The Integration of Top-down and Bottom-up Inputs to the Striatal Cholinergic Interneurons


Cite item

Full Text

Abstract

Background:Cholinergic interneurons (ChIs) are important for learning and memory. They exhibit a multiphasic excitation-pause-rebound response to reward or sensory cues indicating a reward, believed to gate dopamine-dependent learning. Although ChIs receive extensive top-down inputs from the cortex and bottom-up inputs from the thalamus and midbrain, it is unclear which inputs are involved in the development of ChI multiphasic activity.

Methods:We used a single-unit recording of putative ChIs (pChIs) in response to cortical and visual stimulation to investigate how top-down and bottom-up inputs regulate the firing pattern of ChIs.

Results:We demonstrated that cortical stimulation strongly regulates pChIs, with the maximum firing rate occurring at the peak of the inverted local field potential (iLFP), reflecting maximum cortical stimulation. Pauses in pChIs occurred during the descending phase of iLFP, indicating withdrawal of excitatory cortical input. Visual stimulation induced long pauses in pChIs, but it is unlikely that bottom- up inputs alone induce pauses in behaving animals. Also, the firing pattern of ChIs triggered by visual stimulation did not correlate with the iLFP as it did after cortical stimulation. Top-down and bottom-up inputs independently regulate the firing pattern of ChIs with similar efficacy but notably produce a well-defined pause in ChI firing.

Conclusion:This study provides in vivo evidence that the multiphasic ChI response may require both top-down and bottom-up inputs. The findings suggest that the firing pattern of ChIs correlated to the iLFP might be a useful tool for estimating the degree of contribution of top-down and bottom-up inputs in regulating the firing activity of ChIs.

About the authors

Yan-Feng Zhang

Department of Anatomy, Brain Health Research Centre, University of Otago

Author for correspondence.
Email: info@benthamscience.net

John Reynolds

Department of Anatomy, Brain Health Research Centre, University of Otago

Email: info@benthamscience.net

References

  1. Aosaki, T.; Graybiel, A.M.; Kimura, M. Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. Science, 1994, 265(5170), 412-415. doi: 10.1126/science.8023166 PMID: 8023166
  2. Aosaki, T.; Tsubokawa, H.; Ishida, A.; Watanabe, K.; Graybiel, A.M.; Kimura, M. Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioning. J. Neurosci., 1994, 14(6), 3969-3984. doi: 10.1523/JNEUROSCI.14-06-03969.1994 PMID: 8207500
  3. Apicella, P. Leading tonically active neurons of the striatum from reward detection to context recognition. Trends Neurosci., 2007, 30(6), 299-306. doi: 10.1016/j.tins.2007.03.011 PMID: 17420057
  4. Bradfield, L.A.; Bertran-Gonzalez, J.; Chieng, B.; Balleine, B.W. The thalamostriatal pathway and cholinergic control of goal-directed action: interlacing new with existing learning in the striatum. Neuron, 2013, 79(1), 153-166. doi: 10.1016/j.neuron.2013.04.039 PMID: 23770257
  5. Cragg, S.J. Meaningful silences: how dopamine listens to the ACh pause. Trends Neurosci., 2006, 29(3), 125-131. doi: 10.1016/j.tins.2006.01.003 PMID: 16443285
  6. Reynolds, J.N.J.; Avvisati, R.; Dodson, P.D.; Fisher, S.D.; Oswald, M.J.; Wickens, J.R.; Zhang, Y.F. Coincidence of cholinergic pauses, dopaminergic activation and depolarisation of spiny projection neurons drives synaptic plasticity in the striatum. Nat. Commun., 2022, 13(1), 1296. doi: 10.1038/s41467-022-28950-0 PMID: 35277506
  7. Aosaki, T.; Miura, M.; Suzuki, T.; Nishimura, K.; Masuda, M. Acetylcholine-dopamine balance hypothesis in the striatum: An update. Geriatr. Gerontol. Int., 2010, 10(s1)(Suppl. 1), S148-S157. doi: 10.1111/j.1447-0594.2010.00588.x PMID: 20590830
  8. Apicella, P.; Ravel, S.; Deffains, M.; Legallet, E. The role of striatal tonically active neurons in reward prediction error signaling during instrumental task performance. J. Neurosci., 2011, 31(4), 1507-1515. doi: 10.1523/JNEUROSCI.4880-10.2011 PMID: 21273435
  9. Joshua, M.; Adler, A.; Mitelman, R.; Vaadia, E.; Bergman, H. Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J. Neurosci., 2008, 28(45), 11673-11684. doi: 10.1523/JNEUROSCI.3839-08.2008 PMID: 18987203
  10. Morris, G.; Arkadir, D.; Nevet, A.; Vaadia, E.; Bergman, H. Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron, 2004, 43(1), 133-143. doi: 10.1016/j.neuron.2004.06.012 PMID: 15233923
  11. Cachope, R.; Mateo, Y.; Mathur, B.N.; Irving, J.; Wang, H.L.; Morales, M.; Lovinger, D.M.; Cheer, J.F. Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing. Cell Rep., 2012, 2(1), 33-41. doi: 10.1016/j.celrep.2012.05.011 PMID: 22840394
  12. Kosillo, P.; Zhang, Y.F.; Threlfell, S.; Cragg, S.J. Cortical control of striatal dopamine transmission via striatal cholinergic interneurons. Cereb. Cortex, 2016, 26(11), 4160-4169. doi: 10.1093/cercor/bhw252 PMID: 27566978
  13. Threlfell, S.; Lalic, T.; Platt, N.J.; Jennings, K.A.; Deisseroth, K.; Cragg, S.J. Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron, 2012, 75(1), 58-64. doi: 10.1016/j.neuron.2012.04.038 PMID: 22794260
  14. Liu, C.; Cai, X.; Ritzau-Jost, A.; Kramer, P.F.; Li, Y.; Khaliq, Z.M.; Hallermann, S.; Kaeser, P.S. An action potential initiation mechanism in distal axons for the control of dopamine release. Science, 2022, 375(6587), 1378-1385. doi: 10.1126/science.abn0532 PMID: 35324301
  15. Kramer, P.F.; Brill-Weil, S.G.; Cummins, A.C.; Zhang, R.; Camacho-Hernandez, G.A.; Newman, A.H.; Eldridge, M.A.G.; Averbeck, B.B.; Khaliq, Z.M. Synaptic-like axo-axonal transmission from striatal cholinergic interneurons onto dopaminergic fibers. Neuron, 2022, 110(18), 2949-2960.e4. doi: 10.1016/j.neuron.2022.07.011 PMID: 35931070
  16. Zhang, Y.F.; Cragg, S.J. Pauses in striatal cholinergic interneurons: What is revealed by their common themes and variations? Front. Syst. Neurosci., 2017, 11, 80. doi: 10.3389/fnsys.2017.00080 PMID: 29163075
  17. Klug, J.R.; Engelhardt, M.D.; Cadman, C.N.; Li, H.; Smith, J.B.; Ayala, S.; Williams, E.W.; Hoffman, H.; Jin, X. Differential inputs to striatal cholinergic and parvalbumin interneurons imply functional distinctions. eLife, 2018, 7, e35657. doi: 10.7554/eLife.35657 PMID: 29714166
  18. Reynolds, J.N.J.; Wickens, J.R. The corticostriatal input to giant aspiny interneurons in the rat: a candidate pathway for synchronising the response to reward-related cues. Brain Res., 2004, 1011(1), 115-128. doi: 10.1016/j.brainres.2004.03.026 PMID: 15140651
  19. Coizet, V.; Graham, J.H.; Moss, J.; Bolam, J.P.; Savasta, M.; McHaffie, J.G.; Redgrave, P.; Overton, P.G. Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J. Neurosci., 2009, 29(17), 5701-5709. doi: 10.1523/JNEUROSCI.0247-09.2009 PMID: 19403836
  20. Ding, J.B.; Guzman, J.N.; Peterson, J.D.; Goldberg, J.A.; Surmeier, D.J. Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron, 2010, 67(2), 294-307. doi: 10.1016/j.neuron.2010.06.017 PMID: 20670836
  21. Johansson, Y.; Silberberg, G. The functional organization of cortical and thalamic inputs onto five types of striatal neurons is determined by source and target cell identities. Cell Rep., 2020, 30(4), 1178-1194.e3. doi: 10.1016/j.celrep.2019.12.095 PMID: 31995757
  22. Oz, O.; Matityahu, L.; Mizrahi-Kliger, A.; Kaplan, A.; Berkowitz, N.; Tiroshi, L.; Bergman, H.; Goldberg, J.A. Non-uniform distribution of dendritic nonlinearities differentially engages thalamostriatal and corticostriatal inputs onto cholinergic interneurons. eLife, 2022, 11, e76039. doi: 10.7554/eLife.76039 PMID: 35815934
  23. Reynolds, J.N.J.; Hyland, B.I.; Wickens, J.R. Modulation of an afterhyperpolarization by the substantia nigra induces pauses in the tonic firing of striatal cholinergic interneurons. J. Neurosci., 2004, 24(44), 9870-9877. doi: 10.1523/JNEUROSCI.3225-04.2004 PMID: 15525771
  24. Zhang, Y.F.; Reynolds, J.N.J.; Cragg, S.J. Pauses in cholinergic interneuron activity are driven by excitatory input and delayed rectification, with dopamine modulation. Neuron, 2018, 98(5), 918-925.e3. doi: 10.1016/j.neuron.2018.04.027 PMID: 29754751
  25. Chuhma, N.; Mingote, S.; Moore, H.; Rayport, S. Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling. Neuron, 2014, 81(4), 901-912. doi: 10.1016/j.neuron.2013.12.027 PMID: 24559678
  26. Chuhma, N.; Mingote, S.; Yetnikoff, L.; Kalmbach, A.; Ma, T.; Ztaou, S.; Sienna, A.C.; Tepler, S.; Poulin, J.F.; Ansorge, M.; Awatramani, R.; Kang, U.J.; Rayport, S. Dopamine neuron glutamate cotransmission evokes a delayed excitation in lateral dorsal striatal cholinergic interneurons. eLife, 2018, 7, e39786. doi: 10.7554/eLife.39786 PMID: 30295607
  27. Brown, M.T.C.; Tan, K.R.; O’Connor, E.C.; Nikonenko, I.; Muller, D.; Lüscher, C. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature, 2012, 492(7429), 452-456. doi: 10.1038/nature11657 PMID: 23178810
  28. Schulz, J.M.; Oswald, M.J.; Reynolds, J.N.J. Visual-induced excitation leads to firing pauses in striatal cholinergic interneurons. J. Neurosci., 2011, 31(31), 11133-11143. doi: 10.1523/JNEUROSCI.0661-11.2011 PMID: 21813675
  29. Lapper, S.R.; Bolam, J.P. Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience, 1992, 51(3), 533-545. doi: 10.1016/0306-4522(92)90293-B PMID: 1488113
  30. Doig, N.M.; Magill, P.J.; Apicella, P.; Bolam, J.P.; Sharott, A. Cortical and thalamic excitation mediate the multiphasic responses of striatal cholinergic interneurons to motivationally salient stimuli. J. Neurosci., 2014, 34(8), 3101-3117. doi: 10.1523/JNEUROSCI.4627-13.2014 PMID: 24553950
  31. Aceves Buendia, J.J.; Tiroshi, L.; Chiu, W.H.; Goldberg, J.A. Selective remodeling of glutamatergic transmission to striatal cholinergic interneurons after dopamine depletion. Eur. J. Neurosci., 2019, 49(6), 824-833. doi: 10.1111/ejn.13715 PMID: 28922504
  32. Sharott, A.; Doig, N.M.; Mallet, N.; Magill, P.J. Relationships between the firing of identified striatal interneurons and spontaneous and driven cortical activities in vivo. J. Neurosci., 2012, 32(38), 13221-13236. doi: 10.1523/JNEUROSCI.2440-12.2012 PMID: 22993438
  33. Sharott, A.; Moll, C.K.E.; Engler, G.; Denker, M.; Grün, S.; Engel, A.K. Different subtypes of striatal neurons are selectively modulated by cortical oscillations. J. Neurosci., 2009, 29(14), 4571-4585. doi: 10.1523/JNEUROSCI.5097-08.2009 PMID: 19357282
  34. Wilson, C.J.; Chang, H.T.; Kitai, S.T. Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J. Neurosci., 1990, 10(2), 508-519. doi: 10.1523/JNEUROSCI.10-02-00508.1990 PMID: 2303856
  35. Dommett, E.; Coizet, V.; Blaha, C.D.; Martindale, J.; Lefebvre, V.; Walton, N.; Mayhew, J.E.W.; Overton, P.G.; Redgrave, P. How visual stimuli activate dopaminergic neurons at short latency. Science, 2005, 307(5714), 1476-1479. doi: 10.1126/science.1107026 PMID: 15746431
  36. Schulz, J.M.; Redgrave, P.; Mehring, C.; Aertsen, A.; Clements, K.M.; Wickens, J.R.; Reynolds, J.N.J. Short-latency activation of striatal spiny neurons via subcortical visual pathways. J. Neurosci., 2009, 29(19), 6336-6347. doi: 10.1523/JNEUROSCI.4815-08.2009 PMID: 19439610
  37. Goldberg, J.A.; Reynolds, J.N.J. Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum. Neuroscience, 2011, 198, 27-43. doi: 10.1016/j.neuroscience.2011.08.067 PMID: 21925242
  38. Apicella, P.; Deffains, M.; Ravel, S.; Legallet, E. Tonically active neurons in the striatum differentiate between delivery and omission of expected reward in a probabilistic task context. Eur. J. Neurosci., 2009, 30(3), 515-526. doi: 10.1111/j.1460-9568.2009.06872.x PMID: 19656171
  39. Matsumoto, N.; Minamimoto, T.; Graybiel, A.M.; Kimura, M. Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J. Neurophysiol., 2001, 85(2), 960-976. doi: 10.1152/jn.2001.85.2.960 PMID: 11160526
  40. Aosaki, T.; Kimura, M.; Graybiel, A.M. Temporal and spatial characteristics of tonically active neurons of the primate’s striatum. J. Neurophysiol., 1995, 73(3), 1234-1252. doi: 10.1152/jn.1995.73.3.1234 PMID: 7608768
  41. Chantranupong, L.; Beron, C.C.; Zimmer, J.A.; Wen, M.J.; Wang, W.; Sabatini, B.L. Local and long-distance inputs dynamically regulate striatal acetylcholine during decision making. bioRxiv, 2022, 2022.2009.2009.507130. doi: 10.1101/2022.09.09.507130
  42. Krok, A.C.; Mistry, P.; Li, Y.; Tritsch, N.X. Intrinsic reward-like dopamine and acetylcholine dynamics in striatum. bioRxiv, 2022, 2022.2009.2009.507300. doi: 10.1101/2022.09.09.507300
  43. Wilson, C.J. The mechanism of intrinsic amplification of hyperpolarizations and spontaneous bursting in striatal cholinergic interneurons. Neuron, 2005, 45(4), 575-585. doi: 10.1016/j.neuron.2004.12.053 PMID: 15721243

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers