Features of postoperative pain relief in patients with a low level of consciousness: a prospective randomised study

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


AIM: To determine the possibility of using analgonociception monitoring (analgesia nociception index, ANI) to assess the need for postoperative analgesia in patients with prolonged impairment of consciousness.

MATERIAL AND METHODS: This pilot prospective randomized study enrolled 34 consecutive patients with chronic impairment of consciousness (vegetative state/minimal state of consciousness) who underwent neurosurgical interventions. Randomization was made by the envelope method for the grouping of the patients: study group (SG, n=17), received anesthesia with intravenous paracetamol 1000 mg according to ANI in the postoperative period; control group (CG, n=17), without additional anesthesia in the postoperative period. Patients with arrhythmias were excluded. The groups are comparable in terms of the main clinical parameters (all parameters p >0.05). The ANI (MetroDoloris device, France) was recorded at 1, 4, 8, 12, and 24 h after surgery. The valuation was based on the revised scale for assessing pain in a coma, i.e., Nociception Coma Scale–Revised (NCS-R) [7], after 4, 12, and 24 h.

RESULTS: An intragroup comparison of the changes in ANI during postoperative day 1 showed an adequate level of pain relief (60.1 [55.3–62.5]), whereas in the group without postoperative analgesia with paracetamol, by 4 h after the operation, ANI dropped to the lower limit (46.3 [40.2–51.9]). In an intergroup comparison in the first 8 h after surgery, ANI was significantly higher than in the group without anesthesia (p=0.04) and had values of >55, which indicates the absence of pronounced vegetative reactions indicating the presence of pain. From 12 o’clock, the values are leveled out, not going beyond the limits of indicators of inadequate anesthesia (p=0.69). When assessing nociception on the NCR-R scale during the postoperative day in both groups, a tendency to the appearance of weak autonomic responses was observed (6 [5; 8] in SG and 6 [5; 7] in CS, respectively), which did not differ significantly. The presence of pain 4 h after surgery was confirmed by increased levels of cortisol and salivary alpha-amylase in patients without postoperative analgesia (p=0.03).

CONCLUSION: No generally recognized and available evidence-based instrumental methods are available for the assessment of pain intensity in patients with chronic impairment of consciousness. There is no single position of the professional community on the need for postoperative analgesia in such patients. Further studies to evaluate the effectiveness of using the ANI Metro Doloris monitoring system with a significant number of observations will lead to the determination of adequate perioperative analgesia regimens in patients with various forms of prolonged impairment of consciousness.

Full Text

Restricted Access

About the authors

Hamed A.A. Al-Haddad

Peoples’ Friendship University of Russia

Author for correspondence.
Email: h.alhaddad76@yandex.ru
ORCID iD: 0000-0002-9191-2544

postgraduate student

Russian Federation, Moscow

Marina V. Petrova

Peoples’ Friendship University of Russia; Center of Intensive Care Medicine and Reabilitology, Moscow

Email: mail@petrovamv.ru
ORCID iD: 0000-0003-4272-0957
SPIN-code: 9132-4190
Russian Federation, Moscow; Moscow

Dmitriy L. Kolesov

Center of Intensive Care Medicine and Reabilitology, Moscow

Email: dkolesov@fnkcrr.ru
ORCID iD: 0000-0002-8450-5211
SPIN-code: 1016-1374
Russian Federation, Moscow


  1. Monti MM, Vanhaudenhuyse A, Coleman MR, et al. Willful modulation of brain activity in disorders of consciousness. New Engl J Med. 2010;362(7):579–589. doi: 10.1056/NEJMoa0905370
  2. Ledowski T, Ang B, Schmarbeck T, Rhodes J. Monitoring of sympathetic tone to assess postoperative pain: skin conductance vs surgical stress index. Anaesthesia. 2009;64(7):727–731. doi: 10.1111/j.1365-2044.2008.05834.x
  3. Jakuscheit A., Weth J., Lichtner G., et al. Intraoperative monitoring of analgesia using nociceptive reflexes correlates with delayed extubation and immediate postoperative pain: A prospective observational study. Eur J Anaesthesiol. 2017;34(5):297–305. doi: 10.1097/EJA.0000000000000597
  4. Ledowski T. Objective monitoring of nociception: A review of current commercial solutions. Br J Anaesth. 2019;123(2):e312–e321. doi: 10.1016/j.bja.2019.03.024
  5. Abdullayev R, Uludag O, Celik B. Analgesia Nociception Index: Assessment of acute postoperative pain. Bras J Anesthesiol. 2019;69(4):396–402. (In Portuguese). doi: 10.1016/j.bjan.2019.01.003
  6. Mochalova EG, Legostaeva LA, Zimin AA, et al. The Russian version of Coma Recovery Scale-revised — a standardized method for assessment of patients with disorders of consciousness. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2018;118(3–2):25–31. (In Russ). doi: 10.17116/jnevro20181183225-31
  7. Bagnato S, Boccagni C, Sant’Angelo A, et al. Pain assessment with the revised nociception coma scale and outcomes of patients with unresponsive wakefulness syndrome: Results from a pilot study. Neurol Sci. 2018;39(6):1073–1077. doi: 10.1007/s10072-018-3330-5
  8. Bonin EAC, Lejeune N, Thibaut A, et al. Nociception Coma Scale-Revised Allows to Identify Patients With Preserved Neural Basis for Pain Experience. J Pain. 2020;21(5–6):742–750. doi: 10.1016/j.jpain.2019.11.004
  9. Spasova AP, Tikhova GP, Bazarov RO. Index of analgesia-nociception opportunities and limits. Vestnik anesteziologii i reanimatologii. 2015;12(5):64–70. (In Russ). doi: 10.21292/2078-5658-2015-12-5-64-70
  10. Patent RUS № 2715981. Petrova MV, Razzhivin VP, Sobolev MA, et al. Sposob individual’noi korrektsii terapii patsientov s dlitel’nym narusheniem soznaniya. Available from: https://fnkcrr.ru/science/patent/. Accessed: 24.11.2022. (In Russ).
  11. Schnakers C, Chatelle C, Vanhaudenhuyse A, et al. The Nociception Coma Scale: a new tool to assess nociception in disorders of consciousness. Pain. 2010;148(2):215–219. doi: 10.1016/j.pain.2009.09.028
  12. Chatelle C, De Val MD, Catano A, et al. Is the nociception coma scale-revised a useful clinical tool for managing pain in patients with disorders of consciousness? Clin J Pain. 2016;32(4):321–326. doi: 10.1097/AJP.0000000000000259
  13. Kondratieva EA, Aybazova MI, Lesteva NA, et al. Assessment of nociception in patients with chronic disorders of consciousness using the analgesia nociception index. Russian Journal of Anaesthesiology and Reanimatology. 2021;(5):34–39. (In Russ). doi: 10.17116/anaesthesiology202105134
  14. Ledowski T, Pascoe E, Ang B, et al. Monitoring of intra-operative nociception: skin conductance and surgical stress index versus stress hormone plasma levels. Anaesthesia. 2010;65(10):1001–1006. doi: 10.1111/j.1365-2044.2010.06480.x
  15. Ovechkin AM, Romanova TL. Postoperative analgesia: optimization of approaches from the point of view of evidence-based medicine. RMJ. 2006;14(12):21–25. (In Russ).
  16. Zachinyaev GV, Andryukov BG, Shumatov VB. The level of cortisol in the blood as a marker of surgical stress and antinociceptive protection in the perioperative period. Health. Medical Ecology. Science. 2012;1–2:47–48. (In Russ).
  17. Morozov VV, Stepanov AV, Patrushev AYu. Possibilities of preventive analgesia in emergency laparoscopic operations on abdominal organs in children. Modern problems of science and education. 2012;2:13–17. (In Russ).
  18. Silva Andrade A, Marcon Szymanski M, Hashizume LN, et al. Evaluation of stress biomarkers and electrolytes in saliva of patients undergoing fixed orthodontic treatment. Minerva Stomatol. 2018;67(4):172–178. doi: 10/23736/S0026-4970.18.04025-6
  19. Wittwer A, Krummenacher P, La Marca R, et al. Salivary Alpha-Amylase Correlates with Subjective Heat Pain Perception. Pain Med. 2016;17(6):1131–1136. doi: 10.3390/diagnostics10090722
  20. van Stegeren AH, Wolf OT, Kindt M. Salivary alpha amylase and cortisol responses to different stress tasks: impact of sex. Int J Psychophysiol. 2008;69(1):33–40. doi: 10.1016/j.ijpsycho.2008.02.008
  21. Bugdayci G, Yildiz S, Altunrende B, et al. Salivary alpha amylase activity in migraine patients. Auton Neurosci. 2010;155(1–2):121–124. doi: 10.1016/j.autneu.2010.01.011

Supplementary files

Supplementary Files
1. Fig. 1. Changes in ANI in groups during the day, М [min; max].

Download (258KB)

Copyright (c) 2023 Eco-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ ФС 77 - 55827 от 30.10.2013 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ЭЛ № ФС 77 - 80651 от 15.03.2021 г

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies