Inhibitory Pedunculopontine Neurons Gate Dopamine-Mediated Motor Actions of Unsigned Valence


Citar

Texto integral

Resumo

Background:The pedunculopontine nucleus (PPN) maintains a bidirectional connectivity with the basal ganglia that supports their shared roles in the selection and execution of motor actions. Previous studies identified a role for PPN neurons in goal-directed behavior, but the cellular substrates underlying this function have not been elucidated. We recently revealed the existence of a monosynaptic GABAergic input from the PPN that inhibits dopamine neurons of the substantia nigra. Activation of this pathway interferes with the execution of learned motor sequences when the actions are rewarded, even though the inhibition of dopamine neurons did not shift the value of the action, hence suggesting executive control over the gating of behavior.

Objective:To test the attributes of the inhibition of dopamine neurons by the PPN in the context of goal-directed behavior regardless of whether the outcome is positive or negative.

Methods:We delivered optogenetic stimulation to PPN GABAergic axon terminals in the substantia nigra during a battery of behavioral tasks with positive and negative valence.

Results:Inhibition of dopamine neurons by PPN optogenetic activation during an appetitive task impaired the initiation and overall execution of the behavioral sequence without affecting the consumption of reward. During an active avoidance task, the same activation impaired the ability of mice to avoid a foot shock, but their escape response was unaffected. In addition, responses to potential threats were significantly attenuated.

Conclusion:Our results show that PPN GABAergic neurons modulate learned, goal-directed behavior of unsigned valence without affecting overall motor behavior.

Sobre autores

Sirin Zhang

Center for Molecular and Behavioral Neuroscience, Rutgers University

Email: info@benthamscience.net

Juan Mena-Segovia

Center for Molecular and Behavioral Neuroscience, Rutgers University

Email: info@benthamscience.net

Nadine Gut

Center for Molecular and Behavioral Neuroscience, Rutgers University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Marsden, C.D. The mysterious motor function of the basal ganglia: The Robert Wartenberg Lecture. Neurology, 1982, 32(5), 514-539. doi: 10.1212/WNL.32.5.514 PMID: 7200209
  2. Yin, H.H. The basal ganglia in action. Neuroscientist, 2017, 23(3), 299-313. doi: 10.1177/1073858416654115 PMID: 27306757
  3. Hikosaka, O.; Kim, H.F.; Yasuda, M.; Yamamoto, S. Basal ganglia circuits for reward value-guided behavior. Annu. Rev. Neurosci., 2014, 37(1), 289-306. doi: 10.1146/annurev-neuro-071013-013924 PMID: 25032497
  4. Dudman, J.T.; Krakauer, J.W. The basal ganglia: From motor commands to the control of vigor. Curr. Opin. Neurobiol., 2016, 37, 158-166. doi: 10.1016/j.conb.2016.02.005 PMID: 27012960
  5. Redgrave, P.; Rodriguez, M.; Smith, Y.; Rodriguez-Oroz, M.C.; Lehericy, S.; Bergman, H.; Agid, Y.; DeLong, M.R.; Obeso, J.A. Goal-directed and habitual control in the basal ganglia: Implications for Parkinson’s disease. Nat. Rev. Neurosci., 2010, 11(11), 760-772. doi: 10.1038/nrn2915 PMID: 20944662
  6. Hikosaka, O.; Ghazizadeh, A.; Griggs, W.; Amita, H. Parallel basal ganglia circuits for decision making. J. Neural Transm. (Vienna), 2018, 125(3), 515-529. doi: 10.1007/s00702-017-1691-1 PMID: 28155134
  7. Schultz, W. Reward functions of the basal ganglia. J. Neural Transm. (Vienna), 2016, 123(7), 679-693. doi: 10.1007/s00702-016-1510-0 PMID: 26838982
  8. Rice, M.E.; Patel, J.C.; Cragg, S.J. Dopamine release in the basal ganglia. Neuroscience, 2011, 198, 112-137. doi: 10.1016/j.neuroscience.2011.08.066 PMID: 21939738
  9. Haber, S.N. The place of dopamine in the cortico-basal ganglia circuit. Neuroscience, 2014, 282, 248-257. doi: 10.1016/j.neuroscience.2014.10.008 PMID: 25445194
  10. Jin, X.; Costa, R.M. Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature, 2010, 466(7305), 457-462. doi: 10.1038/nature09263 PMID: 20651684
  11. Jin, X.; Tecuapetla, F.; Costa, R.M. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci., 2014, 17(3), 423-430. doi: 10.1038/nn.3632 PMID: 24464039
  12. da Silva, J.A.; Tecuapetla, F.; Paixão, V.; Costa, R.M. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature, 2018, 554(7691), 244-248. doi: 10.1038/nature25457 PMID: 29420469
  13. Bakhurin, K.I.; Li, X.; Friedman, A.D.; Lusk, N.A.; Watson, G.D.R.; Kim, N.; Yin, H.H. Opponent regulation of action performance and timing by striatonigral and striatopallidal pathways. eLife, 2020, 9, e54831. doi: 10.7554/eLife.54831 PMID: 32324535
  14. Kravitz, A.V.; Freeze, B.S.; Parker, P.R.L.; Kay, K.; Thwin, M.T.; Deisseroth, K.; Kreitzer, A.C. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 2010, 466(7306), 622-626. doi: 10.1038/nature09159 PMID: 20613723
  15. Bartholomew, R.A.; Li, H.; Gaidis, E.J.; Stackmann, M.; Shoemaker, C.T.; Rossi, M.A.; Yin, H.H. Striatonigral control of movement velocity in mice. Eur. J. Neurosci., 2016, 43(8), 1097-1110. doi: 10.1111/ejn.13187 PMID: 27091436
  16. Schultz, W.; Dayan, P.; Montague, P.R. A neural substrate of prediction and reward. Science, 1997, 275(5306), 1593-1599. doi: 10.1126/science.275.5306.1593 PMID: 9054347
  17. Watabe-Uchida, M.; Eshel, N.; Uchida, N. Neural circuitry of reward prediction error. Annu. Rev. Neurosci., 2017, 40(1), 373-394. doi: 10.1146/annurev-neuro-072116-031109 PMID: 28441114
  18. Lerner, T.N.; Holloway, A.L.; Seiler, J.L. Dopamine, updated: Reward prediction error and beyond. Curr. Opin. Neurobiol., 2021, 67, 123-130. doi: 10.1016/j.conb.2020.10.012 PMID: 33197709
  19. Cohen, J.Y.; Haesler, S.; Vong, L.; Lowell, B.B.; Uchida, N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature, 2012, 482(7383), 85-88. doi: 10.1038/nature10754 PMID: 22258508
  20. Tsutsui-Kimura, I.; Matsumoto, H.; Uchida, N.; Watabe-Uchida, M. Distinct temporal difference error signals in dopamine axons in three regions of the striatum in a decision-making task. ELife, 2020, 9, e62390. doi: 10.7554/eLife.62390 PMID: 33345774
  21. Parker, N.F.; Cameron, C.M.; Taliaferro, J.P.; Lee, J.; Choi, J.Y.; Davidson, T.J.; Daw, N.D.; Witten, I.B. Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target. Nat. Neurosci., 2016, 19(6), 845-854. doi: 10.1038/nn.4287 PMID: 27110917
  22. Moss, M.M.; Zatka-Haas, P.; Harris, K.D.; Carandini, M.; Lak, A. Dopamine axons in dorsal striatum encode contralateral visual stimuli and choices. J. Neurosci., 2021, 41(34), 7197-7205. doi: 10.1523/JNEUROSCI.0490-21.2021 PMID: 34253628
  23. Galtieri, D.J.; Estep, C.M.; Wokosin, D.L.; Traynelis, S.; Surmeier, D.J. Pedunculopontine glutamatergic neurons control spike patterning in substantia nigra dopaminergic neurons. eLife, 2017, 6, e30352. doi: 10.7554/eLife.30352 PMID: 28980939
  24. Lavoie, B.; Parent, A. Pedunculopontine nucleus in the squirrel monkey: Cholinergic and glutamatergic projections to the substantia nigra. J. Comp. Neurol., 1994, 344(2), 232-241. doi: 10.1002/cne.903440205 PMID: 7915727
  25. Clarke, P.B.S.; Hommer, D.W.; Pert, A.; Skirboll, L.R. Innervation of substantia nigra neurons by cholinergic afferents from pedunculopontine nucleus in the rat: Neuroanatomical and electrophysiological evidence. Neuroscience, 1987, 23(3), 1011-1019. doi: 10.1016/0306-4522(87)90176-X PMID: 3437988
  26. Gould, E.; Woolf, N.J.; Butcher, L.L. Cholinergic projections to the substantia nigra from the pedunculopontine and laterodorsal tegmental nuclei. Neuroscience, 1989, 28(3), 611-623. doi: 10.1016/0306-4522(89)90008-0 PMID: 2710334
  27. Gut, N.K.; Yilmaz, D.; Kondabolu, K.; Huerta-Ocampo, I.; Mena-Segovia, J. Selective inhibition of goal-directed actions in the mesencephalic locomotor region. BioRxiv, 2022. doi: 10.1101/2022.01.18.476772
  28. Josset, N.; Roussel, M.; Lemieux, M.; Lafrance-Zoubga, D.; Rastqar, A.; Bretzner, F. Distinct contributions of mesencephalic locomotor region nuclei to locomotor control in the freely behaving mouse. Curr. Biol., 2018, 28(6), 884-901.e3. doi: 10.1016/j.cub.2018.02.007 PMID: 29526593
  29. Roseberry, T.K.; Lee, A.M.; Lalive, A.L.; Wilbrecht, L.; Bonci, A.; Kreitzer, A.C. Cell-type-specific control of brainstem locomotor circuits by basal ganglia. Cell, 2016, 164(3), 526-537. doi: 10.1016/j.cell.2015.12.037 PMID: 26824660
  30. Caggiano, V.; Leiras, R.; Goñi-Erro, H.; Masini, D.; Bellardita, C.; Bouvier, J.; Caldeira, V.; Fisone, G.; Kiehn, O. Midbrain circuits that set locomotor speed and gait selection. Nature, 2018, 553(7689), 455-460. doi: 10.1038/nature25448 PMID: 29342142
  31. Dautan, D.; Kovács, A.; Bayasgalan, T.; Diaz-Acevedo, M.A.; Pal, B.; Mena-Segovia, J. Modulation of motor behavior by the mesencephalic locomotor region. Cell Rep., 2021, 36(8), 109594. doi: 10.1016/j.celrep.2021.109594 PMID: 34433068
  32. Masini, D.; Kiehn, O. Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism. Nat. Commun., 2022, 13(1), 504. doi: 10.1038/s41467-022-28075-4 PMID: 35082287
  33. Gut, N.K.; Mena-Segovia, J. Midbrain cholinergic neurons signal negative feedback to promote behavioral flexibility. Trends Neurosci., 2022, 45(7), 502-503. doi: 10.1016/j.tins.2022.04.005 PMID: 35534340
  34. Dautan, D.; Huerta-Ocampo, I.; Gut, N.K.; Valencia, M.; Kondabolu, K.; Kim, Y.; Gerdjikov, T.V.; Mena-Segovia, J. Cholinergic midbrain afferents modulate striatal circuits and shape encoding of action strategies. Nat. Commun., 2020, 11(1), 1739. doi: 10.1038/s41467-020-15514-3 PMID: 32269213
  35. MacLaren, D.A.A.; Markovic, T.; Clark, S.D. Assessment of sensorimotor gating following selective lesions of cholinergic pedunculopontine neurons. Eur. J. Neurosci., 2014, 40(10), 3526-3537. doi: 10.1111/ejn.12716 PMID: 25208852
  36. Ruan, Y.; Li, K.Y.; Zheng, R.; Yan, Y.Q.; Wang, Z.X.; Chen, Y.; Liu, Y.; Tian, J.; Zhu, L.Y.; Lou, H.F.; Yu, Y.Q.; Pu, J.L.; Zhang, B.R. Cholinergic neurons in the pedunculopontine nucleus guide reversal learning by signaling the changing reward contingency. Cell Rep., 2022, 38(9), 110437. doi: 10.1016/j.celrep.2022.110437 PMID: 35235804
  37. Xiao, C.; Cho, J.R.; Zhou, C.; Treweek, J.B.; Chan, K.; McKinney, S.L.; Yang, B.; Gradinaru, V. Cholinergic mesopontine signals govern locomotion and reward through dissociable midbrain pathways. Neuron, 2016, 90(2), 333-347. doi: 10.1016/j.neuron.2016.03.028 PMID: 27100197
  38. Blaha, C.D.; Winn, P. Modulation of dopamine efflux in the striatum following cholinergic stimulation of the substantia nigra in intact and pedunculopontine tegmental nucleus-lesioned rats. J. Neurosci., 1993, 13(3), 1035-1044. doi: 10.1523/JNEUROSCI.13-03-01035.1993 PMID: 8441002
  39. Dautan, D.; Souza, A.S.; Huerta-Ocampo, I.; Valencia, M.; Assous, M.; Witten, I.B.; Deisseroth, K.; Tepper, J.M.; Bolam, J.P.; Gerdjikov, T.V.; Mena-Segovia, J. Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits. Nat. Neurosci., 2016, 19(8), 1025-1033. doi: 10.1038/nn.4335 PMID: 27348215
  40. Yoo, J.H.; Zell, V.; Wu, J.; Punta, C.; Ramajayam, N.; Shen, X.; Faget, L.; Lilascharoen, V.; Lim, B.K.; Hnasko, T.S. Activation of pedunculopontine glutamate neurons is reinforcing. J. Neurosci., 2017, 37(1), 38-46. doi: 10.1523/JNEUROSCI.3082-16.2016 PMID: 28053028
  41. Estakhr, J.; Abazari, D.; Frisby, K.; McIntosh, J.M.; Nashmi, R. Differential control of dopaminergic excitability and locomotion by cholinergic inputs in mouse substantia nigra. Curr. Biol., 2017, 27(13), 1900-1914.e4. doi: 10.1016/j.cub.2017.05.084 PMID: 28648825
  42. Wilson, D.I.G.; MacLaren, D.A.A.; Winn, P. Bar pressing for food: Differential consequences of lesions to the anterior versus posterior pedunculopontine. Eur. J. Neurosci., 2009, 30(3), 504-513. doi: 10.1111/j.1460-9568.2009.06836.x PMID: 19614747
  43. MacLaren, D.A.A.; Wilson, D.I.G.; Winn, P. Updating of action–outcome associations is prevented by inactivation of the posterior pedunculopontine tegmental nucleus. Neurobiol. Learn. Mem., 2013, 102, 28-33. doi: 10.1016/j.nlm.2013.03.002 PMID: 23567109
  44. Taylor, C.L.; Kozak, R.; Latimer, M.P.; Winn, P. Effects of changing reward on performance of the delayed spatial win-shift radial maze task in pedunculopontine tegmental nucleus lesioned rats. Behav. Brain Res., 2004, 153(2), 431-438. doi: 10.1016/j.bbr.2003.12.019 PMID: 15265639
  45. Thompson, J.A.; Costabile, J.D.; Felsen, G. Mesencephalic representations of recent experience influence decision making. eLife, 2016, 5, e16572. doi: 10.7554/eLife.16572 PMID: 27454033
  46. Okada, K.; Kobayashi, Y. Rhythmic firing of pedunculopontine tegmental nucleus neurons in monkeys during eye movement task. PLoS One, 2015, 10(6), e0128147. doi: 10.1371/journal.pone.0128147 PMID: 26030664
  47. Tian, J.; Huang, R.; Cohen, J.Y.; Osakada, F.; Kobak, D.; Machens, C.K.; Callaway, E.M.; Uchida, N.; Watabe-Uchida, M. Distributed and mixed information in monosynaptic inputs to dopamine neurons. Neuron, 2016, 91(6), 1374-1389. doi: 10.1016/j.neuron.2016.08.018 PMID: 27618675
  48. Skvortsova, V.; Palminteri, S.; Buot, A.; Karachi, C.; Welter, M.L.; Grabli, D.; Pessiglione, M. A causal role for the pedunculopontine nucleus in human instrumental learning. Curr. Biol., 2021, 31(5), 943-954.e5. doi: 10.1016/j.cub.2020.11.042 PMID: 33352119
  49. Norton, A.B.W.; Jo, Y.S.; Clark, E.W.; Taylor, C.A.; Mizumori, S.J.Y. Independent neural coding of reward and movement by pedunculopontine tegmental nucleus neurons in freely navigating rats. Eur. J. Neurosci., 2011, 33(10), 1885-1896. doi: 10.1111/j.1460-9568.2011.07649.x PMID: 21395868
  50. Okada, K.; Toyama, K.; Inoue, Y.; Isa, T.; Kobayashi, Y. Different pedunculopontine tegmental neurons signal predicted and actual task rewards. J. Neurosci., 2009, 29(15), 4858-4870. doi: 10.1523/JNEUROSCI.4415-08.2009 PMID: 19369554
  51. Hong, S.; Hikosaka, O. Pedunculopontine tegmental nucleus neurons provide reward, sensorimotor, and alerting signals to midbrain dopamine neurons. Neuroscience, 2014, 282, 139-155. doi: 10.1016/j.neuroscience.2014.07.002 PMID: 25058502
  52. Pan, W.X.; Hyland, B.I. Pedunculopontine tegmental nucleus controls conditioned responses of midbrain dopamine neurons in behaving rats. J. Neurosci., 2005, 25(19), 4725-4732. doi: 10.1523/JNEUROSCI.0277-05.2005 PMID: 15888648
  53. Kobayashi, Y.; Inoue, Y.; Yamamoto, M.; Isa, T.; Aizawa, H. Contribution of pedunculopontine tegmental nucleus neurons to performance of visually guided saccade tasks in monkeys. J. Neurophysiol., 2002, 88(2), 715-731. doi: 10.1152/jn.2002.88.2.715 PMID: 12163524
  54. Menegas, W.; Akiti, K.; Amo, R.; Uchida, N.; Watabe-Uchida, M. Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli. Nat. Neurosci., 2018, 21(10), 1421-1430. doi: 10.1038/s41593-018-0222-1 PMID: 30177795
  55. Ungless, M.A.; Argilli, E.; Bonci, A. Effects of stress and aversion on dopamine neurons: Implications for addiction. Neurosci. Biobehav. Rev., 2010, 35(2), 151-156. doi: 10.1016/j.neubiorev.2010.04.006 PMID: 20438754
  56. Matsumoto, M.; Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature, 2009, 459(7248), 837-841. doi: 10.1038/nature08028 PMID: 19448610
  57. Tsutsui-Kimura, I.; Uchida, N.; Watabe-Uchida, M. Dynamical management of potential threats regulated by dopamine and direct- and indirect-pathway neurons in the tail of the striatum. bioRxiv, 2022. doi: 10.1101/2022.02.05.479267
  58. Poulin, J.F.; Caronia, G.; Hofer, C.; Cui, Q.; Helm, B.; Ramakrishnan, C.; Chan, C.S.; Dombeck, D.A.; Deisseroth, K.; Awatramani, R. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat. Neurosci., 2018, 21(9), 1260-1271. doi: 10.1038/s41593-018-0203-4 PMID: 30104732
  59. Ko, D.; Wanat, M.J. Phasic dopamine transmission reflects initiation vigor and exerted effort in an action- and region-specific manner. J. Neurosci., 2016, 36(7), 2202-2211. doi: 10.1523/JNEUROSCI.1279-15.2016 PMID: 26888930
  60. Augustin, S.M.; Loewinger, G.C.; O’Neal, T.J.; Kravitz, A.V.; Lovinger, D.M. Dopamine D2 receptor signaling on iMSNs is required for initiation and vigor of learned actions. Neuropsychopharmacology, 2020, 45(12), 2087-2097. doi: 10.1038/s41386-020-00799-1 PMID: 32811899
  61. Wassum, K.M.; Ostlund, S.B.; Maidment, N.T. Phasic mesolimbic dopamine signaling precedes and predicts performance of a self-initiated action sequence task. Biol. Psychiatry, 2012, 71(10), 846-854. doi: 10.1016/j.biopsych.2011.12.019 PMID: 22305286
  62. Markowitz, J.E.; Gillis, W.F.; Jay, M.; Wood, J.; Harris, R.W.; Cieszkowski, R.; Scott, R.; Brann, D.; Koveal, D.; Kula, T.; Weinreb, C.; Osman, M.A.M.; Pinto, S.R.; Uchida, N.; Linderman, S.W.; Sabatini, B.L.; Datta, S.R. Spontaneous behaviour is structured by reinforcement without explicit reward. Nature, 2023, 614(7946), 108-117. doi: 10.1038/s41586-022-05611-2 PMID: 36653449
  63. Beierholm, U.; Guitart-Masip, M.; Economides, M.; Chowdhury, R.; Düzel, E.; Dolan, R.; Dayan, P. Dopamine modulates reward-related vigor. Neuropsychopharmacology, 2013, 38(8), 1495-1503. doi: 10.1038/npp.2013.48 PMID: 23419875
  64. Mazzoni, P.; Hristova, A.; Krakauer, J.W. Why don’t we move faster? Parkinson’s disease, movement vigor, and implicit motivation. J. Neurosci., 2007, 27(27), 7105-7116. doi: 10.1523/JNEUROSCI.0264-07.2007 PMID: 17611263
  65. Mohebi, A.; Pettibone, J.R.; Hamid, A.A.; Wong, J.M.T.; Vinson, L.T.; Patriarchi, T.; Tian, L.; Kennedy, R.T.; Berke, J.D. Dissociable dopamine dynamics for learning and motivation. Nature, 2019, 570(7759), 65-70. doi: 10.1038/s41586-019-1235-y PMID: 31118513
  66. Zénon, A.; Devesse, S.; Olivier, E. Dopamine manipulation affects response vigor independently of opportunity cost. J. Neurosci., 2016, 36(37), 9516-9525. doi: 10.1523/JNEUROSCI.4467-15.2016 PMID: 27629704
  67. Van Wouwe, N.C.; Claassen, D.O.; Neimat, J.S.; Kanoff, K.E.; Wylie, S.A. Dopamine selectively modulates the outcome of learning unnatural action-valence associations. J. Cogn. Neurosci., 2017, 29(5), 816-826. doi: 10.1162/jocn_a_01099 PMID: 28129053
  68. Koob, G.F. Hedonic valence, dopamine and motivation. Mol. Psychiatry, 1996, 1(3), 186-189. PMID: 9118342
  69. Hamid, A.A.; Pettibone, J.R.; Mabrouk, O.S.; Hetrick, V.L.; Schmidt, R.; Vander Weele, C.M.; Kennedy, R.T.; Aragona, B.J.; Berke, J.D. Mesolimbic dopamine signals the value of work. Nat. Neurosci., 2016, 19(1), 117-126. doi: 10.1038/nn.4173 PMID: 26595651
  70. Cui, G.; Jun, S.B.; Jin, X.; Pham, M.D.; Vogel, S.S.; Lovinger, D.M.; Costa, R.M. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature, 2013, 494(7436), 238-242. doi: 10.1038/nature11846 PMID: 23354054
  71. Tecuapetla, F.; Jin, X.; Lima, S.Q.; Costa, R.M. Complementary contributions of striatal projection pathways to action initiation and execution. Cell, 2016, 166(3), 703-715. doi: 10.1016/j.cell.2016.06.032 PMID: 27453468
  72. Syed, E.C.J.; Grima, L.L.; Magill, P.J.; Bogacz, R.; Brown, P.; Walton, M.E. Action initiation shapes mesolimbic dopamine encoding of future rewards. Nat. Neurosci., 2016, 19(1), 34-36. doi: 10.1038/nn.4187 PMID: 26642087
  73. Menegas, W.; Bergan, J.F.; Ogawa, S.K.; Isogai, Y.; Umadevi Venkataraju, K.; Osten, P.; Uchida, N.; Watabe-Uchida, M. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife, 2015, 4, e10032. doi: 10.7554/eLife.10032 PMID: 26322384
  74. Akiti, K.; Tsutsui-Kimura, I.; Xie, Y.; Mathis, A.; Markowitz, J.E.; Anyoha, R.; Datta, S.R.; Mathis, M.W.; Uchida, N.; Watabe-Uchida, M. Striatal dopamine explains novelty-induced behavioral dynamics and individual variability in threat prediction. Neuron, 2022, 110(22), 3789-3804.e9. doi: 10.1016/j.neuron.2022.08.022 PMID: 36130595
  75. Gangarossa, G.; Castell, L.; Castro, L.; Tarot, P.; Veyrunes, F.; Vincent, P.; Bertaso, F.; Valjent, E. Contrasting patterns of ERK activation in the tail of the striatum in response to aversive and rewarding signals. J. Neurochem., 2019, 151(2), 204-226. doi: 10.1111/jnc.14804 PMID: 31245856
  76. Crego, A.C.G. Štoček, F.; Marchuk, A.G.; Carmichael, J.E.; van der Meer, M.A.A.; Smith, K.S. Complementary control over habits and behavioral vigor by phasic activity in the dorsolateral striatum. J. Neurosci., 2020, 40(10), 2139-2153. doi: 10.1523/JNEUROSCI.1313-19.2019 PMID: 31969469

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024