/AO.45.00660

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Optical scheme of the numerical experiment for measuring the spatial distribution of the intensity of the radiation spot of a diode array (Zemax).

下载 (158KB)
3. Fig. 2. Spatial distributions of the intensity of the radiation spot of the diode array, obtained in the numerical experiment (Zemax) (red graph) and calculated using the model function and the least squares method (blue graph); a – median horizontal section; b – median vertical section.

下载 (189KB)
4. Fig. 3. Optical diagram of the experimental setup for measuring the spatial distribution of the intensity of the radiation spot of a laser diode array.

下载 (215KB)
5. Fig. 4. Optical diagram of the cross-section of the quantron model with five-sided (a) and three-sided (b) diode pumping.

下载 (268KB)
6. Fig. 5. Absorption spectra of Nd3+:YAG 1% at. (blue graph), LDR emission with a central wavelength of 806 ± 3 nm (purple graph). Three Gaussian curves show the central position of the LDR emission spectrum (solid line) and the limiting cases of shift in the position of the LDR emission spectrum within a batch at a fixed temperature of 25 °C (dashed curves).

下载 (171KB)
7. Fig. 6. Absorption length in Nd3+:YAG 1% at. in the range of LDR emission wavelengths within a batch.

下载 (95KB)
8. Fig. 7. Distribution of the absorbed radiation power over the cross section of Nd3+:YAG in the Zemax mathematical model with five-sided (a) and three-sided (b) pumping.

下载 (281KB)
9. Fig. 8. Spatial distribution of the absorbed radiation power in the middle horizontal section of the cross-section of the active element with five-sided (red graph) and three-sided (blue graph) pumping.

下载 (113KB)
10. Fig. 9. Values ​​of the pumping efficiency of the active element for different values ​​of Δ – the thickness of the liquid flow and quartz tube (a); H – the distance between the laser diode arrays (b).

下载 (199KB)
11. Fig. 10. Optical diagram of the cross-section of a model of a quantron with metal reflectors, a – located at a certain distance from the outer surface of the quartz tube, b – deposited on the outer surface of the quartz tube.

下载 (279KB)
12. Fig. 11. Values ​​of the pumping efficiency of the active element for different values ​​of the radius R of the metal reflector (a), the arc angle φ of the segment of the metal deposition on the quartz tube (b).

下载 (129KB)
13. Fig. 12. Values ​​of the pumping efficiency of the active element with an acceptable error in the installation of the active element and the quartz tube: (a) ∆y is the displacement of the elements along the y axis; (b) γ is the angle of rotation relative to the center of the active element around the y axis.

下载 (219KB)

版权所有 © Russian Academy of Sciences, 2024