The role of multi-stage deformations in the formation of the aptian orogenic gold mineralization of the Allakh-Yun zone of the Okhotsk-Koryak belt on the example of the Marinskoye deposit

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Geological and structural observations carried out within the Marinskoye gold deposit of the Allakh-Yun zone of the Okhotsk-Koryak belt showed the occurrence of several deformation events and associated early and late orogenic mineralization during the Late Jurassic – Aptian subduction. The Late Jurassic stage D1 is characterized by structures of plastic deformations, green-schist metamorphism and early orogenic gold mineralization. The structures of the second deformation stage D2 (folds of shale cleavage, crenulation cleavage) are developed locally. Fragile ore-controlling structures of the third stage D3 are superimposed on plastic deformations after their exhumation. The obtained dating of 119.4±4.7 million years (40Ar/39Ar, sericite) of late orogenic gold mineralization is close to the estimates of age of large granitoid massifs with crust-mantle sources of the Allakh-Yun zone. The Late orogenic Marinskoye gold deposit was formed under conditions of compression and western transport of rocks during a change in the tectonic setting on the eastern active continental margin of the Siberian craton, related to the change in plate dynamics in the northern part of the Paleopacific at the beginning of the Aptian century.

Full Text

Restricted Access

About the authors

V. Y. Fridovsky

Diamond and Precious Metal Geology Institute, SB RAS

Author for correspondence.
Email: fridovsky@diamond.ysn.ru

Corresponding Member of the RAS

Russian Federation, Yakutsk

Y. A. Tarasov

Diamond and Precious Metal Geology Institute, SB RAS; Novosibirsk State University; North-East Interdisciplinary Scientific Research Institute n.a. N.A. Shilo, Far East Branch of the Russian Academy of Sciences

Email: fridovsky@diamond.ysn.ru
Russian Federation, Yakutsk; Novosibirsk; Magadan

L. I. Polufuntikova

Diamond and Precious Metal Geology Institute, SB RAS

Email: fridovsky@diamond.ysn.ru
Russian Federation, Yakutsk

M. V. Kudrin

Diamond and Precious Metal Geology Institute, SB RAS

Email: fridovsky@diamond.ysn.ru
Russian Federation, Yakutsk

References

  1. Fridovsky V.Yu. Structural control of orogenic gold deposits of the Verkhoyansk-Kolyma folded region, northeast Russia // Ore Geology Review. 2018. V. 103. P. 38–55. https://doi.org/10.1016/j.oregeorev.2017.01.006
  2. Чернышев И.В., Чугаев А.В., Бортников Н.С., Гамянин Г.Н. Прокопьев А.В. Изотопный состав свинца и источники металлов в месторождениях золота и серебра Южного Верхоянья (Якутия, Россия): по данным высокоточного MC-ICP-MS метода // Геология рудных месторождений. 2018. Т. 60. № 5. С. 448–471. https://doi.org/10.1134/S0016777018050039
  3. Фридовский В.Ю., Гамянин Г.Н., Горячев H.А. Геолого-генетическая модель формирования стратифицированных золотокварцевых месторождений Южного Верхоянья // Отечественная геология. 2006. № 5. С. 33–37.
  4. Прокопьев А.В., Борисенко А.С., Гамянин Г.Н., Фридовский В.Ю., Кондратьева Л.А., Анисимова Г.С., Трунилина В.А., Васюкова Е.А., Иванов А.И., Травин А.В., Королева О.В., Васильев Д.А., Пономарчук А.В. Возрастные рубежи и геодинамические обстановки формирования месторождений и магматических образований Верхояно-Колымской складчатой области // Геология и геофизика. 2018. № 10. C. 1542–1563. https://doi.org/10.15372/GiG20181004
  5. Prokopiev A.V., Toro J., Hourigan J.K., Bakharev A.G., Miller E.L. Middle Paleozoic-Mesozoic boundary of the North Asian craton and the Okhotsk terrane: new geochemical and geochronological data and their geodynamic interpretation // Stephan Mueller Spec. Publ. Ser. 2009. V. 4. P. 71–84. https://doi.org/10.5194/smsps-4-71-2009
  6. Fridovsky V.Yu., Kudrin M.V., Polufuntikova L.I. Multi-stage deformation of the Khangalas ore cluster (Verkhoyansk-Kolyma folded region, northeast Russia): ore-controlling reverse thrust faults and post-mineral strike-slip faults // Minerals. 2018. V. 8. № 7. P. 270. http://dx.doi.org/10.3390/min8070270
  7. Yudin D., Murzintsev N., Travin A., Alifirova T., Zhimulev E., Novikova S. Studying the stability of the K/Ar isotopic system of phlogopites in conditions of high T, P: 40Ar/39Ar dating, laboratory experiment, numerical simulation // Minerals. 2021. V. 11. № 2. P. 192. https://doi.org/10.3390/min11020192
  8. Steiger R.H., Jäger E. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology // Earth Planet. Sci. Lett. 1977. V. 36. P. 359–362. https://doi.org/10.1016/0012-821X(77)90060-7
  9. Faure G. Principles of Isotope Geology. New York, Chichester, Brisbane, Toronto, Singapor.Wiley. 1986. P. 589. https://doi.org/10.1017/S0016756800017453
  10. Бахарев А.Г., Зайцев А.И. Южно-Верхоянский метаморфический пояс и сопряженные с ним магматические образования / Парфенов Л.М., Кузьмин М.И. (ред.) Тектоника, геодинамика и металлогения территории Республики Саха (Якутия). Москва: МАИК “Наука/Интерпериодика”. 2001. С. 269–274.
  11. Малышев С.В., Худолей А.К., Гласмахер У.А., Казакова Г.Г., Калинин М.А. Определение этапов формирования юго-западной части Верхоянского складчато-надвигового пояса по данным трекового датирования апатита и циркона // Геотектоника. 2018. № 6 С. 55–68. https://doi.org/10.1134/S0016853X1806005X
  12. Фридовский В.Ю., Полуфунтикова Л.И. Условия локализации золотого оруденения Маринского рудного поля (Южное Верхоянье) // Отечественная геология. 2011. № 6. С. 13–20.
  13. Fossen H., Cavalcante G.C.G. Shear zones – A review // Earth-Science Reviews. 2017. V. 171. P. 434 – 455. https://doi.org/10.1016/j.earscirev.2017.05.002
  14. Буряк В.А., Неменман И.С., Бердников Н.В., Кокин А.В., Демихов Ю.И. Флюидный режим формирования и источник рудообразующих растворов золотокварцевых жил Аллах-Юньской зоны // Тихоокеанская геология. 1990. № 3. С. 62–70.
  15. Warr L. NIMA-CNMNC approved mineral symbols // Mineralogical Magazine. 2021. V. 85(3). P. 1–30. http://dx.doi.org/10.1180/mgm.2021.43
  16. Бортников Н.С., Гамянин Г.Н., Викентьева О.В., Прокофьев В.Ю., Алпатов В.А., Бахарев А.Г. Состав и происхождение флюидов в гидротермальной системе Нежданинского золоторудного месторождения (Саха-Якутия, Россия) // Геология руд. месторождений. 2007. Т. 49. № 2. С. 99–145.
  17. Baksi A.K., Archibald D.A., Farrar E. Intercalibration of 40Ar–39Ar dating standards // Chem. Geol. 1996. V. 129. 307–324. https://doi.org/10.1016/0009-2541(95)00154-9
  18. Vernikovskaya A.E., Fridovsky V.Y., Rodionov N.V. Matushkin N.Y., Kadilnikov P.I., Kudrin M.V., Tarasov Ya.A. Rapakivi granites and associating magmatism during the Aptian development phase of the Siberian craton active continental margin (Northeast Asia) // Doklady Earth Sciences. 2024. P. 1–10. https://doi.org/10.1134/S1028334X23602869
  19. Goryachev N., Fridovsky V. Overview of early Cretaceous gold mineralization in the orogenic belt of the Eastern margin of the Siberian craton: geological and genetic features // Frontiers in Earth Science. 2024. V. 11. P. 1252729. https://doi.org/10.3389/feart.2023.1252729
  20. Goldfarb R.J., Taylor R., Collins G., Goryachev N.A., Orlandini O.F. Phanerozoic continental growth and gold metallogeny of Asia // Gondwana Research. 2014. V. 25 (1). Р. 48–102. https://doi.org/10.1016/j.gr.2013.03.002

Supplementary files

Supplementary Files
Action
1. JATS XML
2. 1. The scheme of the geological structure of the western sector of the Okhotsk-Koryak orogen and the position of the Mariinskoye gold deposit. The letter abbreviations are tectonic zones: KL – Killakh, SD – Set– te-Daban and AYU-Allah-Yun. The inset shows the location of the Allah Yun metallogenic zone in the structures of the Verkhoyansk-Chukchi folded region. Letter abbreviations: SP – Siberian plateau , PKP - Priverkhoyansky marginal trough, VSNP – Verkhoyansky folded thrust belt, YAKO–Yano-Ko- the Lymsky orogen, ACHO – Arctic-Chukchi orogen, KO – Koryak orogen, OCH – Olyutorsko-Kamchatsky orogen, OCT – Okhotsk cratonic terrane, OCHVP – Okhotsk-Chukchi volcanic belt, South Anyui sutura, KOS– Kolymo-Omolonsky superterrane, OT – Omolonsky cratonic terrane

Download (666KB)
3. Fig. 2. Diagram of the geological structure of the Marinskoye gold deposit (a) and the position of orogenic gold deposits in the Carboniferous-Permian deposits of the Allahyun zone (b). Diagrams of the poles of stratification (c), cleavage (d), quartz-carbonate veins of the western wing (e) and eastern wing (f) of the Marinskaya the anticlines are shown (upper hemisphere): blue non–filled squares are the poles of layering S0; green non–filled triangles are the poles of cleavage; red crosses are the poles of veins; Sn is the axial surface; b is the hinge of the fold; nS0 is the belt of the poles of layering; nS is the belt of the poles of cleavage; the dotted line in diagrams d and e is the pole belt of quartz veins (plane σ3/σ1); l is the direction of displacement; V are quartz and quartz–carbonate veins: V1 are consistent with the occurrence of rocks, V2 are longitudinally secant, V3 are transverse; paleotectonic stress axes: σ3 are compression, σ2 are intermediate, σ1 – stretching; n – number of measurements. The stratigraphic column shows: a dotted line – siltstones, dots – sandstones, triangles – diamictites, red circles – the position of gold deposits.

Download (321KB)
4. 3. Shale cleavage and microdeformations of the host rocks: (a) the relationship of stratification (S0) and cleavage (S1); (b‒d) the structures of dissolution and recrystallization: (b) isometric polygonal polycrystalline quartz and incorporation structures at the boundary of quartz grains and plagioclase, (c) selective albitization of clastic plagioclase, (d) – structures of mosaic granulation of clastic quartz grains with the formation of a fine-grained aggregate; (d‒e) – shale microclimate: (e) – aggregate (cataclastic-segregationist) type, sandstone, (e) – intergranular (segregationist-trickle) type, siltstone; (g) – porphyroclastic systems and elongated quartz grains Qz1. In the center is a δ–type quartz porphyroclast; (h) is the initial stage of the development of antitaxial “growth beards" in the asymmetric pressure shadows of ankerite grains; (i) is the flatness cleavage S2. The abbreviation of the mineral names according to [15]: Qz1 – clastic quartz; Qz2 – recrystallization quartz; Pl – plagioclase; Ser – sericite; Ank1 – metasomatic ankerite; Ank2 – recrystallization ankerite; S0 – layering; S1 – shale cleavage; S2 – flatness cleavage

Download (472KB)
5. Fig. 4. Quartz vein systems of the Marinskoye gold deposit: (a) – thin–banded quartz vein V0 consistent with rock occurrence; (b, c) - gold-quartz–carbonate veins: b – longitudinal vein V1 consistent with rock occurrence S0, longitudinal vein V2 secant rock occurrence, c - vein V3 transverse rock occurrence S0. The diagrams show the position of the S0 –stratification, V – quartz and quartz-carbonate veins using arcs of a large circle.

Download (141KB)
6. Fig. 5. 40Ar/39Ar-age spectrum for sericite from a transverse quartz-carbonate vein (model MP-2-21) place of birth Maryinskoe. The localization of the sample is shown in Fig. 2. The micrograph shows the position of sericite between quartz and dolomite grains and its fusion with galena. The abbreviation of the names of minerals according to [15]: Qz – quartz, Dol – dolomite, Ser – sericite, Gn – galena

Download (91KB)

Copyright (c) 2025 Russian Academy of Sciences