Peripheral Nerve Injuries from Regional Anesthesia: A Narrative Review
- 作者: Koriachkin V.A.1,2, Zabolotskii D.V.1,2, Evgrafov V.A.1
-
隶属关系:
- Saint Petersburg State Pediatric Medical University, Saint Petersburg, Russia
- Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery, Saint Petersburg, Russia
- 栏目: Reviews
- ##submission.dateSubmitted##: 30.12.2024
- ##submission.dateAccepted##: 19.06.2025
- ##submission.datePublished##: 08.07.2025
- URL: https://rjraap.com/1993-6508/article/view/643556
- DOI: https://doi.org/10.17816/RA643556
- ID: 643556
如何引用文章
详细
Peripheral nerve injury is defined as a condition determined at least 48 hours after regional blockade in the form of sensory and/or motor disturbances in the area of innervation of the affected nerve, confirmed by the results of neurological examination. The incidence of transient neuropathies associated with peripheral nerve blockade is 2.2%, with permanent neurologic deficits ranging from 2 to 4 per 10,000 blockades. Although postoperative nerve injury is rare, when such complications do occur, they present significant problems for both the patient and the anesthesiologist. The aim of the work was to summarize the data presented in modern scientific literature on the prevention and treatment of peripheral nerve injuries during regional anesthesia. We searched for publications for the period from 2014 to 2024 by keywords in Russian and English: peripheral nerve, injuries, regional anesthesia, neurological complications, prevention of nerve injuries in PubMed, Elibrary, and CyberLeninka. The search revealed 383 publications, of which 433 were excluded because they described peripheral nerve injuries no associated with regional anesthesia. The remaining 50 publications formed the basis of this review. The review presents the anatomy of peripheral nerves, classification of their injuries, details mechanical, intraneural, ischemic and neurotoxic mechanisms of nerve injury. Methods of prevention of nerve injuries are outlined. It is shown that the combined use of neurostimulation, which helps to identify the nerves, ultrasound navigation, which helps to visualize the nerve, pressure monitor during injection, which helps to avoid nerve injury, are the key to safe regional anesthesia. The diagnosis of nerve injuries is described, which includes, in addition to the clinical signs, computed tomography and electrophysiologic examinations. The algorithm of observation of a patient with suspected nerve injury after regional anesthesia is given. The methods of treatment of peripheral nerve injury, including physiotherapy, drug treatment, low-frequency electrical stimulation, low-intensity ultrasound, and phototherapy, are described in detail. Peripheral nerve injuries during regional blockade is rare and is more often neuropraxic in nature, hence transient and has a favorable prognosis. The combined use of neurostimulation, ultrasound navigation and pressure monitoring during injection are the key to successful and safe regional blockade. Treatment of nerve injuries requires a multidisciplinary. The development of national recommendations for the prevention of nerve injuries during regional blockade will help anesthesiologists to reduce the risk of complications.
全文:

作者简介
Viktor Koriachkin
Saint Petersburg State Pediatric Medical University, Saint Petersburg, Russia; Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery, Saint Petersburg, Russia
Email: vakoryachkin@mail.ru
ORCID iD: 0000-0002-3400-8989
SPIN 代码: 6101-0578
Scopus 作者 ID: 0000-0002-3400-8989
MD, Dr. Sci. (Medicine), Professor, Professor of the Department of Anesthesiology, Resuscitation and Emergency Pediatrics n.a. prof. V.I. Gordeeva
俄罗斯联邦, Saint Petersburg, Russia; Saint Petersburg, RussiaDmitrii Zabolotskii
Saint Petersburg State Pediatric Medical University, Saint Petersburg, Russia; Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery, Saint Petersburg, Russia
Email: zdv4330303@gmail.com
ORCID iD: 0000-0002-6127-0798
SPIN 代码: 6726-2571
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Saint Petersburg, Russia; Saint Petersburg, RussiaVladimir Evgrafov
Saint Petersburg State Pediatric Medical University, Saint Petersburg, Russia
编辑信件的主要联系方式.
Email: evgrafov-spb@mail.ru
ORCID iD: 0000-0001-6545-2065
SPIN 代码: 6322-3961
MD, Cand. Sci. (Med.), Assistant Professor
俄罗斯联邦, Saint Petersburg, Russia参考
- Terenin M, Titova A, Dovgalevich I, Gisich A, Gisko E. Peripheral Nerve Injury during Regional Anesthesia in the Perioperative Period as a Multifactorial Problem (Literature Review). Surgery. East Europe. 2022;11(2):252–270. doi: 10.34883/PI.2022.11.2.009 EDN: JGSJHM
- Noble J, Munro CA, Prasad VS, Midha R. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma. 1998;45(1):116–122. doi: 10.1097/00005373-199807000-00025
- Neal JM, Barrington MJ, Brull R, et al. The Second ASRA Practice Advisory on Neurologic Complications Associated With Regional Anesthesia and Pain Medicine: Executive Summary 2015. Reg Anesth Pain Med. 2015;40(5):401–430. doi: 10.1097/AAP.0000000000000286
- Bais K, Guirguis F, Guirguis M. Nerve Injury Following Regional Nerve Block: A Literature Review of Its Etiologies, Risk Factors, and Prevention. Curr Pain Headache Rep. 2024;28(9):863–868. doi: 10.1007/s11916-024-01268-w
- Zabolotskii DV, Koriachkin VA, Ulrikh GE, Ponomarev NA, Orel AV. Neuropathy following knee arthroscopy under combined regional anaesthesia. Russian Journal of Anaesthesiology and Reanimatology. 2023;(4):88–92. doi: 10.17116/anaesthesiology202304188 EDN: VEKBEY
- Antoniadis G, Kretschmer T, Pedro MT, et al. Iatrogenic nerve injuries: prevalence, diagnosis and treatment. Dtsch Arztebl Int. 2014;111(16):273–279. doi: 10.3238/arztebl.2014.0273
- Sonawane K, Dixit H, Thota N, Jayaraj A, Balavenkatasubramanian J. "Knowing It Before Blocking It," the ABCD of the Peripheral Nerves: Part D (Approach to the Patient With Nerve Injuries). Cureus. 2023;15(7):e41782. doi: 10.7759/cureus.41782
- Santana N, Hemapriya G, Shakthivel RM, Karunakaran VC. An update on oral peripheral nerve sheath tumors. J Oral Maxillofac Pathol. 2022;26(4):541–552. doi: 10.4103/jomfp.jomfp_441_21
- Berciano J. Axonal pathology in early stages of Guillain-Barré syndrome. Neurologia (Engl Ed). 2022;37(6):466–479. doi: 10.1016/j.nrleng.2020.08.001
- Kesserwani H, Faulkner A. Magnetic resonance neurography (MRN) of the brachial plexus: a case of Parsonage Turner syndrome and a basic review of imaging of the brachial Plexusmagnetic resonance neurography (MRN) of the brachial plexus: a case of Parsonage Turner syndrome and. Cureus. 2021;13:e15228. doi: 10.7759/cureus.15228
- Seddon HJ. A Classification of Nerve Injuries. Br Med J. 1942;2(4260):237–239. doi: 10.1136/bmj.2.4260.237
- Yi S, Zhang Y, Gu X, et al. Application of stem cells in peripheral nerve regeneration. Burns Trauma. 2020;8:tkaa002. doi: 10.1093/burnst/tkaa002
- Hadzic А. Peripheral Nerve Blocks and Anatomy for Ultrasound-Guided Regional Anesthesia. Moscow: Prakticheskaya meditsina. 2014.
- Sunderland S. A classification of peripheral nerve injuries producing loss of function. Brain. 1951;74(4):491–516. doi: 10.1093/brain/74.4.491
- Alvites R, Caseiro AR, Pedrosa SS, et al. Peripheral nerve injury and axonotmesis: State of the art and recent advances. Cogent. Med. 2018;5:1466404. doi: 10.1080/2331205X.2018.1466404
- Carter JT, Pisquiy JJ, Polmear M, Khalifa R, Gonzalez G. A New Classification of Iatrogenic Peripheral Nerve Injuries. Biol Med (Aligarh). 2020;12:464. doi: 10.35248/0974-8369.20.12.464
- Moayeri N, Groen GJ. Differences in quantitative architecture of sciatic nerve may explain differences in potential vulnerability to nerve injury, onset time, and minimum effective anesthetic volume. Anesthesiology. 2009;111(5):1128–1134. doi: 10.1097/ALN.0b013e3181bbc72a
- Hewson DW, Bedforth NM, Hardman JG. Peripheral nerve injury arising in anaesthesia practice. Anaesthesia. 2018;73 Suppl 1:51–60. doi: 10.1111/anae.14140
- O'Flaherty D, McCartney CJL, Ng SC. Nerve injury after peripheral nerve blockade-current understanding and guidelines. BJA Educ. 2018;18(12):384–390. doi: 10.1016/j.bjae.2018.09.004
- Carassiti M, De Filippis A, Palermo P, et al. Injection pressures measuring for a safe peripheral nerve block. Minerva Anestesiol. 2019;85(9):1003–1013. doi: 10.23736/S0375-9393.19.13518-3
- Iida H, Schmelzer JD, Schmeichel AM, Wang Y, Low PA. Peripheral nerve ischemia: reperfusion injury and fiber regeneration. Exp Neurol. 2003;184(2):997–1002. doi: 10.1016/S0014-4886(03)00385-6
- Lakhin RE, Gemua IA, Averyanov DA. Double-Blind Randomized Study of Lidocaine, Bupivacaine, Levobupivacaine, and Ropivacaine Myotoxicity of Rats. Regional Anesthesia and Acute Pain Management. 2020;14(1):93–108. doi: 10.17816/1993-6508-2020-14-1-93-108
- Sondekoppam RV, Tsui BC. Factors Associated With Risk of Neurologic Complications After Peripheral Nerve Blocks: A Systematic Review. Anesth Analg. 2017;124(2):645–660. doi: 10.1213/ANE.0000000000001804
- Pintaric TS, Cvetko E, Strbenc M, et al. Intraneural and perineural inflammatory changes in piglets after injection of ultrasound gel, endotoxin, 0.9% NaCl, or needle insertion without injection. Anesth Analg. 2014;118(4):869–873. doi: 10.1213/ANE.0000000000000142
- Abdallah FW, Chan VW: Monitoring intraneural needle injection: work in progress. Anesth Analg. 2014;118(3):504–506. doi: 10.1213/ANE.0000000000000099
- Barrington MJ, Uda Y. Did ultrasound fulfill the promise of safety in regional anesthesia? Curr Opin Anaesthesiol. 2018;31:649–655. doi: 10.1097/ACO.0000000000000638
- Bowness JS, Macfarlane AJR, Burckett-St Laurent D, et al. Evaluation of the impact of assistive artificial intelligence on ultrasound scanning for regional anaesthesia. Br J Anaesth. 2023;130(2):226–233. doi: 10.1016/j.bja.2022.07.049
- Willette PA, Barker E. High-pressure injection hand injury: What lies beneath? JAAPA. 2023;36(4):1–4. doi: 10.1097/01.JAA.0000921256.21012.44
- Dossi R, Quadri C, Capdevila X, Saporito A. Real time continuous monitoring of injection pressure at the needle tip is better than ultrasound in early detecting intraneural injection. Regional Anesthesia & Pain Medicine. 2024. doi: 10.1136/rapm-2024-106086
- Paśnicki M, Król A, Kosson D, Kołacz M. The Safety of Peripheral Nerve Blocks: The Role of Triple Monitoring in Regional Anaesthesia, a Comprehensive Review. Healthcare (Basel). 2024;12(7):769. doi: 10.3390/healthcare12070769
- Koriachkin VA, Spasova AP, Khinovker VV. Neuropathic pain. Innovative Medicine of Kuban. 2021;(2):58–64. doi: 10.35401/2500-0268-2021-22-2-58-64 EDN: JIYXJT
- Koryachkin VA. Complex Regional Pain Syndrome. Traumatology and Orthopedics of Russia. 2014;(3):147–156. doi: 10.21823/2311-2905-89 EDN: SYSQSF
- Wani ML, Ahangar AG, Ganie FA, Wani SN, Wani NU. Vascular injuries: trends in management. Trauma Mon. 2012;17(2):266–269. doi: 10.5812/traumamon.6238
- Koriachkin VA, Zabolotski DV, Kuzmin VV, et al. Anaesthesia for hip fracture surgery in geriatric patients (clinical guidelines). Regional Anesthesia and Acute Pain Management. 2017;11(2):133–142. doi: 10.18821/1993-6508-2017-11-2-133-142
- Skoromets AA, Skoromets AP, Skoromets TA. Topical diagnosis of diseases of the nervous system. Polytechnic, 2021.
- Blanch XS, López AM, Carazo J, et al. Intraneural injection during nerve stimulator-guided sciatic nerve block at the popliteal fossa. Br J Anaesth. 2009;102(6):855–861. doi: 10.1093/bja/aep097
- Sneag DB, Zochowski KC, Tan ET. MR neurography of peripheral nerve injury in the presence of orthopedic hardware: technical considerations. Radiology. 2021;300(2):246–259. doi: 10.1148/radiol.2021204039
- Maugeri G, D'Agata V, Trovato B, et al. The role of exercise on peripheral nerve regeneration: from animal model to clinical application. Heliyon. 2021;7(11):e08281. doi: 10.1016/j.heliyon.2021.e08281
- Huff TC, Sant DW, Camarena V, et al. Vitamin C regulates Schwann cell myelination by promoting DNA demethylation of pro-myelinating genes. J Neurochem. 2021;157(6):1759–1773. doi: 10.1111/jnc.15015
- Feng X, Yuan W. Dexamethasone enhanced functional recovery after sciatic nerve crush injury in rats. Biomed Res Int. 2015;2015:627923. doi: 10.1155/2015/627923
- Nachemson AK, Lundborg G, Myrhage R, Rank F. Nerve regeneration and pharmacological suppression of the scar reaction at the suture site. An experimental study on the effect of estrogen-progesterone, methylprednisolone-acetate and cis-hydroxyproline in rat sciatic nerve. Scand J Plast Reconstr Surg. 1985;19(3):255–260. doi: 10.3109/02844318509074512
- Bernstein DT, Weiner BK, Tasciotti E, Mathis KB. Does the combination of erythropoietin and tapered oral corticosteroids improve recovery following iatrogenic nerve injury? Injury. 2016;47(8):1819–1823. doi: 10.1016/j.injury.2016.05.034
- Modrak M, Talukder MAH, Gurgenashvili K, Noble M, Elfar JC. Peripheral nerve injury and myelination: Potential therapeutic strategies. J Neurosci Res. 2020;98(5):780–795. doi: 10.1002/jnr.24538
- Lee JI, Hur JM, You J, Lee DH. Functional recovery with histomorphometric analysis of nerves and muscles after combination treatment with erythropoietin and dexamethasone in acute peripheral nerve injury. PLoS One. 2020;15(9):e0238208. doi: 10.1371/journal.pone.0238208
- Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater. 2020;106:54–69. doi: 10.1016/j.actbio.2020.02.003
- Mironova AA. Continuous low-level ultrasound: a review of therapeutic possibilities. Molodoj uchenyj. 2021;51(393):1–4. (In Russ.) EDN: ATICGI
- Lopes B, Sousa P, Alvites R, et al. Peripheral Nerve Injury Treatments and Advances: One Health Perspective. Int J Mol Sci. 2022;23(2):918. doi: 10.3390/ijms23020918
补充文件
