Revisiting Recent Tissue Engineering Technologies in Alveolar Cleft Reconstruction


Cite item

Full Text

Abstract

Tissue engineering and regenerative medicine have received significant attention in treating degenerative disorders and presented unique opportunities for researchers. The latest research on tissue engineering and regenerative medicine to reconstruct the alveolar cleft has been reviewed in this study. Three approaches have been used to reconstruct alveolar cleft: Studies that used only stem cells or biomaterials and studies that reconstructed alveolar defects by tissue engineering using a combination of stem cells and biomaterials. Stem cells, biomaterials, and tissue-engineered constructs have shown promising results in the reconstruction of alveolar defects. However, some contrary issues, including stem cell durability and scaffold stability, were also observed. It seems that more prospective and comprehensive studies should be conducted to fully clarify the exact dimensions of the stem cells and tissue engineering reconstruction method in the therapy of alveolar cleft.

About the authors

Faraz Sedaghat

School of Dentistry, Hamadan University of Medical Sciences

Email: info@benthamscience.net

Parham Mahamed

Student Research Committee, Alborz University of Medical Sciences

Email: info@benthamscience.net

Ali Sharifi Sultani

Faculty of Dentistry, Iran University of Medical Sciences

Email: info@benthamscience.net

Mobina Bagherian

School of Dentistry, Mazandaran University of Medical Sciences

Email: info@benthamscience.net

Mohammad Biglari

Faculty of Dentistry, Iran University of Medical Sciences

Email: info@benthamscience.net

Anisa Mohammadzadeh

Faculty of Dentistry, Babol University of Medical Sciences

Email: info@benthamscience.net

Shabnam Ghasemzadeh

Faculty of Dentistry, Qazvin University of Medical Sciences

Email: info@benthamscience.net

Ghasem Barati

, Stem Cell Technology Research Center

Author for correspondence.
Email: info@benthamscience.net

Ehsan Saburi

Medical Genetics Research center, Mashhad University of medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Mossey PA, Little J, Munger RG, Dixon MJ, Shaw WC. Cleft lip and palate. Lancet 2009; 374(9703): 1773-85. doi: 10.1016/S0140-6736(09)60695-4 PMID: 19747722
  2. Ngai CW, Martin WL, Tonks A, Wyldes MP, Kilby MD, Medicine N. Are isolated facial cleft lip and palate associated with increased perinatal mortality? A cohort study from the West Midlands Region, 1995–1997. J Matern Fetal Neonatal Med 2005; 17(3): 203-6. doi: 10.1080/14767050500072854 PMID: 16147824
  3. Christensen K, Juel K, Herskind AM, Murray JC. Long term follow up study of survival associated with cleft lip and palate at birth. BMJ 2004; 328(7453): 1405. doi: 10.1136/bmj.38106.559120.7C PMID: 15145797
  4. Nopoulos P, Langbehn D R, Canady J, Magnotta V, Richman L. Abnormal brain structure in children with isolated clefts of the lip or palate. Arch Pediatr Adolesc Med 2007; 161(8): 753-8. doi: 10.1001/archpedi.161.8.753. PMID: 17679656
  5. Berk NW, Marazita ML. Costs of cleft lip and palate: Personal and societal implications. In: Wyszynski DF, Ed. Cleft lip and palate: From origin to treatment. New York: Oxford University Press 2002; pp. 458-67.
  6. Schnitt DE, Agir H, David DJ. From birth to maturity: A group of patients who have completed their protocol management. Part I. Unilateral cleft lip and palate. Plast Reconstr Surg 2004; 113(3): 805-17. doi: 10.1097/01.PRS.0000105332.57124.89 PMID: 15108870
  7. Seike T, Hashimoto I, Matsumoto K, Tanaka E, Nakanishi H. Early postoperative evaluation of secondary bone grafting into the alveolar cleft and its effects on subsequent orthodontic treatment. J Med Invest 2012; 59(1,2): 152-65. doi: 10.2152/jmi.59.152 PMID: 22450004
  8. Witsenburg B. The reconstruction of anterior residual bone defects in patients with cleft lip, alveolus and palate a review. J Maxillofac Surg 1985; 13(5): 197-208. doi: 10.1016/S0301-0503(85)80048-5 PMID: 3903014
  9. Yılmaza S, Kılıçb AR, Kelesc A, Efeoğlud E. Reconstruction of an alveolar cleft for orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2000; 117(2): 156-63. doi: 10.1016/S0889-5406(00)70226-5 PMID: 10672215
  10. Jia Y, Fu M, Ma L. Long-term outcome of secondary alveolar bone grafting in patients with various types of cleft. Br J Oral Maxillofac Surg 2006; 44(4): 308-12. doi: 10.1016/j.bjoms.2005.07.003 PMID: 16107298
  11. Benlidayi ME, Tatli U, Kurkcu M, Uzel A, Oztunc H. Comparison of bovine-derived hydroxyapatite and autogenous bone for secondary alveolar bone grafting in patients with alveolar clefts. J Oral Maxillofac Surg 2012; 70(1): e95-e102. doi: 10.1016/j.joms.2011.08.041 PMID: 22182665
  12. Lexer E. The use of free osteoplasty together with trials on arthrodesis and joint transplantation Archiv für klin Chirurgie 1908;86(4):939-954. Clin Orthop Relat Res 1908; 466(8): 1771-6. doi: 10.1007/s11999-008-0314-4 PMID: 18536976
  13. Myeroff C, Archdeacon M. Autogenous bone graft: Donor sites and techniques. J Bone Joint Surg Am 2011; 93(23): 2227-36. doi: 10.2106/JBJS.J.01513 PMID: 22159859
  14. Swan MC, Goodacre TEE. Morbidity at the iliac crest donor site following bone grafting of the cleft alveolus. Br J Oral Maxillofac Surg 2006; 44(2): 129-33. doi: 10.1016/j.bjoms.2005.04.015. PMID: 15961201
  15. Canady J W, Zeitler D P, Thompson S A, Nicholas C D. Suitability of the iliac crest as a site for harvest of autogenous bone grafts. Cleft Palate Craniofac J 1993; 30(6): 579-81. doi: 10.1597/1545-1569_1993_030_0579_sotica_2.3.co_2. PMID: 8280737
  16. Du F, Wu H, Li H, et al. Bone marrow mononuclear cells combined with beta-tricalcium phosphate granules for alveolar cleft repair: A 12-month clinical study. Sci Rep 2017; 7(1): 13773. doi: 10.1038/s41598-017-12602-1 PMID: 29062005
  17. Mao AS, Mooney DJ. Regenerative medicine: Current therapies and future directions. Proc Natl Acad Sci 2015; 112(47): 14452-9. doi: 10.1073/pnas.1508520112 PMID: 26598661
  18. Berthiaume F, Maguire T J, Yarmush M L. Tissue engineering and regenerative medicine: History, progress, and challenges. Annu Rev Chem Biomol Eng 2011; 2: 403-30. doi: 10.1146/annurev-chembioeng-061010-114257. PMID: 22432625
  19. Ringe J, Kaps C, Burmester G-R, Sittinger M. Stem cells for regenerative medicine: Advances in the engineering of tissues and organs. Naturwissenschaften 2002; 89(8): 338-51. doi: 10.1007/s00114-002-0344-9 PMID: 12435034
  20. Amiri M A, Lavaee F, Danesteh H. Use of stem cells in bone regeneration in cleft palate patients: Review and recommendations. J Korean Assoc Oral Maxillofac Surg 2022; 48(2): 71-8. doi: 10.5125/jkaoms.2022.48.2.71. PMID: 35491137
  21. Hwang NS, Varghese S, Elisseeff J. Controlled differentiation of stem cells. Adv Drug Deliv Rev 2008; 60(2): 199-214. doi: 10.1016/j.addr.2007.08.036
  22. Leach J K, Whitehead J. Materials-directed differentiation of mesenchymal stem cells for tissue engineering and regeneration. ACS Biomater Sci Eng 2017; 4(4): 1115-27. doi: 10.1021/acsbiomaterials.6b00741. PMID: 30035212
  23. Gładysz D, Hozyasz KK. Stem cell regenerative therapy in alveolar cleft reconstruction. Arch Oral Biol 2015; 60(10): 1517-32. doi: 10.1016/j.archoralbio.2015.07.003 PMID: 26263541
  24. Kang NH. Current methods for the treatment of alveolar cleft. Arch Plast Surg 2017; 44(3): 188-93. doi: 10.5999/aps.2017.44.3.188 PMID: 28573092
  25. Kyung H, Kang N. Management of alveolar cleft. Arch Craniofac Surg 2015; 16(2): 49-52. doi: 10.7181/acfs.2015.16.2.49 PMID: 28913221
  26. Sadove AM, van Aalst JA, Culp JA. Cleft palate repair: Art and issues. Clin Plast Surg 2004; 31(2): 231-41. doi: 10.1016/S0094-1298(03)00136-6 PMID: 15145665
  27. Moreau JL, Caccamese JF, Coletti DP, Sauk JJ, Fisher JP. Tissue engineering solutions for cleft palates. J Oral Maxillofac Surg 2007; 65(12): 2503-11. doi: 10.1016/j.joms.2007.06.648 PMID: 18022477
  28. Cobourne MT. The complex genetics of cleft lip and palate. Eur J Orthod 2004; 26(1): 7-16. doi: 10.1093/ejo/26.1.7 PMID: 14994877
  29. Blanton SH, Bertin T, Patel S, Stal S, Mulliken JB, Hecht JT. Nonsyndromic cleft lip and palate: Four chromosomal regions of interest. Am J Med Genet A 2004; 125A(1): 28-37. doi: 10.1002/ajmg.a.20423 PMID: 14755463
  30. Seifeldin SA. Is alveolar cleft reconstruction still controversial? (Review of literature). Saudi Dent J 2016; 28(1): 3-11. doi: 10.1016/j.sdentj.2015.01.006 PMID: 26792963
  31. Eppley B L, van Aalst J A, Robey A, Havlik R J, Sadove A M. The spectrum of orofacial clefting. Plast Reconstr Surg 2005; 115(7): 101e-4e. doi: 10.1097/01.prs.0000164494.45986.91. PMID: 15923821
  32. Matsuura Y, Kawai K, Kishimoto H, Noda K, Morimoto N. Median alveolar cleft and palatal mass without a median upper cleft lip. Oral Maxillofacial Sur Cases 2019; 5(4): 100124. doi: 10.1016/j.omsc.2019.100124
  33. Allori A C, Mulliken J B, Meara J G, Shusterman S, Marcus J R. Classification of cleft lip/palate: Then and now. Cleft Palate Craniofac J 2017; 54(2): 175-88. doi: 10.1597/14-080. PMID: 26339868
  34. Allori AC. Striped-Y redux: Redesigning pictographic notational systems for the digital age. Dental Oral Craniofac Res 2017; 3(5): 1-8. doi: 10.15761/DOCR.1000218
  35. Koul R. Describing cleft lip and palate using a new expression system. Cleft Palate Craniofac J 2007; 44(6): 585-9. doi: 10.1597/06-111.1 PMID: 18177187
  36. Wirtz N, Sidman J, Block W. Clefting of the alveolus: Emphasizing the distinction from cleft palate. Am J Perinatol 2016; 33(6): 531-4. doi: 10.1055/s-0036-1572537 PMID: 26906186
  37. Mathew P, Kattimani VS, Tiwari RV, Iqbal MS, Tabassum A, Syed KG. New classification system for cleft alveolus: A computed tomography-based appraisal. J Contemp Dent Pract 2020; 21(8): 942-8. doi: 10.5005/jp-journals-10024-2849 PMID: 33568619
  38. Daw JL Jr, Patel PK. Management of alveolar clefts. Clin Plast Surg 2004; 31(2): 303-13. doi: 10.1016/S0094-1298(03)00129-9 PMID: 15145671
  39. Von Eiselsberg F. On the technique of uranoplasty. Eiselsberg, Anton Frh in 1901; 509-29.
  40. Drachter R. Die Gaumenspalte und deren operative Behandlung. German J Sur 1914; 131(1): 1-89. doi: 10.1007/BF02797875
  41. Schrudde J, Stellmach R. Primary osteoplasty of defects of the inferior maxillary arch in cleft palate and harelip in infants; preliminary report. Zentralbl Chir 1958; 83(15): 849-59. PMID: 13570298
  42. Eppley BL. Alveolar cleft bone grafting (Part I): primary bone grafting. J Oral Maxillofac Surg 1996; 54(1): 74-82.
  43. Sadove AM, Nelson CL, Eppley BL, Nguyen B. An evaluation of calvarial and iliac donor sites in alveolar cleft grafting. Cleft Palate J 1990; 27(3): 225-9. doi: 10.1597/1545-1569_1990_027_0225_aeocai_2.3.co_2 PMID: 2372971
  44. Sakamoto Y, Sakamoto T, Ishii T, Kishi K. Assessment of bioabsorbable hydroxyapatite for secondary bone grafting in unilateral alveolar clefts. Cleft Palate Craniofac J 2020; 57(1): 114-7. doi: 10.1177/1055665619866372 PMID: 31422680
  45. Al-Ahmady H H, Abd Elazeem A F, Ahmed N E-m B, et al. Combining autologous bone marrow mononuclear cells seeded on collagen sponge with Nano Hydroxyapatite, and platelet-rich fibrin: Reporting a novel strategy for alveolar cleft bone regeneration. J Craniomaxillofac Surg 2018; 46(9): 1593-600. doi: 10.1016/j.jcms.2018.05.049. PMID: 30196860
  46. Rawashdeh MA, Telfah H. Secondary alveolar bone grafting: The dilemma of donor site selection and morbidity. Br J Oral Maxillofac Surg 2008; 46(8): 665-70. doi: 10.1016/j.bjoms.2008.07.184 PMID: 18760515
  47. Bajestan MN, Rajan A, Edwards SP, et al. Stem cell therapy for reconstruction of alveolar cleft and trauma defects in adults: A randomized controlled, clinical trial. Clin Implant Dent Relat Res 2017; 19(5): 793-801. doi: 10.1111/cid.12506 PMID: 28656723
  48. Mazzetti MPV, Alonso N, Brock RS, Ayoub A, Massumoto SM, Eça LP. Importance of stem cell transplantation in cleft lip and palate surgical treatment protocol. J Craniofac Surg 2018; 29(6): 1445-51. doi: 10.1097/SCS.0000000000004766 PMID: 30067525
  49. Janssen NG, Schreurs R, de Ruiter AP, et al. Microstructured beta-tricalcium phosphate for alveolar cleft repair: A two-centre study. Int J Oral Maxillofac Surg 2019; 48(6): 708-11. doi: 10.1016/j.ijom.2018.11.009 PMID: 30594478
  50. Yin X, Li Q, Hong Y, et al. Customized reconstruction of alveolar cleft by high mechanically stable bioactive ceramic scaffolds fabricated by digital light processing. Mater Des 2022; 218: 110659. doi: 10.1016/j.matdes.2022.110659
  51. Shen C, Wang MM, Witek L, et al. Transforming the degradation rate of β-tricalcium phosphate bone replacement using 3-dimensional printing. Ann Plast Surg 2021; 87(6): e153-62. doi: 10.1097/SAP.0000000000002965 PMID: 34611100
  52. Dai J, Fu Y, Chen D, Sun Z. A novel and injectable strontium-containing hydroxyapatite bone cement for bone substitution: A systematic evaluation. Mater Sci Eng C 2021; 124: 112052. doi: 10.1016/j.msec.2021.112052 PMID: 33947546
  53. Alkaabi SA, Kalla DSN, Alsabri GA, et al. Safety and feasibility study of using polyphosphate (PolyP) in alveolar cleft repair: A pilot study. Pilot Feasibility Stud 2021; 7(1): 199. doi: 10.1186/s40814-021-00939-4 PMID: 34749808
  54. Rizzo MI, Tomao L, Tedesco S, et al. Engineered mucoperiosteal scaffold for cleft palate regeneration towards the non-immunogenic transplantation. Sci Rep 2021; 11(1): 14570. doi: 10.1038/s41598-021-93951-w PMID: 34272436
  55. Tanikawa DYS, Pinheiro CCG, Almeida MCA, et al. Deciduous dental pulp stem cells for maxillary alveolar reconstruction in cleft lip and palate patients. Stem Cells Int 2020; 2020(2): 1-11. doi: 10.1155/2020/6234167 PMID: 32256610
  56. Behnia H, Khojasteh A, Soleimani M, Tehranchi A, Atashi A. Repair of alveolar cleft defect with mesenchymal stem cells and platelet derived growth factors: A preliminary report. J Craniomaxillofac Surg 2012; 40(1): 2-7. doi: 10.1016/j.jcms.2011.02.003 PMID: 21420310
  57. Korn P, Ahlfeld T, Lahmeyer F, et al. 3D printing of bone grafts for cleft alveolar osteoplasty - in vivo evaluation in a preclinical model. Front Bioeng Biotechnol 2020; 8: 217. doi: 10.3389/fbioe.2020.00217. PMID: 32269989
  58. Ahn G, Lee JS, Yun WS, Shim JH, Lee UL. Cleft alveolus reconstruction using a three-dimensional printed bioresorbable scaffold with human bone marrow cells. J Craniofac Surg 2018; 29(7): 1880-3. doi: 10.1097/SCS.0000000000004747 PMID: 30028404
  59. Strauer BE, Kornowski R. Stem cell therapy in perspective. Circulation 2003; 107(7): 929-34. doi: 10.1161/01.CIR.0000057525.13182.24 PMID: 12600901
  60. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143-7. doi: 10.1126/science.284.5411.143 PMID: 10102814
  61. Andrzejewska A, Lukomska B, Janowski M. Concise review: Mesenchymal stem cells: From roots to boost. Stem Cells 2019; 37(7): 855-64. doi: 10.1002/stem.3016 PMID: 30977255
  62. Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. cells 2019; 8(8): 886. doi: 10.3390/cells8080886 PMID: 31412678
  63. Shanbhag S, Suliman S, Pandis N, Stavropoulos A, Sanz M, Mustafa K. Cell therapy for orofacial bone regeneration: A systematic review and meta-analysis. J Clin Periodontol 2019; 46(S21)(S 21): 162-82. doi: 10.1111/jcpe.13049 PMID: 30623455
  64. Caplan AI. Mesenchymal Stem Cells: Time to Change the Name! Stem Cells Transl Med 2017; 6(6): 1445-51. doi: 10.1002/sctm.17-0051 PMID: 28452204
  65. Haumer A, Bourgine PE, Occhetta P, Born G, Tasso R, Martin I. Delivery of cellular factors to regulate bone healing. Adv Drug Deliv Rev 2018; 129: 285-94. doi: 10.1016/j.addr.2018.01.010 PMID: 29357301
  66. Law S, Chaudhuri S. Mesenchymal stem cell and regenerative medicine: Regeneration versus immunomodulatory challenges. Am J Stem Cells 2013; 2(1): 22-38. PMID: 23671814
  67. Pigott JH, Ishihara A, Wellman ML, Russell DS, Bertone AL. Investigation of the immune response to autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses. Vet Immunol Immunopathol 2013; 156(1-2): 99-106. doi: 10.1016/j.vetimm.2013.09.003 PMID: 24094688
  68. Soleimanifar F, Hosseini FS, Atabati H, et al. Adipose‐derived stem cells‐conditioned medium improved osteogenic differentiation of induced pluripotent stem cells when grown on polycaprolactone nanofibers. J Cell Physiol 2019; 234(7): 10315-23. doi: 10.1002/jcp.27697 PMID: 30378123
  69. Abazari MF, Hosseini Z, Zare Karizi S, et al. Different osteogenic differentiation potential of mesenchymal stem cells on three different polymeric substrates. Gene 2020; 740(2): 144534. doi: 10.1016/j.gene.2020.144534 PMID: 32145328
  70. Kretlow JD, Jin YQ, Liu W, et al. Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol 2008; 9(1): 60. doi: 10.1186/1471-2121-9-60 PMID: 18957087
  71. Tremoleda JL, Forsyth NR, Khan NS, et al. Bone tissue formation from human embryonic stem cells in vivo. Cloning Stem Cells 2008; 10(1): 119-32. doi: 10.1089/clo.2007.0R36 PMID: 18241129
  72. Amabile G, Meissner A. Induced pluripotent stem cells: Current progress and potential for regenerative medicine. Trends Mol Med 2009; 15(2): 59-68. doi: 10.1016/j.molmed.2008.12.003 PMID: 19162546
  73. Fu Y, Deng S, Wang J, et al. Potential replication of induced pluripotent stem cells for craniofacial reconstruction. Curr Stem Cell Res Ther 2014; 9(3): 205-14. doi: 10.2174/1574888X09666140213155800 PMID: 24524793
  74. Wert G, Mummery C. Human embryonic stem cells: Research, ethics and policy. Hum Reprod 2003; 18(4): 672-82. doi: 10.1093/humrep/deg143 PMID: 12660256
  75. Shand J, Berg J, Bogue C. Committee for Pediatric Research; Committee on Bioethics. Human embryonic stem cell (hESC) and human embryo research. Pediatrics 2012; 130(5): 972-7. doi: 10.1542/peds.2012-2482. PMID: 23109685
  76. Salgado A J, Oliveira J M, Martins A, et al. Tissue engineering and regenerative medicine: Past, present, and future. Int Rev Neurobiol 2013; 108: 1-33. doi: 10.1016/B978-0-12-410499-0.00001-0. PMID: 24083429
  77. Alfayez E, Alghamdi F, Alfayez ES. Clinical application of stem cell therapy in reconstructing maxillary cleft alveolar bone defects: A systematic review of randomized clinical trials. Cureus 2022; 14(3): e23111. doi: 10.7759/cureus.23111 PMID: 35425680
  78. Almotawah FN, AlNamasy R, Alhamazani B, Almohsen S, AlNamasy RE. Alveolar reconstruction using stem cells in patients with cleft lip and palate: A systematic review. Arch Pharm Pract 2022; 13(4): 57-62. doi: 10.51847/IoBhDeHRqO
  79. Mauney JR, Volloch V, Kaplan DL. Role of adult mesenchymal stem cells in bone tissue engineering applications: Current status and future prospects. Tissue Eng 2005; 11(5-6): 787-802. doi: 10.1089/ten.2005.11.787 PMID: 15998219
  80. Lee JM, Kim HY, Park JS, et al. Developing palatal bone using human mesenchymal stem cell and stem cells from exfoliated deciduous teeth cell sheets. J Tissue Eng Regen Med 2019; 13(2): 319-27. doi: 10.1002/term.2811 PMID: 30644640
  81. Jahanbin A, Rashed R, Alamdari DH, et al. Success of maxillary alveolar defect repair in rats using osteoblast-differentiated human deciduous dental pulp stem cells. J Oral Maxillofac Surg 2016; 74(4): 829.e1-9. doi: 10.1016/j.joms.2015.11.033 PMID: 26763080
  82. De Oliveira D, Gomes Ferreira PHS, Duailibe De Deus C, Okamoto R. Evaluation of the different biomaterials used in alveolar cleft defects in children. Ann Maxillofac Surg 2018; 8(2): 315-9. doi: 10.4103/ams.ams_140_17 PMID: 30693253
  83. Saburi E, Atabati H, Kabiri L, et al. Bone morphogenetic protein‐7 incorporated polycaprolactone scaffold has a great potential to improve survival and proliferation rate of the human embryonic kidney cells. J Cell Biochem 2019; 120(6): 9859-68. doi: 10.1002/jcb.28268 PMID: 30548655
  84. Alonso N, Risso GH, Denadai R, Raposo-Amaral CE. Effect of maxillary alveolar reconstruction on nasal symmetry of cleft lip and palate patients: A study comparing iliac crest bone graft and recombinant human bone morphogenetic protein-2. J Plast Reconstr Aesthet Surg 2014; 67(9): 1201-8. doi: 10.1016/j.bjps.2014.05.014 PMID: 24909628
  85. Triplett RG, Nevins M, Marx RE, et al. Pivotal, randomized, parallel evaluation of recombinant human bone morphogenetic protein-2/absorbable collagen sponge and autogenous bone graft for maxillary sinus floor augmentation. J Oral Maxillofac Surg 2009; 67(9): 1947-60. doi: 10.1016/j.joms.2009.04.085 PMID: 19686934
  86. Liang F, Yen S, Florendo E, Urata M, Hammoudeh J. 3D cone beam computed tomography volumetric outcomes of rhBMP-2/demineralized bone matrix vs. iliac crest bone graft for alveolar cleft reconstruction. Plast Reconstr Surg 2015; 136(4S): 3-4. doi: 10.1097/01.prs.0000472273.84427.35
  87. Fiorellini JP, Howell TH, Cochran D, et al. Randomized study evaluating recombinant human bone morphogenetic protein-2 for extraction socket augmentation. J Periodontol 2005; 76(4): 605-13. doi: 10.1902/jop.2005.76.4.605 PMID: 15857102
  88. Simmonds MC, Brown JVE, Heirs MK, et al. Safety and effectiveness of recombinant human bone morphogenetic protein-2 for spinal fusion: A meta-analysis of individual-participant data. Ann Intern Med 2013; 158(12): 877-89. doi: 10.7326/0003-4819-158-12-201306180-00005 PMID: 23778905
  89. Garg S, McCarthy JJ, Goodwin R, et al. Complication rates after bone morphogenetic protein (BMP) use in orthopaedic surgery in children: A concise multicenter retrospective cohort study. J Pediatr Orthop 2017; 37(6): e375-8. doi: 10.1097/BPO.0000000000000859 PMID: 27603194
  90. Liang F, Leland H, Jedrzejewski B, et al. Alternatives to autologous bone graft in alveolar cleft reconstruction: The state of alveolar tissue engineering. J Craniofac Surg 2018; 29(3): 584-93. doi: 10.1097/SCS.0000000000004300 PMID: 29461365
  91. Bohner M, Santoni BLG, Döbelin N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater 2020; 113: 23-41. doi: 10.1016/j.actbio.2020.06.022 PMID: 32565369
  92. Liu J, Gao C, Feng P, Peng S, Shuai C. Selective laser sintering of β-TCP/nano-58S composite scaffolds with improved mechanical properties. Mater Des 2015; 84(5): 395-401.
  93. Saxena V, Pandey LM. Synthesis and sintering of calcium hydroxyapatite for biomedical applications. In: Reference Module in Materials Science and Materials Engineering. Elsevier 2021.
  94. Müller WE, Schröder HC, Tolba E, Diehl‐Seifert B, Wang X. Mineralization of bone‐related Sa OS‐2 cells under physiological hypoxic conditions. FEBS J 2016; 283(1): 74-87. doi: 10.1111/febs.13552 PMID: 26453899
  95. Müller WEG, Wang X, Diehl-Seifert B, et al. Inorganic polymeric phosphate/polyphosphate as an inducer of alkaline phosphatase and a modulator of intracellular Ca2+ level in osteoblasts (SaOS-2 cells) in vitro. Acta Biomater 2011; 7(6): 2661-71. doi: 10.1016/j.actbio.2011.03.007 PMID: 21397057
  96. Wang X, Schröder H C, Müller W EG. Amorphous polyphosphate, a smart bioinspired nano-/bio-material for bone and cartilage regeneration: Towards a new paradigm in tissue engineering. J Mater Chem B 2018; 6(16): 2385-412. doi: 10.1039/c8tb00241j. PMID: 32254456
  97. Oliver J D, Madhoun W, Graham E M, Hendrycks R, Renouard M, Hu M S. Stem cells regenerating the craniofacial skeleton: Current state-of-the-art and future directions. J Clin Med 2020; 9(10): 3307. doi: 10.3390/jcm9103307. PMID: 33076266
  98. Jafarian M, Eslaminejad M B, Khojasteh A, et al. Oral Medicine, Oral Pathology, Oral Radiology,; Endodontology, Marrow-derived mesenchymal stem cells-directed bone regeneration in the dog mandible: a comparison between biphasic calcium phosphate and natural bone mineral. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 105(5): e14-24. doi: 10.1016/j.tripleo.2008.01.010. PMID: 18442730
  99. Khojasteh A, Eslaminejad MB, Nazarian H. Oral Medicine, Oral Pathology, Oral Radiology,; Endodontology, Mesenchymal stem cells enhance bone regeneration in rat calvarial critical size defects more than platelete-rich plasma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106(3): 356-62. doi: 10.1016/j.tripleo.2007.10.017 PMID: 18424120
  100. Eslaminejad MB, Jafarian M, Khojasteh A, Mashhadiabbas F, Dehghan MM, Hassanizadeh R. In vivo bone formation by canine mesenchymal stem cells loaded onto HA/TCP scaffolds: Qualitative and quantitative analysis. Cell J 2008; 10(3): 205-12.
  101. Vaish A, Vaish R. 3D printing and its applications in orthopedics. J Clin Orthop Trauma 2018; 9(2)(S 1): S74-5. doi: 10.1016/j.jcot.2018.02.003 PMID: 29628703
  102. Harrysson OLA, Hosni YA, Nayfeh JF. Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: Femoral-component case study. BMC Musculoskelet Disord 2007; 8(1): 91. doi: 10.1186/1471-2474-8-91 PMID: 17854508
  103. Ibáñez RR, Mateo NC, Lorenzo LMR, Navarrete AR, María LOFS. Potential benefits from 3D printing and dental pulp stem cells in cleft palate treatments: An in vivo model study. Biomedical Research Network 2019.
  104. Oliver JD, Jia S, Halpern LR, et al. Innovative molecular and cellular therapeutics in cleft palate tissue engineering. Tissue Eng Part B Rev 2021; 27(3): 215-37. doi: 10.1089/ten.teb.2020.0181 PMID: 32873216

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers