Internal sources of CO2 during anatexis under conditions of high-temperature metamorphism (experimental data)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Partial melting experiments of garnet-two-mica schist containing 0–20 wt. % graphite were carried out at 900°C and 500 MPa. Experiments have shown that at all graphite contents (within the specified range), metapelite melts are formed by peritectic melting reactions of biotite, muscovite and partly quartz: Bt + Ms + QzKfs + Spl(Hc) + oAm + Sil + Gl. The decreasing Fe3+/(Fe3++Fe2+) ratio in Fe-Mg minerals with increasing graphite content reflects increasing reducing conditions. Oxygen released as a result of the oxidation-reduction reactions of iron reacts with graphite to form CO2. It partially dissolves in the melt to form carbonate complexes of Ca, Mg, K and accompanies it in the form of a free fluid phase. Experiments demonstrate that graphite-bearing metapelites can serve as efficient internal sources of CO2 during high-temperature metamorphism.

Full Text

Restricted Access

About the authors

O. G. Safonov

D.S. Korzhinskii Institute of Experimental Mineralogy of the Russian Academy of Sciences; Lomonosov Moscow State University

Author for correspondence.
Email: khodorevskaya@mail.ru
Russian Federation, Chernogolovka, Moscow Region; Moscow

L. I. Khodorevskaya

D.S. Korzhinskii Institute of Experimental Mineralogy of the Russian Academy of Sciences

Email: khodorevskaya@mail.ru
Russian Federation, Chernogolovka, Moscow Region

S. A. Kosova

D.S. Korzhinskii Institute of Experimental Mineralogy of the Russian Academy of Sciences

Email: khodorevskaya@mail.ru
Russian Federation, Chernogolovka, Moscow Region

A. V. Spivak

D.S. Korzhinskii Institute of Experimental Mineralogy of the Russian Academy of Sciences

Email: khodorevskaya@mail.ru
Russian Federation, Chernogolovka, Moscow Region

L. Y. Aranovich

D.S. Korzhinskii Institute of Experimental Mineralogy of the Russian Academy of Sciences; Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Email: khodorevskaya@mail.ru

Academician of the RAS

Russian Federation, Chernogolovka, Moscow Region; Moscow

References

  1. Nicoli G., Borghini A., Ferrero S. The carbon budget of crustal reworking during continental collision: Clues from nanorocks and fluid inclusions // Chemical Geology. 2022. V. 608. P. 121025. https://doi.org/10.1016/j.chemgeo.2022.121025
  2. Cesare B. et al. Immiscibility between carbonic fluids and granitic melts during crustal anatexis: a fluid and melt inclusion study in the enclaves of the Neogene Volcanic Province of SE Spain //Chemical Geology. 2007. V. 237. №. 3–4. P. 433–449. https://doi.org/10.1016/j.chemgeo.2006.07.013
  3. Whitney D.L. Origin of CO2‐rich fluid inclusions in leucosomes from the Skagit migmatites, North Cascades, Washington, USA // Journal of Metamorphic Geology. 1992. V. 10. P. 715–725.
  4. London D., VI G.B.M., Acosta-Vigil A. Experimental simulations of anatexis and assimilation involving metapelite and granitic melt // Lithos. 2012. V. 153. P. 292‒307. https://doi.org/10.1016/j.lithos.2012.04.006
  5. Митяев А.С., Сафонов О.Г., Варламов Д.А., ван Ринен Д. Д., Сердюк А.А., Аранович Л.Я. Частичное плавление бесплагиоклазового гранат-двуслюдяного метапелита как модель образования ультракалиевых кислых магм в условиях континентальной коры // ДАН. 2022. Т. 507. № 2. С. 95–103. https://doi.org/10.31857/S2686739722601703
  6. Chappell B.W., Bryant C.J., Wyborn D. Peraluminous I-type granites // Lithos. 2012. V. 153. P. 142‒153. https://doi.org/10.1016/j.lithos.2012.07.008
  7. Frost B.R., Barnes C.G., Collins W.J. et al. A geochemical classification for granitic rocks // Journal of petrology. 2001. V. 42. №. 11. P. 2033‒2048. https://doi.org/10.1093/petrology/42.11.2033
  8. Koester E., Pawley A.R., Fernandes L.A. et al. Experimental melting of cordierite gneiss and the petrogenesis of syn- transcurrent peraluminous granites Brazil // J. Petrol. 2002. V. 43. P. 1595–1616. https://doi.org/10.1093/petrology/43.8.1595
  9. Pichavant M., Montel J.M., Richard L.R. Apatite solubility in peraluminous liquids: Experimental data and an extension of the Harrison-Watson model // Geochimica et Cosmochimica Acta. 1992. V. 56. №. 10. С. 3855‒3861. https://doi.org/10.1016/0016-7037(92)90178-L
  10. McMillan P.F. Water solubility // Rev. Mineral. 1994. V. 30. P. 131–156. https://doi.org/10.1515/9781501509674-010
  11. McMillan P. Structural studies of silicate glasses and melts—applications and limitations of Raman spectroscopy //American Mineralogist. 1984. V. 69. №. 7–8. P. 622–644.
  12. Reich S., Thomsen C. Raman spectroscopy of graphite // Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 2004. V. 362. P. 2271–2288. https://doi.org/10.1098/rsta.2004.1454
  13. Frezzotti M.L., Tecce F., Casagli A. Raman spectroscopy for fluid inclusion analysis // Journal of Geochemical Exploration. 2012. V. 112. P. 1–20. https://doi.org/10.1016/j.gexplo.2011.09.009
  14. Wang X. et al. Raman spectroscopic measurements of CO2 density: Experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations // Geochimica et Cosmochimica Acta. 2011. V. 75. № 14. P. 4080‒4093. https://doi.org/10.1016/j.gca.2011.04.028
  15. Шмулович К.И., Шмонов В.М. Таблицы термодинамических свойств газов и жидкостей. М.: Изд-во стандартов, 1978. № 3.
  16. Ni H., Keppler H. Carbon in silicate melts // Reviews in Mineralogy and Geochemistry. 2013. V. 75. №. 1. P. 251–287. https://doi.org/10.2138/rmg.2013.75.9

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Products of experiments in backscattered electrons (BSE): a ‒ chains of hercynite-magnetite spinel (Hc) around garnet, Gl, Ilm, Qz (experiment 14D, 4 wt. % graphite); b ‒ needle-shaped and prismatic orthoamphybole crystals among the products of melt quenching Gl, Qz (experiment 16D, 20 wt. % of graphite)

Download (183KB)
3. Fig. 2. Characteristics of melts in experimental products. (a) Diagram in coordinates A/CNK and A/NK; a vertical solid line on A/CNK = 1.0 separates the fields of low-alumina (1) and high-alumina (plumasitic) (2) granites; a vertical dotted line on A/CNK = 1.1 separates the fields of type I and type S granites [6]; a horizontal solid line at A/NK = 1.0 separates the fields of low-alumina (1) and agpaitic (3) granites [7]. (b) Diagram in SiO2‒MALI coordinates according to [7]. The gray field in Fig. 2 a, b, outlined by a dashed line, corresponds to the field of melts obtained by melting various metapelites in the pressure range of 500-1500 MPa with and without the participation of an aqueous fluid ([8] and a review therein). Symbols for Fig. 2 a, b: 1 – experiments without graphite, 2-5 – experiments with graphite content of 4.2, 10.1, 14 and 18.6 wt, respectively. %

Download (55KB)
4. Fig. 3. (a) Representative Raman spectrum of the hardened melt from sample 14D. (b) Section 1000-1650 cm–1 is the spectrum of the hardened melt from sample 15D. Carb* ‒ doublet 1082 and 1066 cm–1 of K2Sa(CO3)2 double carbonate, Cal – calcite, Gr – graphite, Q2, Q3 – groupings of (SiO44–)-tetrahedra of various degrees of polymerization [11], Gr(D), Gr(G) – bands characterizing the degree of disordered graphite structure [12]

Download (52KB)
5. 4. Raman spectra of carbonates from samples 14D, 15D and 17D

Download (56KB)
6. Fig. 5. Opened (a) and not opened (b) gas bubbles in glass

Download (81KB)
7. Fig. 6. Raman spectrum of gas bubbles in the glass of sample 14D with characteristic peaks of CO2 — Fermi dyads

Download (49KB)

Copyright (c) 2025 Russian Academy of Sciences