Ketamine: History, Modern View And New Opportunities: A Narrative Review



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Ketamine, NMDA-receptor antagonist, created more than 60 years ago as an anesthetic, having survived historical ups and downs, remains relevant in modern world medical practice. Over the past few decades, it has been rediscovering its potential, going beyond anesthesia. The use of ketamine in sub-dissociative doses to treat various types of acute and chronic pain and depression is becoming an increasingly pressing topic. It is comparable in effectiveness to opioids and has few transient side effects. Ketamine can be administered in a variety of ways; it is approaching the title of ideal analgesic for the prehospital phase due to its safety profile. In patients with severe trauma, ketamine is probably the best analgesic because it provides hemodynamic stability and does not increase intracranial pressure. Ketamine is extremely useful in patients with opioid dependence, opioid tolerance, and opioid-induced hyperalgesia.The discovery of diverse targets and associated effects of ketamine make it possible to use the unique properties of this drug in many areas of clinical and experimental medicine, including anesthesiology practice, emergency care, intensive care, pain treatment, psychiatry, the study of the neurobiological foundations of consciousness, modeling of pathological mental states.

The article presents the history of the creation of ketamine, an overview of modern ideas about the mechanisms of action, methods and areas of its application.

Full Text

Restricted Access

About the authors

Tatiana Linkova

Author for correspondence.
Email: linkovat@gmail.com
ORCID iD: 0000-0003-1272-1350
Russian Federation

Andrey V. Diordiev

Scientific practical center of pediatric psychoneurology; The Russian National Research Medical University named after N.I. Pirogov

Email: avddoc@mail.ru
ORCID iD: 0000-0001-9973-0211
SPIN-code: 3210-5074
119602, Moscow

Marina S. Panova

Scientific and Practical Center for Child Psychoneurology

Email: panova_ms@bk.ru
ORCID iD: 0009-0004-4347-2531
SPIN-code: 8412-4628
Russian Federation, Moscow

Ekaterina S. Iakovleva

Scientific and Practical Center for Child Psychoneurology

Email: iakovlevadoc@gmail.com
ORCID iD: 0000-0003-3143-5069
SPIN-code: 1620-0503
Russian Federation, Moscow

Ivan I. Afukov

Russian National Research Medical University named after N.I. Pirogov; Children’s City Clinical Hospital No. 9

Email: afukovdoc@yandex.ru
ORCID iD: 0000-0001-9850-6779
Russian Federation, Moscow; Moscow

Roman V. Shagurin

Scientific and Practical Center for Child Psychoneurology

Email: roman.sharugin@yandex.ru
ORCID iD: 0009-0002-2425-8973
SPIN-code: 2632-1265
Russian Federation, Moscow

Elina S. Ivanina

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma — Dr. Roshal's Clinic

Email: ivanina.eli@yandex.ru
ORCID iD: 0009-0001-7684-7836
SPIN-code: 3369-1107
Russian Federation, Moscow

References

  1. Mion G. History of anaesthesia: The ketamine story — past, present and future. Eur J Anaesthesiol. 2017;34(9):571–575. doi: 10.1097/EJA.0000000000000638
  2. McCarthy DA, Chen G, Kaump DH, Ensor C. General Anesthetic and Other Pharmacological Properties of 2-(O-Chlorophenyl)-2-Methylamino Cyclohexanone HCl (CI-581). J. New Drug. 1965;5(1):21–33. doi: 10.1002/j.1552-4604.1965.tb00219.x
  3. Domino EF, Chodoff P, Corssen G. Pharmacologic effects of CI-581, a new dissociative anesthetic, in man. Clin Pharmacol Ther. 1965;6:279–291. doi: 10.1002/cpt196563279
  4. Domino EF. Taming the ketamine tiger. 1965. Anesthesiology. 2010;113(3):678–684. doi: 10.1097/ALN.0b013e3181ed09a2
  5. Li L, Vlisides PE. Ketamine: 50 Years of Modulating the Mind. Front Hum Neurosci. 2016;10:612. doi: 10.3389/fnhum.2016.00612
  6. Sadove MS, Shulman M, Hatano S, Fevold N. Analgesic effects of ketamine administered in subdissociative doses. Anesth Analg. 1971;50(3):452–457. doi: 10.1213/00000539-197105000-00037
  7. White PF, Way WL, Trevor AJ. Ketamine — its pharmacology and therapeutic uses. Anesthesiology. 1982;56:119–136. doi: 10.1097/00000542-198202000-00007
  8. Jansen K. Near death experience and the NMDA receptor. BMJ. 1989;298(6689):1708. doi: 10.1136/bmj.298.6689.1708-b 11
  9. Watkins JC, Jane DE. The glutamate story. Br J Pharmacol. 2006;147 Suppl 1(Suppl 1):S100–S108. doi: 10.1038/sj.bjp.0706444
  10. Collingridge G. Synaptic plasticity. The role of NMDA receptors in learning and memory. Nature. 1987;330(6149):604–605. doi: 10.1038/330604a0
  11. Riccardi A, Guarino M, Serra S, et al. Narrative Review: Low-Dose Ketamine for Pain Management. J Clin Med. 2023;12(9):3256. doi: 10.3390/jcm12093256
  12. Sinner B, Graf BM. Ketamine. Handb Exp Pharmacol. 2008;(182):313–333. doi: 10.1007/978-3-540-74806-9_15
  13. Simonini A, Brogi E, Cascella M, Vittori A. Advantages of ketamine in pediatric anesthesia. Open Med (Wars). 2022;17(1):1134–1147. doi: 10.1515/med-2022-0509
  14. Wang X, Lin C, Lan L, Liu J. Perioperative intravenous S-ketamine for acute postoperative pain in adults: A systematic review and meta-analysis. J Clin Anesth. 2021;68:110071. doi: 10.1016/j.jclinane.2020.110071
  15. Peltoniemi MA, Hagelberg NM, Olkkola KT, Saari TI. Ketamine: A Review of Clinical Pharmacokinetics and Pharmacodynamics in Anesthesia and Pain Therapy. Clin Pharmacokinet. 2016;55(9):1059–1077. doi: 10.1007/s40262-016-0383-6
  16. Barrett W, Buxhoeveden M, Dhillon S. Ketamine: a versatile tool for anesthesia and analgesia. Curr Opin Anaesthesiol. 2020;33(5):633–638. doi: 10.1097/ACO.0000000000000916
  17. Zanos P, Moaddel R, Morris PJ, et al. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacol Rev. 2018;70(3):621–660. doi: 10.1124/pr.117.015198
  18. Pourmand A, Mazer-Amirshahi M, Royall C, Alhawas R, Shesser R. Low dose ketamine use in the emergency department, a new direction in pain management. Am J Emerg Med. 2017;35(6):918–921. doi: 10.1016/j.ajem.2017.03.005
  19. Visser E, Schug SA. The role of ketamine in pain management. Biomed Pharmacother. 2006;60(7):341–348. doi: 10.1016/j.biopha.2006.06.021
  20. Cohen SP, Bhatia A, Buvanendran A, et al. Consensus Guidelines on the Use of Intravenous Ketamine Infusions for Chronic Pain From the American Society of Regional Anesthesia and Pain Medicine, the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg Anesth Pain Med. 2018;43(5):521–546. doi: 10.1097/AAP.0000000000000808
  21. Schwenk ES, Pradhan B, Nalamasu R, et al. Ketamine in the Past, Present, and Future: Mechanisms, Metabolites, and Toxicity. Curr Pain Headache Rep. 2021;25(9):57. doi: 10.1007/s11916-021-00977-w
  22. Iacobucci GJ, Visnjevac O, Pourafkari L, Nader ND. Ketamine: An Update on Cellular and Subcellular Mechanisms with Implications for Clinical Practice. Pain Physician. 2017;20(2):E285–E301. doi: 10.36076/ppj.2017.e301
  23. Forget P, Cata J. Stable anesthesia with alternative to opioids: Are ketamine and magnesium helpful in stabilizing hemodynamics during surgery? A systematic review and meta-analyses of randomized controlled trials. Best Pract Res Clin Anaesthesiol. 2017;31(4):523–531. doi: 10.1016/j.bpa.2017.07.001
  24. Cohen SP, Liao W, Gupta A, Plunkett A. Ketamine in pain management. Adv Psychosom Med. 2011;30:139–161. doi: 10.1159/000324071
  25. Mendell LM. The Path to Discovery of Windup and Central Sensitization. Front Pain Res (Lausanne). 2022;3:833104. doi: 10.3389/fpain.2022.833104
  26. Savić Vujović K, Jotić A, Medić B, et al. Ketamine, an Old-New Drug: Uses and Abuses. Pharmaceuticals (Basel). 2023;17(1):16. doi: 10.3390/ph17010016
  27. Highland JN, Zanos P, Riggs LM, et al. Hydroxynorketamines: Pharmacology and Potential Therapeutic Applications. Pharmacol Rev. 2021;73(2):763–791. doi: 10.1124/pharmrev.120.000149
  28. Pacheco Dda F, Romero TR, Duarte ID. Central antinociception induced by ketamine is mediated by endogenous opioids and μ- and δ-opioid receptors. Brain Res. 2014;1562:69–75. doi: 10.1016/j.brainres.2014.03.026
  29. Culp C, Kim HK, Abdi S. Ketamine Use for Cancer and Chronic Pain Management. Front Pharmacol. 2021;11:599721. doi: 10.3389/fphar.2020.599721
  30. Zhou C, Liang P, Liu J, et al. HCN1 Channels Contribute to the Effects of Amnesia and Hypnosis but not Immobility of Volatile Anesthetics. Anesth Analg. 2015;121(3):661–666. doi: 10.1213/ANE.0000000000000830
  31. Hallikeri SV, Sinha R, Ray BR, Pandey RK, Darlong V, Punj J. Effect of Low-dose Ketamine on Inflammatory Markers, Perioperative Analgesia, and Chronic Pain in Patients Undergoing Laparoscopic Inguinal Hernia Surgery: A Prospective, Randomized, Double-blind, Comparative Study. Turk J Anaesthesiol Reanim. 2024 Dec 16;52(6):231-239. doi: 10.4274/TJAR.2024.241771.
  32. Shaked G, Czeiger D, Dukhno O, et al. Ketamine improves survival and suppresses IL-6 and TNFalpha production in a model of Gram-negative bacterial sepsis in rats. Resuscitation. 2004;62(2):237–242. doi: 10.1016/j.resuscitation.2004.02.015
  33. Volkov SG, Vereshagin EI, Lebedeva MN. Neuroprotection by ketamine. Modern Problems of Science and Education. 2022;(3):152. doi: 10.17513/spno.31809 EDN: WGRFVG
  34. Goyal S, Agrawal A. Ketamine in status asthmaticus: A review. Indian J Crit Care Med. 2013;17(3):154–161. doi: 10.4103/0972-5229.117048
  35. Gao L, Han J, Bai J, et al. Nicotinic Acetylcholine Receptors are Associated with Ketamine-induced Neuronal Apoptosis in the Developing Rat Retina. Neuroscience. 2018;376:1–12. doi: 10.1016/j.neuroscience.2018.01.057
  36. Leung LS, Luo T. Cholinergic Modulation of General Anesthesia. Curr Neuropharmacol. 2021;19(11):1925–1936. doi: 10.2174/1570159X19666210421095504
  37. Pitsikas N. The nicotinic α7 receptor agonist GTS-21 but not the nicotinic α4β2 receptor agonist ABT-418 attenuate the disrupting effects of anesthetic ketamine on recognition memory in rats. Behav Brain Res. 2020;393:112778. doi: 10.1016/j.bbr.2020.112778
  38. Watson N, Eglen RM. Effects of muscarinic M2 and M3 receptor stimulation and antagonism on responses to isoprenaline of guinea-pig trachea in vitro. Br J Pharmacol. 1994;112(1):179–187. doi: 10.1111/j.1476-5381.1994.tb13049.x
  39. Zakharov DV, Kokareva DD. Syalorrhea as a multidisciplinary problem. The review of possible causes and therapeutic solutions. Nervnye bolezni. 2023;(1):32–38. doi: 10.24412/2226-0757-2023-12842 EDN: YXUUJL
  40. Proctor GB, Carpenter GH. Salivary secretion: mechanism and neural regulation. Monogr Oral Sci. 2014;24:14–29. doi: 10.1159/000358781
  41. Elverdin JC, Kaniucki MO, Stefano FJ, Perec CJ. Physiological role of alpha-adrenoceptors in salivary secretion. Acta Odontol Latinoam. 1990;5(1):31–38.
  42. Brown L, Christian-Kopp S, Sherwin TS, et al. Adjunctive atropine is unnecessary during ketamine sedation in children. Acad Emerg Med. 2008;15(4):314–318. doi: 10.1111/j.1553-2712.2008.00074.x
  43. Lu J, Nelson LE, Franks N, et al. Role of endogenous sleep-wake and analgesic systems in anesthesia. J Comp Neurol. 2008;508(4):648–662. doi: 10.1002/cne.21685
  44. Pal D, Hambrecht-Wiedbusch VS, Silverstein BH, Mashour GA. Electroencephalographic coherence and cortical acetylcholine during ketamine-induced unconsciousness. British Journal of Anaesthesia. 2015;114(6):979–989. doi: 10.1093/bja/aev095
  45. Kushikata T, Yoshida H, Kudo M, et al. Role of coerulean noradrenergic neurones in general anaesthesia in rats. Br J Anaesth. 2011;107(6):924–929. doi: 10.1093/bja/aer303
  46. Kubota T, Anzawa N, Hirota K, Yoshida H, Kushikata T, Matsuki A. Effects of ketamine and pentobarbital on noradrenaline release from the medial prefrontal cortex in rats. Can J Anaesth. 1999;46(4):388–392. doi: 10.1007/BF03013235
  47. Lydic R, Baghdoyan HA. Ketamine and MK-801 decrease acetylcholine release in the pontine reticular formation, slow breathing, and disrupt sleep. Sleep. 2002;25(6):615–620. doi: 10.1093/sleep/25.6.615
  48. Lee U, Ku S, Noh G, et al. Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane. Anesthesiology. 2013;118(6):1264–1275. doi: 10.1097/ALN.0b013e31829103f5
  49. Blain-Moraes S, Lee U, Ku S, Noh G, Mashour GA. Electroencephalographic effects of ketamine on power, cross-frequency coupling, and connectivity in the alpha bandwidth. Front Syst Neurosci. 2014;8:114. doi: 10.3389/fnsys.2014.00114
  50. Bonhomme V, Vanhaudenhuyse A, Demertzi A, et al. Resting-state Network-specific Breakdown of Functional Connectivity during Ketamine Alteration of Consciousness in Volunteers. Anesthesiology. 2016;125(5):873–888. doi: 10.1097/ALN.0000000000001275
  51. Schroeder KE, Irwin ZT, Gaidica M, et al. Disruption of corticocortical information transfer during ketamine anesthesia in the primate brain. Neuroimage. 2016;134:459–465. doi: 10.1016/j.neuroimage.2016.04.039
  52. Wong JJ, O'Daly O, Mehta MA, et al. Ketamine modulates subgenual cingulate connectivity with the memory-related neural circuit-a mechanism of relevance to resistant depression? PeerJ. 2016;4:e1710. doi: 10.7717/peerj.1710
  53. Muthukumaraswamy SD, Shaw AD, Jackson LE, et al. Evidence that Subanesthetic Doses of Ketamine Cause Sustained Disruptions of NMDA and AMPA-Mediated Frontoparietal Connectivity in Humans. J Neurosci. 2015;35(33):11694–11706. doi: 10.1523/JNEUROSCI.0903-15.2015
  54. Traber DL, Wilson RD, Priano LL. Differentiation of the Cardiovascular Effects of CI-581. Anesthesia & Analgesia. 1968;47(6):769–778. doi: 10.1213/00000539-196811000-00025
  55. Eikermann M, Grosse-Sundrup M, Zaremba S, et al. Ketamine activates breathing and abolishes the coupling between loss of consciousness and upper airway dilator muscle dysfunction. Anesthesiology. 2012;116(1):35–46. doi: 10.1097/ALN.0b013e31823d010a
  56. Hlavaty L, Hansma P, Sung L. Contribution of opiates in sudden asthma deaths. Am J Forensic Med Pathol. 2015;36(1):49–52. doi: 10.1097/PAF.0000000000000138
  57. Rehder KJ. Adjunct Therapies for Refractory Status Asthmaticus in Children. Respir Care. 2017;62(6):849–865. doi: 10.4187/respcare.05174
  58. Green SM, Roback MG, Krauss B. Laryngospasm during emergency department ketamine sedation: a case-control study. Pediatr Emerg Care. 2010;26(11):798–802. doi: 10.1097/PEC.0b013e3181fa8737
  59. Shapiro HM, Wyte SR, Harris AB. Ketamine anaesthesia in patients with intracranial pathology. Br J Anaesth. 1972;44(11):1200–1204. doi: 10.1093/bja/44.11.1200
  60. Rueda Carrillo L, Garcia KA, Yalcin N, Shah M. Ketamine and Its Emergence in the Field of Neurology. Cureus. 2022;14(7):e27389. doi: 10.7759/cureus.27389
  61. Alkhachroum A, Der-Nigoghossian CA, Mathews E, et al. Ketamine to treat super-refractory status epilepticus. Neurology. 2020;95(16):e2286–e2294
  62. Andropoulos DB. Effect of Anesthesia on the Developing Brain: Infant and Fetus. Fetal Diagn Ther. 2018;43(1):1–11. doi: 10.1159/000475928
  63. Choudhury D, Autry AE, Tolias KF, Krishnan V. Ketamine: Neuroprotective or Neurotoxic? Front Neurosci. 2021;15:672526. doi: 10.3389/fnins.2021.672526
  64. Olney JW, Labruyere J, Price MT. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science. 1989;244(4910):1360–1362. doi: 10.1126/science.2660263
  65. Olney JW, Labruyere J, Wang G, et al. NMDA antagonist neurotoxicity: mechanism and prevention. Science. 1991;254(5037):1515–1518. doi: 10.1126/science.1835799
  66. Laws JC, Vance EH, Betters KA, et al. Acute Effects of Ketamine on Intracranial Pressure in Children With Severe Traumatic Brain Injury. Crit Care Med. 2023;51(5):563–572. doi: 10.1097/CCM.0000000000005806
  67. Hertle DN, Dreier JP, Woitzik J, et al. Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain. 2012;135(Pt 8):2390–2398. doi: 10.1093/brain/aws152
  68. Wang L, Deng B, Yan P, et al. Neuroprotective effect of ketamine against TNF-α-induced necroptosis in hippocampal neurons. J Cell Mol Med. 2021;25(7):3449–3459. doi: 10.1111/jcmm.16426
  69. Rodrigo R, Cauli O, Boix J, et al. Role of NMDA receptors in acute liver failure and ammonia toxicity: therapeutical implications. Neurochem Int. 2009;55(1-3):113–118. doi: 10.1016/j.neuint.2009.01.007
  70. Beaudrie-Nunn AN, Wieruszewski ED, Woods EJ, et al. Efficacy of analgesic and sub-dissociative dose ketamine for acute pain in the emergency department. Am J Emerg Med. 2023;70:133–139. doi: 10.1016/j.ajem.2023.05.026
  71. Ahern TL, Herring AA, Miller S, Frazee BW. Low-Dose Ketamine Infusion for Emergency Department Patients with Severe Pain. Pain Med. 2015;16(7):1402–1409. doi: 10.1111/pme.12705
  72. Mailis A, Taenzer P. Evidence-based guideline for neuropathic pain interventional treatments: spinal cord stimulation, intravenous infusions, epidural injections and nerve blocks. Pain Res Manag. 2012;17(3):150–158. doi: 10.1155/2012/794325
  73. Schwenk ES, Viscusi ER, Buvanendran A, et al. Consensus Guidelines on the Use of Intravenous Ketamine Infusions for Acute Pain Management From the American Society of Regional Anesthesia and Pain Medicine, the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg Anesth Pain Med. 2018;43(5):456–466. doi: 10.1097/AAP.0000000000000806
  74. Nowacka A, Borczyk M. Ketamine applications beyond anesthesia — A literature review. Eur J Pharmacol. 2019;860:172547. doi: 10.1016/j.ejphar.2019.172547
  75. Subdissociative-Dose Ketamine for Analgesia. Ann Emerg Med. 2018;71(3):e35. doi: 10.1016/j.annemergmed.2018.01.026
  76. Davis WD, Davis KA, Hooper K. The Use of Ketamine for the Management of Acute Pain in the Emergency Department. Adv Emerg Nurs J. 2019;41(2):111–121. doi: 10.1097/TME.0000000000000238
  77. Duhaime MJ, Wolfson AB. Ketamine Versus Opioids for Acute Pain in the Emergency Department. Acad Emerg Med. 2020;27(8):781–782. doi: 10.1111/acem.13976
  78. Balzer N, McLeod SL, Walsh C, Grewal K. Low-dose Ketamine For Acute Pain Control in the Emergency Department: A Systematic Review and Meta-analysis. Acad Emerg Med. 2021;28(4):444–454. doi: 10.1111/acem.14159
  79. Li X, Hua GC, Peng F. Efficacy of intranasal ketamine for acute pain management in adults: a systematic review and meta-analysis. Eur Rev Med Pharmacol Sci. 2021;25(8):3286–3295. doi: 10.26355/eurrev_202104_25738
  80. Oliveira J E Silva L, Lee JY, Bellolio F, et al. Intranasal ketamine for acute pain management in children: A systematic review and meta-analysis. Am J Emerg Med. 2020;38(9):1860–1866. doi: 10.1016/j.ajem.2020.05.094
  81. Yousefifard M, Askarian-Amiri S, Rafiei Alavi SN, et al. The Efficacy of Ketamine Administration in Prehospital Pain Management of Trauma Patients; a Systematic Review and Meta-Analysis. Arch Acad Emerg Med. 2019;8(1):e1.
  82. Gorlin AW, Rosenfeld DM, Ramakrishna H. Intravenous sub-anesthetic ketamine for perioperative analgesia. J Anaesthesiol Clin Pharmacol. 2016;32(2):160–7. doi: 10.4103/0970-9185.182085
  83. Niesters M, Martini C, Dahan A. Ketamine for chronic pain: risks and benefits. Br J Clin Pharmacol. 2014;77(2):357–367. doi: 10.1111/bcp.12094
  84. Schwartzman RJ, Alexander GM, Grothusen JR, et al. Outpatient intravenous ketamine for the treatment of complex regional pain syndrome: a double-blind placebo controlled study. Pain. 2009;147(1-3):107–115. doi: 10.1016/j.pain.2009.08.015
  85. Voute M, Riant T, Amodéo JM, et al. Ketamine in chronic pain: A Delphi survey. Eur J Pain. 2022;26(4):873–887. doi: 10.1002/ejp.1914
  86. Jiao J, Fan J, Zhang Y, Chen L. Efficacy and Safety of Ketamine to Treat Cancer Pain in Adult Patients: A Systematic Review. J Pain Symptom Manage. 2024;67(3):e185–e210. doi: 10.1016/j.jpainsymman.2023.11.004
  87. Chah N, Jones M, Milord S, et al. Efficacy of ketamine in the treatment of migraines and other unspecified primary headache disorders compared to placebo and other interventions: a systematic review. J Dent Anesth Pain Med. 2021;21(5):413–429. doi: 10.17245/jdapm.2021.21.5.413
  88. Kuki I, Inoue T, Fukuoka M, et al. Efficacy and safety of ketamine for pediatric and adolescent super-refractory status epilepticus and the effect of cerebral inflammatory conditions. J Neurol Sci. 2024;459:122950. doi: 10.1016/j.jns.2024.122950
  89. Wang HZ, Wang LY, Liang HH, et al. Effect of caudal ketamine on minimum local anesthetic concentration of ropivacaine in children: a prospective randomized trial. BMC Anesthesiol. 2020;20(1):144. doi: 10.1186/s12871-020-01058-y
  90. Ibrahim L, Diazgranados N, Luckenbaugh DA, et al. Rapid decrease in depressive symptoms with an N-methyl-d-aspartate antagonist in ECT-resistant major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(4):1155–1159. doi: 10.1016/j.pnpbp.2011.03.019
  91. Murrough JW, Iosifescu DV, Chang LC, et al. Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry. 2013;170(10):1134–1142. doi: 10.1176/appi.ajp.2013.13030392
  92. Murrough JW, Soleimani L, DeWilde KE, et al. Ketamine for rapid reduction of suicidal ideation: a randomized controlled trial. Psychol Med. 2015;45(16):3571–3580. doi: 10.1017/S0033291715001506
  93. Donoghue AC, Roback MG, Cullen KR. Remission From Behavioral Dysregulation in a Child With PTSD After Receiving Procedural Ketamine. Pediatrics. 2015;136(3):e694–696. doi: 10.1542/peds.2014-4152
  94. Kokkinou M, Irvine EE, Bonsall DR, et al. Reproducing the dopamine pathophysiology of schizophrenia and approaches to ameliorate it: a translational imaging study with ketamine. Mol Psychiatry. 2021;26(6):2562–2576. doi: 10.1038/s41380-020-0740-6
  95. Subramanian S, Haroutounian S, Palanca BJA, Lenze EJ. Ketamine as a therapeutic agent for depression and pain: mechanisms and evidence. J Neurol Sci. 2022;434:120152. doi: 10.1016/j.jns.2022.120152
  96. Noppers IM, Niesters M, Aarts LPHJ, et al. Drug-induced liver injury following a repeated course of ketamine treatment for chronic pain in CRPS type 1 patients: a report of 3 cases. Pain. 2011;152(9):2173–2178. doi: 10.1016/j.pain.2011.03.026
  97. Morgan CJ, Curran HV. Ketamine use: a review. Addiction. 2012;107(1):27–38. doi: 10.1111/j.1360-0443.2011.03576.x
  98. Stoker AD, Rosenfeld DM, Buras MR, et al. Evaluation of Clinical Factors Associated with Adverse Drug Events in Patients Receiving Sub-Anesthetic Ketamine Infusions. J Pain Res. 2019;12:3413–3421. doi: 10.2147/JPR.S217005
  99. Blonk MI, Koder BG, van den Bemt PM, Huygen FJ. Use of oral ketamine in chronic pain management: a review. Eur J Pain. 2010;14(5):466–472. doi: 10.1016/j.ejpain.2009.09.005
  100. Harvey M, Sleigh J, Voss L, et al. Development of Rapidly Metabolized and Ultra-Short-Acting Ketamine Analogs. Anesth Analg. 2015;121(4):925–933. doi: 10.1213/ANE.0000000000000719

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ ФС 77 - 55827 от 30.10.2013 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ЭЛ № ФС 77 - 80651 от 15.03.2021 г
.