Формирование нановолокон на основе полиакрилонитрила с графитом и их структурные характеристики

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Методом электроспиннинга получены нановолокна на основе полиакрилонитрила с графитом. Изучена структура, а также термические и электрические свойства нановолокон. Показано влияние реологических характеристик растворов и условий процесса электроспиннинга на структуру нановолокон. Выявлены изменения надмолекулярных структурных характеристик нановолокон при электроформовании.

About the authors

А. А. Атаханов

Институт химии и физики полимеров Академии наук Республики Узбекистан

Author for correspondence.
Email: a-atakhanov@yandex.com
Uzbekistan, Ташкент

Н. Ш. Ашуров

Институт химии и физики полимеров Академии наук Республики Узбекистан

Email: a-atakhanov@yandex.com
Uzbekistan, Ташкент

Ж. Тураев

Институт химии и физики полимеров Академии наук Республики Узбекистан

Email: a-atakhanov@yandex.com
Uzbekistan, Ташкент

М. Абдуразаков

Институт химии и физики полимеров Академии наук Республики Узбекистан

Email: a-atakhanov@yandex.com
Uzbekistan, Ташкент

Н. Р. Ашуров

Институт химии и физики полимеров Академии наук Республики Узбекистан

Email: a-atakhanov@yandex.com
Uzbekistan, Ташкент

С. Ш. Рашидова

Институт химии и физики полимеров Академии наук Республики Узбекистан

Email: a-atakhanov@yandex.com
Uzbekistan, Ташкент

А. А. Берлин

Институт химической физики им. Н.Н. Семёнова Российской академии наук

Email: a-atakhanov@yandex.com
Russian Federation, Москва

References

  1. Iijima S. // Nature. 1991. V. 354. Р. 56.
  2. Alosime E.M. // Nanoscale Res. Lett. 2023. V. 18. № 12.
  3. Bhat G.S. // J. Nanomater. Mol. Nanotechnol. 2016. V.5. № 1.
  4. Hagewood J.F. // Int. Fiber J. 2004. V. 19. Р.48.
  5. Reneker D.H., Chun I. // Nanotechnology. 1996. V. 7. Р. 216.
  6. Dzenis Y.A. // Science. 2004. V. 304. № 5679. Р.1917.
  7. Greiner A., Wendorff J.H. // Angew. Chem. Int. Ed. 2007. V. 46. Р.5670.
  8. Yu Z., Borg O., Chen D., Enger B.C., Frøseth V., Rytter E., Wigum H., Holmen A. // Catal. Lett. 2006. V. 109. Р.43.
  9. Tiwari A., Dhakate S.R. // Int. J. Biol. Macromol. 2009. V. 44. № 5. Р.408.
  10. Singha A.S., Rana R.K. // Adv. Mater. Lett. 2010. V. 1. Р. 156.
  11. Chen L., Pang X., Yu G., Zhang J. // Adv. Mater. Lett. 2010. V. 1. № 1. Р. 75.
  12. Yoshimoto H., Shina Y.M., Teraia H., Vacanti P. // Biomaterials. 2003. V. 24. Р. 2077.
  13. Zeng J., Xu X., Chen X., Liang Q., Bian X., Yang L., Jing X. // J. Control. Release. 2003. V. 92. № 3. Р. 227.
  14. Yu D.G., Zhu L.M., White K., White C.B. // Health. 2009. V. 1. № 2. Р. 67.
  15. Pornsopone V., Supaphol P., Rangkupan R., Tantayanon S. // J. Polym. Res. 2007. V. 14. Р. 53.
  16. Kim K., Luu Y.K., Chang C., Fang D., Hsiao B.S., Chu B., Hadjiargyrou M. // J. Control. Release. 2004. V. 98. № 1. Р. 47.
  17. Huang Z.H., Zhang Y.Z., Kotaki S., Ramakrishna S. // Compos. Sci. Technol. 2003. V. 63. № 15. Р. 2223.
  18. Филатов И.Ю., Филатов Ю.Н., Якушкин М.С. // Вестн. МИТХТ. 2008. Т. 3. № 5. С. 3.
  19. Zhang L., Aboagye A., Kelkar A., Lai C., Fong H. // J. Mater. Sci. 2014. V. 49. Р.463.
  20. Rahaman M.S.A., Ismail A.F., Mustafa A. // Polym. Degrad. Stab. 2007. V. 92. № 8. P. 1421.
  21. Kholmuminov A.A., Ashurov N.Sh., Yunusov M.Yu., Yugai S.M., Ashurov N.R., Rashidova S.Sh. // Polymer Science А. 2013. V. 55. № 1. P. 39.
  22. Kim C., Yang S. // Appl. Phys. Lett. 2003. V. 83. № 6. P. 1216.
  23. Миркин Л.И. Справочник по рентгеноструктурному анализу поликристаллов. М.: Наука, 1961.
  24. Мартынов М.А., Вылегжанина К.А. Рентгенография полимеров. Л.: Химия, 1972.
  25. Wendland W.W. Thermal Methods of Analysis. New York: Wiley, 1974.
  26. Берштейн В.А., Егоров В.М. Дифференциальная сканирующая калориметрия в физикохимии полимеров. Л.: Химия, 1990.
  27. Ивлев В.И., Фомин Н.Е., Юдин В.А., Окин М.А., Панькин Н.А. // Термический анализ. Саранск: Изд-во Мордовского ун-та, 2017. Ч. 1.
  28. Практикум по физике и химии полимеров/ Под ред. В. Ф. Куренкова М.: Химия, 1990. С. 253.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the effective viscosity ηeff on the shear field velocity gradient γ in semi-logarithmic coordinates: 1 - PAN, 2 - PAN-graphite (95 : 5), 3 - PAN-graphite (50 : 50) in DMFA. Colour figures can be viewed in the electronic version

Download (122KB)
3. Fig. 2. Dependence of the macromolecule orientation coefficient β on the longitudinal field velocity gradient γ for PAN-graphite suspension (50 : 50) in DMFA at 25 (1), 40 (2) and 55°C (3)

Download (62KB)
4. Fig. 3. Electron microscopic images of compositions of PAN nanofibres with graphite in the ratio of 95 : 5 (a, b) and 50 : 50 (c, d)

Download (204KB)
5. Fig. 4. IR spectra of samples of PAN and its composition with graphite: 1 - original PAN; 2 - PAN nanofibres; 3, 4 - nanofibres from composition PAN : graphite = 95 : 5 (3) and 50 : 50 (4)

Download (143KB)
6. Fig. 5. Diffractograms of samples of PAN and its composition with graphite: 1 - nanofibres of PAN; 2, 3 - nanofibres from composition PAN : graphite = 95 : 5 (2) and 50 : 50 (3)

Download (239KB)
7. Fig. 6. DSC curves of the original PAN fibre (1), PAN nanofibre (2), PAN : graphite nanofibre = 95 : 5 (3) and 50 : 50) (4) with an enlarged fragment in the region of the cyclisation process occurring

Download (153KB)
8. Fig. 7. Dependence of direct current I on voltage U for nanofibres based on PAN (1), PAN : graphite composite = 95 : 5 (2) and 50 : 50 (3)

Download (58KB)

Copyright (c) 2024 Russian Academy of Sciences