Striatal Acetylcholine and Dopamine Interactions Produce Situationappropriate Action Selection


Citar

Texto integral

Resumo

Individuals often learn how to perform new actions for particular outcomes against a complex background of existing action-outcome associations. As such, this new knowledge can interfere or even compete with existing knowledge, such that individuals must use internal and external cues to determine which action is appropriate to the current situation. The question thus remains as to how this problem is solved at a neural level. Research over the last decade or so has begun to determine how the brain achieves situation-appropriate action selection. Several converging lines of evidence suggest that it is achieved through the complex interactions of acetylcholine and dopamine within the striatum in a manner that relies on glutamatergic inputs from the cortex and thalamus. Here we briefly review this evidence, then relate it to several very recent findings to provide new, speculative insights regarding the precise nature of striatal acetylcholine/dopamine interaction dynamics and their relation to situation-appropriate action selection.

Sobre autores

Laura Bradfield

School of Life Sciences, Faculty of Science, University of Technology Sydney

Autor responsável pela correspondência
Email: info@benthamscience.net

Serena Becchi

Decision Neuroscience Laboratory, School of Psychology, University of New South Wales Sydney

Email: info@benthamscience.net

Michael Kendig

School of Life Sciences, Faculty of Science, University of Technology Sydne

Email: info@benthamscience.net

Bibliografia

  1. Balleine, B.W.; Peak, J.; Matamales, M.; Bertran-Gonzalez, J.; Hart, G. The dorsomedial striatum: an optimal cellular environment for encoding and updating goal-directed learning. Curr. Opin. Behav. Sci., 2021, 41, 38-44. doi: 10.1016/j.cobeha.2021.03.004
  2. Stayte, S.; Dhungana, A.; Vissel, B.; Bradfield, L.A. Parafascicular thalamic and orbitofrontal cortical inputs to striatum represent states for goal-directed action selection. Front. Behav. Neurosci., 2021, 15, 655029. doi: 10.3389/fnbeh.2021.655029 PMID: 33841111
  3. Yin, H.H.; Ostlund, S.B.; Knowlton, B.J.; Balleine, B.W. The role of the dorsomedial striatum in instrumental conditioning. Eur. J. Neurosci., 2005, 22(2), 513-523. doi: 10.1111/j.1460-9568.2005.04218.x PMID: 16045504
  4. Yin, H.H.; Knowlton, B.J.; Balleine, B.W. Blockade of NMDA receptors in the dorsomedial striatum prevents action-outcome learning in instrumental conditioning. Eur. J. Neurosci., 2005, 22(2), 505-512. doi: 10.1111/j.1460-9568.2005.04219.x PMID: 16045503
  5. Balleine, B.W.; Dickinson, A. Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates. Neuropharmacology, 1998, 37(4-5), 407-419. doi: 10.1016/S0028-3908(98)00033-1 PMID: 9704982
  6. Balleine, B.W. The meaning of behavior: Discriminating reflex and volition in the brain. Neuron, 2019, 104(1), 47-62. doi: 10.1016/j.neuron.2019.09.024 PMID: 31600515
  7. Bradfield, L.A.; Bertran-Gonzalez, J.; Chieng, B.; Balleine, B.W. The thalamostriatal pathway and cholinergic control of goal-directed action: interlacing new with existing learning in the striatum. Neuron, 2013, 79(1), 153-166. doi: 10.1016/j.neuron.2013.04.039 PMID: 23770257
  8. Bell, T.; Lindner, M.; Mullins, P.G.; Christakou, A. Functional neurochemical imaging of the human striatal cholinergic system during reversal learning. Eur. J. Neurosci., 2018, 47(10), 1184-1193. doi: 10.1111/ejn.13803 PMID: 29265530
  9. Bell, T.; Lindner, M.; Langdon, A.; Mullins, P.G.; Christakou, A. Regional striatal cholinergic involvement in human behavioral flexibility. J. Neurosci., 2019, 39(29), 5740-5749. doi: 10.1523/JNEUROSCI.2110-18.2019 PMID: 31109959
  10. Peak, J.; Chieng, B.; Hart, G.; Balleine, B.W. Striatal direct and indirect pathway neurons differentially control the encoding and updating of goal-directed learning. eLife, 2020, 9, e58544. doi: 10.7554/eLife.58544 PMID: 33215609
  11. Matamales, M.; McGovern, A.E.; Mi, J.D.; Mazzone, S.B.; Balleine, B.W.; Bertran-Gonzalez, J. Local D2- to D1-neuron transmodulation updates goal-directed learning in the striatum. Science, 2020, 367(6477), 549-555. doi: 10.1126/science.aaz5751 PMID: 32001651
  12. Tonegawa, S.; Pignatelli, M.; Roy, D.S.; Ryan, T.J. Memory engram storage and retrieval. Curr. Opin. Neurobiol., 2015, 35, 101-109. doi: 10.1016/j.conb.2015.07.009 PMID: 26280931
  13. Zucca, S.; Zucca, A.; Nakano, T.; Aoki, S.; Wickens, J. Pauses in cholinergic interneuron firing exert an inhibitory control on striatal output in vivo. eLife, 2018, 7, e32510. doi: 10.7554/eLife.32510 PMID: 29578407
  14. Ding, J.B.; Guzman, J.N.; Peterson, J.D.; Goldberg, J.A.; Surmeier, D.J. Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron, 2010, 67(2), 294-307. doi: 10.1016/j.neuron.2010.06.017 PMID: 20670836
  15. Liu, C.; Cai, X.; Ritzau-Jost, A.; Kramer, P.F.; Li, Y.; Khaliq, Z.M.; Hallermann, S.; Kaeser, P.S. An action potential initiation mechanism in distal axons for the control of dopamine release. Science, 2022, 375(6587), 1378-1385. doi: 10.1126/science.abn0532 PMID: 35324301
  16. Becchi, S.; Chieng, B.; Bradfield, L.A.; Capellán, R.; Leung, B.K.; Balleine, B.W. Cognitive effects of thalamostriatal degeneration are ameliorated by normalizing striatal cholinergic activity. BioRxiv, 2022. doi: 10.1101/2022.08.25.505358
  17. Lange, F.; Seer, C.; Loens, S.; Wegner, F.; Schrader, C.; Dressler, D.; Dengler, R.; Kopp, B. Neural mechanisms underlying cognitive inflexibility in Parkinson’s disease. Neuropsychologia, 2016, 93(Pt A), 142-150. doi: 10.1016/j.neuropsychologia.2016.09.021 PMID: 27693667
  18. Malcolm, B.R.; Foxe, J.J.; Butler, J.S.; De Sanctis, P. The aging brain shows less flexible reallocation of cognitive resources during dual-task walking: A mobile brain/body imaging (MoBI) study. Neuroimage, 2015, 117, 230-242. doi: 10.1016/j.neuroimage.2015.05.028 PMID: 25988225
  19. de Lores Arnaiz, G.R.; Ordieres, M.G.L. Brain Na(+), K(+)-ATPase activity in aging and disease. Int. J. Biomed. Sci., 2014, 10(2), 85-102. PMID: 25018677
  20. Chantranupong, L.; Beron, C.C.; Zimmer, J.A.; Wen, M.J.; Wang, W.; Sabatini, B.L. Dopamine and glutamate regulate striatal acetylcholine in decision-making. Nature, 2023, 621(7979), 577-585. doi: 10.1038/s41586-023-06492-9
  21. Krok, A.C.; Maltese, M.; Mistry, P.; Miao, X.; Li, Y.; Tritsch, N.X. Intrinsic dopamine and acetylcholine dynamics in the striatum of mice. Nature, 2023, 621(7979), 543-548. doi: 10.1038/s41586-023-05995-9
  22. Bradfield, L.A.; Hart, G.; Balleine, B.W. The role of the anterior, mediodorsal, and parafascicular thalamus in instrumental conditioning. Front. Syst. Neurosci., 2013, 7, 51. doi: 10.3389/fnsys.2013.00051 PMID: 24130522
  23. Prado, V.F.; Janickova, H.; Al-Onaizi, M.A.; Prado, M.A.M. Cholinergic circuits in cognitive flexibility. Neuroscience, 2017, 345, 130-141. doi: 10.1016/j.neuroscience.2016.09.013 PMID: 27641830
  24. Ragozzino, M.E.; Artis, S.; Singh, A.; Twose, T.M.; Beck, J.E.; Messer, W.S., Jr The selective M1 muscarinic cholinergic agonist CDD-0102A enhances working memory and cognitive flexibility. J. Pharmacol. Exp. Ther., 2012, 340(3), 588-594. doi: 10.1124/jpet.111.187625 PMID: 22135384
  25. Townsend, E.S.; Amaya, K.A.; Smedley, E.B.; Smith, K.S. Nucleus accumbens acetylcholine receptors modulate the balance of flexible and inflexible cue-directed motivation. Neuroscience, 2022. doi: 10.1101/2022.12.22.521615
  26. Mamaligas, A.A.; Barcomb, K.; Ford, C.P. Cholinergic transmission at muscarinic synapses in the striatum is driven equally by cortical and thalamic inputs. Cell Rep., 2019, 28(4), 1003-1014.e3. doi: 10.1016/j.celrep.2019.06.077 PMID: 31340139
  27. Matamales, M.; Götz, J.; Bertran-Gonzalez, J. Quantitative imaging of cholinergic interneurons reveals a distinctive spatial organization and a functional gradient across the mouse striatum. PLoS One, 2016, 11(6), e0157682. doi: 10.1371/journal.pone.0157682
  28. Holly, E.N.; Davatolhagh, M.F.; Choi, K.; Alabi, O.O.; Vargas Cifuentes, L.; Fuccillo, M.V. Striatal low-threshold spiking interneurons regulate goal-directed learning. Neuron, 2019, 103(1), 92-101.e6. doi: 10.1016/j.neuron.2019.04.016 PMID: 31097361
  29. Kaminer, J.; Espinoza, D.; Bhimani, S.; Tepper, J.M.; Koos, T.; Shiflett, M.W. Loss of striatal tyrosine‐hydroxylase interneurons impairs instrumental goal‐directed behavior. Eur. J. Neurosci., 2019, 50(4), 2653-2662. doi: 10.1111/ejn.14412 PMID: 30941837

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024