Effector Proteins of Type IV Secretion System: Weapons of Brucella Used to Fight Against Host Immunity


Cite item

Full Text

Abstract

:Brucella is an intracellular bacterial pathogen capable of long-term persistence in the host, resulting in chronic infections in livestock and wildlife. The type IV secretion system (T4SS) is an important virulence factor of Brucella and is composed of 12 protein complexes encoded by the VirB operon. T4SS exerts its function through its secreted 15 effector proteins. The effector proteins act on important signaling pathways in host cells, inducing host immune responses and promoting the survival and replication of Brucella in host cells to promote persistent infection. In this article, we describe the intracellular circulation of Brucella-infected cells and survey the role of Brucella VirB T4SS in regulating inflammatory responses and suppressing host immune responses during infection. In addition, the important mechanisms of these 15 effector proteins in resisting the host immune response during Brucella infection are elucidated. For example, VceC and VceA assist in achieving sustained survival of Brucella in host cells by affecting autophagy and apoptosis. BtpB, together with BtpA, controls the activation of dendritic cells during infection, induces inflammatory responses, and controls host immunity. This article reviews the effector proteins secreted by Brucella T4SS and their involvement in immune responses, which can provide a reliable theoretical basis for the subsequent mechanism of hijacking the host cell signaling pathway by bacteria and contribute to the development of better vaccines to effectively treat Brucella bacterial infection.

About the authors

Min Zheng

Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University

Email: info@benthamscience.net

Ruiqi Lin

Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University

Email: info@benthamscience.net

Jinying Zhu

Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University

Email: info@benthamscience.net

Qiao Dong

Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University

Email: info@benthamscience.net

Jingjing Chen

Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University

Email: info@benthamscience.net

Pengfei Jiang

Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University

Email: info@benthamscience.net

Huan Zhang

Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University

Author for correspondence.
Email: info@benthamscience.net

Jinling Liu

Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University

Author for correspondence.
Email: info@benthamscience.net

Zeliang Chen

Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV. The new global map of human brucellosis. Lancet Infect Dis 2006; 6(2): 91-9. doi: 10.1016/S1473-3099(06)70382-6 PMID: 16439329
  2. Al Dahouk S, Neubauer H, Hensel A, et al. Changing epidemiology of human brucellosis, Germany, 1962-2005. Emerg Infect Dis 2007; 13(12): 1895-900. doi: 10.3201/eid1312.070527 PMID: 18258041
  3. von Bargen K, Gorvel JP, Salcedo SP. Internal affairs: investigating the Brucella intracellular lifestyle. FEMS Microbiol Rev 2012; 36(3): 533-62. doi: 10.1111/j.1574-6976.2012.00334.x PMID: 22373010
  4. Porte F, Naroeni A, Ouahrani-Bettache S, Liautard JP. Role of the Brucella suis lipopolysaccharide O antigen in phagosomal genesis and in inhibition of phagosome-lysosome fusion in murine macrophages. Infect Immun 2003; 71(3): 1481-90. doi: 10.1128/IAI.71.3.1481-1490.2003 PMID: 12595466
  5. Elfaki MG, Alaidan AA, Al-Hokail AA. Host response to Brucella infection: Review and future perspective. J Infect Dev Ctries 2015; 9(7): 697-701. doi: 10.3855/jidc.6625 PMID: 26230118
  6. Pappas G. The changing Brucella ecology: Novel reservoirs, new threats. Int J Antimicrob Agents 2010; 36 (Suppl. 1): S8-S11. doi: 10.1016/j.ijantimicag.2010.06.013 PMID: 20696557
  7. Seleem MN, Boyle SM, Sriranganathan N. Brucella: A pathogen without classic virulence genes. Vet Microbiol 2008; 129(1-2): 1-14. doi: 10.1016/j.vetmic.2007.11.023 PMID: 18226477
  8. Seleem MN, Jain N, Pothayee N, Ranjan A, Riffle JS, Sriranganathan N. Targeting Brucella melitensis with polymeric nanoparticles containing streptomycin and doxycycline. FEMS Microbiol Lett 2009; 294(1): 24-31. doi: 10.1111/j.1574-6968.2009.01530.x PMID: 19493005
  9. Fretin D, Fauconnier A, Köhler S, et al. The sheathed flagellum of Brucella melitensis is involved in persistence in a murine model of infection. Cell Microbiol 2005; 7(5): 687-98. doi: 10.1111/j.1462-5822.2005.00502.x PMID: 15839898
  10. Ficht T. Brucella taxonomy and evolution. Future Microbiol 2010; 5(6): 859-66. doi: 10.2217/fmb.10.52 PMID: 20521932
  11. Carmichael LE, Bruner DW. Characteristics of a newly-recognized species of Brucella responsible for infectious canine abortions. Cornell Vet 1968; 48(4): 579-92. PMID: 5693645
  12. Buddle MB. Studies on Brucella ovis (n.sp.), a cause of genital disease of sheep in new Zealand and Australia. J Hyg (Lond) 1956; 54(3): 351-64. doi: 10.1017/S0022172400044612 PMID: 13367402
  13. Stoenner HG, Lackman DB. A new species of Brucella isolated from the desert wood rat, Neotoma lepida Thomas. Am J Vet Res 1957; 18(69): 947-51. PMID: 13470254
  14. Al Dahouk S, Köhler S, Occhialini A, et al. Brucella spp. of amphibians comprise genomically diverse motile strains competent for replication in macrophages and survival in mammalian hosts. Sci Rep 2017; 7(1): 44420. doi: 10.1038/srep44420 PMID: 28300153
  15. Głowacka P, Żakowska D, Naylor K, Niemcewicz M, Bielawska-Drózd A. Brucella - Virulence Factors, Pathogenesis and Treatment. Pol J Microbiol 2018; 67(2): 151-61. doi: 10.21307/pjm-2018-029 PMID: 30015453
  16. Al Dahouk S, Flèche PL, Nöckler K, et al. Evaluation of Brucella MLVA typing for human brucellosis. J Microbiol Methods 2007; 69(1): 137-45. doi: 10.1016/j.mimet.2006.12.015 PMID: 17261338
  17. de Figueiredo P, Ficht TA, Rice-Ficht A, Rossetti CA, Adams LG. Pathogenesis and immunobiology of brucellosis: Review of Brucella-host interactions. Am J Pathol 2015; 185(6): 1505-17. doi: 10.1016/j.ajpath.2015.03.003 PMID: 25892682
  18. Rajashekara G, Eskra L, Mathison A, et al. Brucella: Functional genomics and host-pathogen interactions. Anim Health Res Rev 2006; 7(1-2): 1-11. doi: 10.1017/S146625230700117X PMID: 17389050
  19. Pizarro-Cerdá J, Méresse S, Parton RG, et al. Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect Immun 1998; 66(12): 5711-24. doi: 10.1128/IAI.66.12.5711-5724.1998 PMID: 9826346
  20. De Bolle X, Crosson S, Matroule JY, Letesson JJ. Brucella abortus cell cycle and infection are coordinated. Trends Microbiol 2015; 23(12): 812-21. doi: 10.1016/j.tim.2015.09.007 PMID: 26497941
  21. Starr T, Ng TW, Wehrly TD, Knodler LA, Celli J. Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment. Traffic 2008; 9(5): 678-94. doi: 10.1111/j.1600-0854.2008.00718.x PMID: 18266913
  22. Celli J, de Chastellier C, Franchini DM, Pizarro-Cerda J, Moreno E, Gorvel JP. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med 2003; 198(4): 545-56. doi: 10.1084/jem.20030088 PMID: 12925673
  23. Boschiroli ML, Ouahrani-Bettache S, Foulongne V, et al. The Brucella suis virB operon is induced intracellularly in macrophages. Proc Natl Acad Sci USA 2002; 99(3): 1544-9. doi: 10.1073/pnas.032514299 PMID: 11830669
  24. Starr T, Child R, Wehrly TD, et al. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 2012; 11(1): 33-45. doi: 10.1016/j.chom.2011.12.002 PMID: 22264511
  25. Hong PC, Tsolis RM, Ficht TA. Identification of genes required for chronic persistence of Brucella abortus in mice. Infect Immun 2000; 68(7): 4102-7. doi: 10.1128/IAI.68.7.4102-4107.2000 PMID: 10858227
  26. Ke Y, Wang Y, Li W, Chen Z. Type IV secretion system of Brucella spp. and its effectors. Front Cell Infect Microbiol 2015; 5: 72. doi: 10.3389/fcimb.2015.00072 PMID: 26528442
  27. Hashemifar I, Yadegar A, Jazi FM, Amirmozafari N. Molecular prevalence of putative virulence-associated genes in Brucella melitensis and Brucella abortus isolates from human and livestock specimens in Iran. Microb Pathog 2017; 105: 334-9. doi: 10.1016/j.micpath.2017.03.007 PMID: 28284850
  28. López-Santiago R, Sánchez-Argáez AB, De Alba-Núñez LG, Baltierra-Uribe SL, Moreno-Lafont MC. Immune response to mucosal Brucella infection. Front Immunol 2019; 10: 1759. doi: 10.3389/fimmu.2019.01759 PMID: 31481953
  29. Marim FM, Franco MMC, Gomes MTR, Miraglia MC, Giambartolomei GH, Oliveira SC. The role of NLRP3 and AIM2 in inflammasome activation during Brucella abortus infection. Semin Immunopathol 2017; 39(2): 215-23. doi: 10.1007/s00281-016-0581-1 PMID: 27405866
  30. Jiménez de Bagüés MP, Terraza A, Gross A, Dornand J. Different responses of macrophages to smooth and rough Brucella spp.: Relationship to virulence. Infect Immun 2004; 72(4): 2429-33. doi: 10.1128/IAI.72.4.2429-2433.2004 PMID: 15039375
  31. Alvarez-Martinez CE, Christie PJ. Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 2009; 73(4): 775-808. doi: 10.1128/MMBR.00023-09 PMID: 19946141
  32. Xiong X, Li B, Zhou Z, et al. The VirB system plays a crucial role in Brucella intracellular infection. Int J Mol Sci 2021; 22(24): 13637. doi: 10.3390/ijms222413637 PMID: 34948430
  33. Lacerda TLS, Salcedo SP, Gorvel JP. Brucella T4SS: The VIP pass inside host cells. Curr Opin Microbiol 2013; 16(1): 45-51. doi: 10.1016/j.mib.2012.11.005 PMID: 23318140
  34. Fugier E, Salcedo SP, de Chastellier C, et al. The glyceraldehyde-3-phosphate dehydrogenase and the small GTPase Rab 2 are crucial for Brucella replication. PLoS Pathog 2009; 5(6): e1000487. doi: 10.1371/journal.ppat.1000487 PMID: 19557163
  35. de Jong MF, Sun YH, den Hartigh AB, van Dijl JM, Tsolis RM. Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system. Mol Microbiol 2008; 70(6): 1378-96. doi: 10.1111/j.1365-2958.2008.06487.x PMID: 19019140
  36. de Barsy M, Jamet A, Filopon D, et al. Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2. Cell Microbiol 2011; 13(7): 1044-58. doi: 10.1111/j.1462-5822.2011.01601.x PMID: 21501366
  37. Marchesini MI, Herrmann CK, Salcedo SP, Gorvel JP, Comerci DJ. In search of Brucella abortus type IV secretion substrates: Screening and identification of four proteins translocated into host cells through VirB system. Cell Microbiol 2011; 13(8): 1261-74. doi: 10.1111/j.1462-5822.2011.01618.x PMID: 21707904
  38. Myeni S, Child R, Ng TW, et al. Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog 2013; 9(8): e1003556. doi: 10.1371/journal.ppat.1003556 PMID: 23950720
  39. Döhmer PH, Valguarnera E, Czibener C, Ugalde JE. Identification of a type IV secretion substrate of Brucella abortus that participates in the early stages of intracellular survival. Cell Microbiol 2014; 16(3): 396-410. doi: 10.1111/cmi.12224 PMID: 24119283
  40. Salcedo SP, Marchesini MI, Degos C, et al. BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions. Front Cell Infect Microbiol 2013; 3: 28. doi: 10.3389/fcimb.2013.00028 PMID: 23847770
  41. Zhang J, Li M, Li Z, et al. Deletion of the type IV secretion system effector VceA promotes autophagy and inhibits apoptosis in brucella-infected human trophoblast cells. Curr Microbiol 2019; 76(4): 510-9. doi: 10.1007/s00284-019-01651-6 PMID: 30805699
  42. Haas IG. BiP (GRP78), an essential hsp70 resident protein in the endoplasmic reticulum. Experientia 1994; 50(11-12): 1012-20. doi: 10.1007/BF01923455 PMID: 7988659
  43. Todd DJ, Lee AH, Glimcher LH. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 2008; 8(9): 663-74. doi: 10.1038/nri2359 PMID: 18670423
  44. Roux CM, Rolán HG, Santos RL, et al. Brucella requires a functional Type IV secretion system to elicit innate immune responses in mice. Cell Microbiol 2007; 9(7): 1851-69. doi: 10.1111/j.1462-5822.2007.00922.x PMID: 17441987
  45. Pahl HL, Baeuerle PA. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-kappa B. EMBO J 1995; 14(11): 2580-8. doi: 10.1002/j.1460-2075.1995.tb07256.x PMID: 7781611
  46. Pahl HL, Baeuerle PA. Expression of influenza virus hemagglutinin activates transcription factor NF-kappa B. J Virol 1995; 69(3): 1480-4. doi: 10.1128/jvi.69.3.1480-1484.1995 PMID: 7853480
  47. de Jong MF, Starr T, Winter MG, et al. Sensing of bacterial type IV secretion via the unfolded protein response. MBio 2013; 4(1): e00418-12. doi: 10.1128/mBio.00418-12 PMID: 23422410
  48. Taguchi Y, Imaoka K, Kataoka M, et al. Yip1A, a novel host factor for the activation of the IRE1 pathway of the unfolded protein response during Brucella infection. PLoS Pathog 2015; 11(3): e1004747. doi: 10.1371/journal.ppat.1004747 PMID: 25742138
  49. Keestra-Gounder AM, Byndloss MX, Seyffert N, et al. NOD1 and NOD2 signalling links ER stress with inflammation. Nature 2016; 532(7599): 394-7. doi: 10.1038/nature17631 PMID: 27007849
  50. Zhi F, Zhou D, Bai F, et al. VceC Mediated ire1 pathway and inhibited chop-induced apoptosis to support Brucella replication in goat trophoblast cells. Int J Mol Sci 2019; 20(17): 4104. doi: 10.3390/ijms20174104 PMID: 31443507
  51. Byndloss MX, Tsai AY, Walker GT, et al. Brucella abortus infection of placental trophoblasts triggers endoplasmic reticulum stress-mediated cell death and fetal loss via Type IV secretion system-dependent activation of CHOP. MBio 2019; 10(4): e01538-19. doi: 10.1128/mBio.01538-19 PMID: 31337727
  52. Herrou J, Crosson S. Molecular structure of the Brucella abortus metalloprotein RicA, a Rab2-binding virulence effector. Biochemistry 2013; 52(50): 9020-8. doi: 10.1021/bi401373r PMID: 24251537
  53. Nkengfac B, Pouyez J, Bauwens E, et al. Structural analysis of Brucella abortus RicA substitutions that do not impair interaction with human Rab2 GTPase. BMC Biochem 2012; 13(1): 16. doi: 10.1186/1471-2091-13-16 PMID: 22892012
  54. Smith EP, Cotto-Rosario A, Borghesan E, Held K, Miller CN, Celli J. Epistatic interplay between type iv secretion effectors engages the small GTPase Rab2 in the Brucella intracellular cycle. MBio 2020; 11(2): e03350-19. doi: 10.1128/mBio.03350-19 PMID: 32234817
  55. de Bolle X, Letesson JJ, Gorvel JP. Small GTPases and Brucella entry into the endoplasmic reticulum. Biochem Soc Trans 2012; 40(6): 1348-52. doi: 10.1042/BST20120156 PMID: 23176479
  56. Coronas-Serna JM, Louche A, Rodríguez-Escudero M, et al. The TIR-domain containing effectors BtpA and BtpB from Brucella abortus impact NAD metabolism. PLoS Pathog 2020; 16(4): e1007979. doi: 10.1371/journal.ppat.1007979 PMID: 32298382
  57. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol 2004; 17(1): 1-14. doi: 10.1093/intimm/dxh186 PMID: 15585605
  58. Smith JA, Khan M, Magnani DD, et al. Brucella induces an unfolded protein response via TcpB that supports intracellular replication in macrophages. PLoS Pathog 2013; 9(12): e1003785. doi: 10.1371/journal.ppat.1003785 PMID: 24339776
  59. Kaplan-Türköz B, Koelblen T, Felix C, et al. Structure of the Toll/interleukin 1 receptor (TIR) domain of the immunosuppressive Brucella effector BtpA/Btp1/TcpB. FEBS Lett 2013; 587(21): 3412-6. doi: 10.1016/j.febslet.2013.09.007 PMID: 24076024
  60. Cirl C, Wieser A, Yadav M, et al. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat Med 2008; 14(4): 399-406. doi: 10.1038/nm1734 PMID: 18327267
  61. Radhakrishnan GK, Yu Q, Harms JS, Splitter GA. Brucella tir domain-containing protein mimics properties of the toll-like receptor adaptor protein TIRAP. J Biol Chem 2009; 284(15): 9892-8. doi: 10.1074/jbc.M805458200 PMID: 19196716
  62. Salcedo SP, Marchesini MI, Lelouard H, et al. Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1. PLoS Pathog 2008; 4(2): e21-1. doi: 10.1371/journal.ppat.0040021 PMID: 18266466
  63. Sengupta D, Koblansky A, Gaines J, et al. Subversion of innate immune responses by Brucella through the targeted degradation of the TLR signaling adapter, MAL. J Immunol 2010; 184(2): 956-64. doi: 10.4049/jimmunol.0902008 PMID: 20018612
  64. Li W, Ke Y, Wang Y, et al. Brucella TIR-like protein TcpB/Btp1 specifically targets the host adaptor protein MAL/TIRAP to promote infection. Biochem Biophys Res Commun 2016; 477(3): 509-14. doi: 10.1016/j.bbrc.2016.06.064 PMID: 27311859
  65. Jakka P, Namani S, Murugan S, Rai N, Radhakrishnan G. The Brucella effector protein TcpB induces degradation of inflammatory caspases and thereby subverts non-canonical inflammasome activation in macrophages. J Biol Chem 2017; 292(50): 20613-27. doi: 10.1074/jbc.M117.815878 PMID: 29061850
  66. Chaudhary A, Ganguly K, Cabantous S, et al. The Brucella TIR-like protein TcpB interacts with the death domain of MyD88. Biochem Biophys Res Commun 2012; 417(1): 299-304. doi: 10.1016/j.bbrc.2011.11.104 PMID: 22155231
  67. Miller CN, Smith EP, Cundiff JA, et al. A Brucella Type IV Effector targets the cog tethering complex to remodel host secretory traffic and promote intracellular replication. Cell Host Microbe 2017; 22(3): 317-329.e7. doi: 10.1016/j.chom.2017.07.017 PMID: 28844886
  68. Zhou Y, Bu Z, Qian J, et al. The UTP-glucose-1-phosphate uridylyltransferase of Brucella melitensis inhibits the activation of NF-κB via regulating the bacterial type IV secretion system. Int J Biol Macromol 2020; 164: 3098-104. doi: 10.1016/j.ijbiomac.2020.08.134 PMID: 32827613
  69. Zhu J, Dong Q, Dong C, Zhang X, Zhang H, Chen Z. Global lysine crotonylation alterations of host cell proteins caused by Brucella effector BspF. Front Cell Infect Microbiol 2021; 10: 603457. doi: 10.3389/fcimb.2020.603457 PMID: 33489935
  70. Borghesan E, Smith EP, Myeni S, Binder K, Knodler LA, Celli J. A Brucella effector modulates the Arf6-Rab8a GTPase cascade to promote intravacuolar replication. EMBO J 2021; 40(19): e107664. doi: 10.15252/embj.2021107664 PMID: 34423453
  71. Marchesini MI, Morrone Seijo SM, Guaimas FF, Comerci DJA. T4SS effector targets host cell alpha-enolase contributing to Brucella abortus intracellular lifestyle. Front Cell Infect Microbiol 2016; 6: 153. doi: 10.3389/fcimb.2016.00153 PMID: 27900285
  72. Arriola Benitez PC, Rey Serantes D, Herrmann CK, et al. The effector protein BPE005 from brucella abortus induces collagen deposition and matrix metalloproteinase 9 downmodulation via transforming growth factor β1 in hepatic stellate cells. Infect Immun 2016; 84(2): 598-606. doi: 10.1128/IAI.01227-15 PMID: 26667834
  73. Arriola Benitez PC, Pesce Viglietti AI, Herrmann CK, et al. Brucella abortus promotes a fibrotic phenotype in hepatic stellate cells, with concomitant activation of the autophagy pathway. Infect Immun 2018; 86(1): e00522-17. doi: 10.1128/IAI.00522-17 PMID: 28993461
  74. Giambartolomei GH, Delpino MV. Immunopathogenesis of hepatic brucellosis. Front Cell Infect Microbiol 2019; 9: 423. doi: 10.3389/fcimb.2019.00423 PMID: 31956605
  75. Felix C, Kaplan Türköz B, Ranaldi S, et al. The Brucella TIR domain containing proteins BtpA and BtpB have a structural WxxxE motif important for protection against microtubule depolymerisation. Cell Commun Signal 2014; 12(1): 53. doi: 10.1186/s12964-014-0053-y PMID: 25304327

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers