Pathways from the Superior Colliculus to the Basal Ganglia


Цитировать

Полный текст

Аннотация

The present work aims to review the structural organization of the mammalian superior colliculus (SC), the putative pathways connecting the SC and the basal ganglia, and their role in organizing complex behavioral output. First, we review how the complex intrinsic connections between the SC’s laminae projections allow for the construction of spatially aligned, visual-multisensory maps of the surrounding environment. Moreover, we present a summary of the sensory-motor inputs of the SC, including a description of the integration of multi-sensory inputs relevant to behavioral control. We further examine the major descending outputs toward the brainstem and spinal cord. As the central piece of this review, we provide a thorough analysis covering the putative interactions between the SC and the basal ganglia. To this end, we explore the diverse thalamic routes by which information from the SC may reach the striatum, including the pathways through the lateral posterior, parafascicular, and rostral intralaminar thalamic nuclei. We also examine the interactions between the SC and subthalamic nucleus, representing an additional pathway for the tectal modulation of the basal ganglia. Moreover, we discuss how information from the SC might also be relayed to the basal ganglia through midbrain tectonigral and tectotegmental projections directed at the substantia nigra compacta and ventrotegmental area, respectively, influencing the dopaminergic outflow to the dorsal and ventral striatum. We highlight the vast interplay between the SC and the basal ganglia and raise several missing points that warrant being addressed in future studies.

Об авторах

Fernando Melleu

Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo

Автор, ответственный за переписку.
Email: info@benthamscience.net

Newton Canteras

Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo

Email: info@benthamscience.net

Список литературы

  1. Butler, A.B.; Hodos, W. Comparative vertebrate neuroanatomy: Evolution and adaptation; John Wiley & Sons, 2005. doi: 10.1002/0471733849
  2. Basso, M.A.; Bickford, M.E.; Cang, J. Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron, 2021, 109(6), 918-937. doi: 10.1016/j.neuron.2021.01.013 PMID: 33548173
  3. Altman, J.; Carpenter, M.B. Fiber projections of the superior colliculus in the cat. J. Comp. Neurol., 1961, 116(2), 157-177. doi: 10.1002/cne.901160206 PMID: 13682733
  4. Cajal, S.R. Histology of the nervous system of man and vertebrates; Oxford Univ Press: New York, 1995.
  5. Werner, W.; Dannenberg, S.; Hoffmann, K.P. Arm-movement-related neurons in the primate superior colliculus and underlying reticular formation: comparison of neuronal activity with EMGs of muscles of the shoulder, arm and trunk during reaching. Exp. Brain Res., 1997, 115(2), 191-205. doi: 10.1007/PL00005690 PMID: 9224849
  6. Fischer, B.; Ramsperger, E. Human express saccades: Extremely short reaction times of goal directed eye movements. Exp. Brain Res., 1984, 57(1), 191-195. doi: 10.1007/BF00231145 PMID: 6519226
  7. Savjani, R.R.; Katyal, S.; Halfen, E.; Kim, J.H.; Ress, D. Polar-angle representation of saccadic eye movements in human superior colliculus. Neuroimage, 2018, 171, 199-208. doi: 10.1016/j.neuroimage.2017.12.080 PMID: 29292132
  8. Frost, B.J.; Wise, L.Z.; Morgan, B.; Bird, D. Retinotopic representation of the bifoveate eye of the kestrel (Falco sparverius) on the optic tectum. Vis. Neurosci., 1990, 5(3), 231-239. doi: 10.1017/S0952523800000304 PMID: 2134846
  9. Hunt, S.P.; Künzle, H. Observations on the projections and intrinsic organization of the pigeon optic tectum: An autoradiographic study based on anterograde and retrograde, axonal and dendritic flow. J. Comp. Neurol., 1976, 170(2), 153-172. doi: 10.1002/cne.901700203 PMID: 62764
  10. Qu, J.; Zhou, X.; Zhu, H.; Cheng, G.; Ashwell, K.W.; Lu, F. Development of the human superior colliculus and the retinocollicular projection. Exp. Eye Res., 2006, 82(2), 300-310. doi: 10.1016/j.exer.2005.07.002 PMID: 16125175
  11. Abplanalp, P. Some subcortical connections of the visual system in tree shrews and squirrels. Brain Behav. Evol., 1970, 3(1-4), 155-168. doi: 10.1159/000125468 PMID: 5522341
  12. Goldberg, M.E.; Wurtz, R.H. Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. J. Neurophysiol., 1972, 35(4), 560-574. doi: 10.1152/jn.1972.35.4.560 PMID: 4624740
  13. Wurtz, R.H.; Mohler, C.W. Organization of monkey superior colliculus: Enhanced visual response of superficial layer cells. J. Neurophysiol., 1976, 39(4), 745-765. doi: 10.1152/jn.1976.39.4.745 PMID: 823303
  14. Andrade da Costa, B.L.S.; Hokoç, J.N.; Pinaud, R.R.; Gattass, R. GABAergic retinocollicular projection in the new world monkey Cebus apella. Neuroreport, 1997, 8(8), 1797-1802. doi: 10.1097/00001756-199705260-00001 PMID: 9223054
  15. Apter, J.T. Projection of the retina on superior colliculus of cats. J. Neurophysiol., 1945, 8(2), 123-134. doi: 10.1152/jn.1945.8.2.123
  16. Berson, D.M. Retinal and cortical inputs to cat superior colliculus: composition, convergence and laminar specificity. Prog. Brain Res., 1988, 75, 17-26. doi: 10.1016/S0079-6123(08)60462-8
  17. Cusick, C.G.; Kaas, J.H. Retinal projections in adult and newborn grey squirrels. Brain Res. Dev. Brain Res., 1982, 4(3), 275-284. doi: 10.1016/0165-3806(82)90139-0 PMID: 6179578
  18. Perry, V.H.; Cowey, A. Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience, 1984, 12(4), 1125-1137. doi: 10.1016/0306-4522(84)90007-1 PMID: 6483194
  19. Bickford, M.E.; Zhou, N.; Krahe, T.E.; Govindaiah, G.; Guido, W. Retinal and tectal "Driver-Like" inputs converge in the shell of the mouse dorsal lateral geniculate nucleus. J. Neurosci., 2015, 35(29), 10523-10534. doi: 10.1523/JNEUROSCI.3375-14.2015 PMID: 26203147
  20. Gandhi, N.J.; Katnani, H.A. Motor functions of the superior colliculus. Annu. Rev. Neurosci., 2011, 34(1), 205-231. doi: 10.1146/annurev-neuro-061010-113728 PMID: 21456962
  21. Ghitani, N.; Bayguinov, P.O.; Vokoun, C.R.; McMahon, S.; Jackson, M.B.; Basso, M.A. Excitatory synaptic feedback from the motor layer to the sensory layers of the superior colliculus. J. Neurosci., 2014, 34(20), 6822-6833. doi: 10.1523/JNEUROSCI.3137-13.2014 PMID: 24828636
  22. Helmbrecht, T.O.; dal Maschio, M.; Donovan, J.C.; Koutsouli, S.; Baier, H. Topography of a visuomotor transformation. Neuron, 2018, 100(6), 1429-1445.e4. doi: 10.1016/j.neuron.2018.10.021 PMID: 30392799
  23. Isa, T.; Endo, T.; Saito, Y. The visuo-motor pathway in the local circuit of the rat superior colliculus. J. Neurosci., 1998, 18(20), 8496-8504. doi: 10.1523/JNEUROSCI.18-20-08496.1998 PMID: 9763492
  24. Wurtz, R.H.; Albano, J.E. Visual-motor function of the primate superior colliculus. Annu. Rev. Neurosci., 1980, 3(1), 189-226. doi: 10.1146/annurev.ne.03.030180.001201 PMID: 6774653
  25. Ghose, D.; Maier, A.; Nidiffer, A.; Wallace, M.T. Multisensory response modulation in the superficial layers of the superior colliculus. J. Neurosci., 2014, 34(12), 4332-4344. doi: 10.1523/JNEUROSCI.3004-13.2014 PMID: 24647954
  26. Bednárová, V.; Grothe, B.; Myoga, M.H. Complex and spatially segregated auditory inputs of the mouse superior colliculus. J. Physiol., 2018, 596(21), 5281-5298. doi: 10.1113/JP276370 PMID: 30206945
  27. Wang, N.; Perkins, E.; Zhou, L.; Warren, S.; May, P.J. Reticular formation connections underlying horizontal gaze: the central mesencephalic reticular formation (cMRF) as a conduit for the collicular saccade signal. Front. Neuroanat., 2017, 11, 36. doi: 10.3389/fnana.2017.00036 PMID: 28487639
  28. Coimbra, N.C.; De Oliveira, R.; Freitas, R.L.; Ribeiro, S.J.; Borelli, K.G.; Pacagnella, R.C.; Moreira, J.E.; da Silva, L.A.; Melo, L.L.; Lunardi, L.O.; Brandão, M.L. Neuroanatomical approaches of the tectum-reticular pathways and immunohistochemical evidence for serotonin-positive perikarya on neuronal substrates of the superior colliculus and periaqueductal gray matter involved in the elaboration of the defensive behavior and fear-induced analgesia. Exp. Neurol., 2006, 197(1), 93-112. doi: 10.1016/j.expneurol.2005.08.022 PMID: 16303128
  29. Chen, B.; May, P.J. The feedback circuit connecting the superior colliculus and central mesencephalic reticular formation: a direct morphological demonstration. Exp. Brain Res., 2000, 131(1), 10-21. doi: 10.1007/s002219900280 PMID: 10759167
  30. Chevalier, G.; Deniau, J.M. Spatio-temporal organization of a branched tecto-spinal/tecto-diencephalic neuronal system. Neuroscience, 1984, 12(2), 427-439. doi: 10.1016/0306-4522(84)90063-0 PMID: 6462457
  31. Cowie, R.J.; Holstege, G. Dorsal mesencephalic projections to pons, medulla, and spinal cord in the cat: Limbic and non-limbic components. J. Comp. Neurol., 1992, 319(4), 536-559. doi: 10.1002/cne.903190406 PMID: 1619044
  32. Dean, P.; Redgrave, P.; Sahibzada, N.; Tsuji, K. Head and body movements produced by electrical stimulation of superior colliculus in rats: Effects of interruption of crossed tectoreticulospinal pathway. Neuroscience, 1986, 19(2), 367-380. doi: 10.1016/0306-4522(86)90267-8 PMID: 3774146
  33. Sahibzada, N.; Yamasaki, D.; Rhoades, R.W. The spinal and commissural projections from the superior colliculus in rat and hamster arise from distinct neuronal populations. Brain Res., 1987, 415(2), 242-256. doi: 10.1016/0006-8993(87)90206-X PMID: 3607496
  34. Meredith, M.A.; Wallace, M.T.; Stein, B.E. Visual, auditory and somatosensory convergence in output neurons of the cat superior colliculus: multisensory properties of the tecto-reticulo-spinal projection. Exp. Brain Res., 1992, 88(1), 181-186. doi: 10.1007/BF02259139 PMID: 1541354
  35. Redgrave, P.; Dean, P.; Mitchell, I.J.; Odekunle, A.; Clark, A. The projection from superior colliculus to cuneiform area in the rat I. Anatomical studies. Exp. Brain Res., 1988, 72(3), 611-625. doi: 10.1007/BF00250606 PMID: 2466683
  36. Benavidez, N.L.; Bienkowski, M.S.; Zhu, M.; Garcia, L.H.; Fayzullina, M.; Gao, L.; Bowman, I.; Gou, L.; Khanjani, N.; Cotter, K.R.; Korobkova, L.; Becerra, M.; Cao, C.; Song, M.Y.; Zhang, B.; Yamashita, S.; Tugangui, A.J.; Zingg, B.; Rose, K.; Lo, D.; Foster, N.N.; Boesen, T.; Mun, H.S.; Aquino, S.; Wickersham, I.R.; Ascoli, G.A.; Hintiryan, H.; Dong, H.W. Organization of the inputs and outputs of the mouse superior colliculus. Nat. Commun., 2021, 12(1), 4004. doi: 10.1038/s41467-021-24241-2 PMID: 34183678
  37. Redgrave, P.; Mitchell, I.J.; Dean, P. Descending projections from the superior colliculus in rat: a study using orthograde transport of wheatgerm-agglutinin conjugated horseradish peroxidase. Exp. Brain Res., 1987, 68(1), 147-167. doi: 10.1007/BF00255241 PMID: 2826204
  38. Isa, T.; Marquez-Legorreta, E.; Grillner, S.; Scott, E.K. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr. Biol., 2021, 31(11), R741-R762. doi: 10.1016/j.cub.2021.04.001 PMID: 34102128
  39. Jay, M.F.; Sparks, D.L. Sensorimotor integration in the primate superior colliculus. I. Motor convergence. J. Neurophysiol., 1987, 57(1), 22-34. doi: 10.1152/jn.1987.57.1.22 PMID: 3559673
  40. Butler, B.E.; Chabot, N.; Lomber, S.G. A quantitative comparison of the hemispheric, areal, and laminar origins of sensory and motor cortical projections to the superior colliculus of the cat. J. Comp. Neurol., 2016, 524(13), 2623-2642. doi: 10.1002/cne.23980 PMID: 26850989
  41. Savier, E.; Eglen, S.J.; Bathélémy, A.; Perraut, M.; Pfrieger, F.W.; Lemke, G.; Reber, M. A molecular mechanism for the topographic alignment of convergent neural maps. elife, 2017, 6, e20470.
  42. Chalupa, L.M.; Rhoades, R.W. Responses of visual, somatosensory, and auditory neurones in the golden hamster’s superior colliculus. J. Physiol., 1977, 270(3), 595-626. doi: 10.1113/jphysiol.1977.sp011971 PMID: 903907
  43. Dräger, U.C.; Hubel, D.H. Responses to visual stimulation and relationship between visual, auditory, and somatosensory inputs in mouse superior colliculus. J. Neurophysiol., 1975, 38(3), 690-713. doi: 10.1152/jn.1975.38.3.690 PMID: 1127462
  44. Knudsen, E.I. Auditory and visual maps of space in the optic tectum of the owl. J. Neurosci., 1982, 2(9), 1177-1194. doi: 10.1523/JNEUROSCI.02-09-01177.1982 PMID: 7119872
  45. Palmer, A.R.; King, A.J. The representation of auditory space in the mammalian superior colliculus. Nature, 1982, 299(5880), 248-249. doi: 10.1038/299248a0 PMID: 7110344
  46. Wise, L.Z.; Irvine, D.R. Auditory response properties of neurons in deep layers of cat superior colliculus. J. Neurophysiol., 1983, 49(3), 674-685. doi: 10.1152/jn.1983.49.3.674 PMID: 6834093
  47. Tardif, E.; Clarke, S. Commissural connections of human superior colliculus. Neuroscience, 2002, 111(2), 363-372. doi: 10.1016/S0306-4522(01)00600-5 PMID: 11983321
  48. Jiang, W.; Jiang, H.; Stein, B.E. Two corticotectal areas facilitate multisensory orientation behavior. J. Cogn. Neurosci., 2002, 14(8), 1240-1255. doi: 10.1162/089892902760807230 PMID: 12495529
  49. Jiang, W.; Stein, B.E. Cortex controls multisensory depression in superior colliculus. J. Neurophysiol., 2003, 90(4), 2123-2135. doi: 10.1152/jn.00369.2003 PMID: 14534263
  50. Jiang, W.; Wallace, M.T.; Jiang, H.; Vaughan, J.W.; Stein, B.E. Two cortical areas mediate multisensory integration in superior colliculus neurons. J. Neurophysiol., 2001, 85(2), 506-522. doi: 10.1152/jn.2001.85.2.506 PMID: 11160489
  51. Brecht, M.; Singer, W.; Engel, A.K. Amplitude and direction of saccadic eye movements depend on the synchronicity of collicular population activity. J. Neurophysiol., 2004, 92(1), 424-432. doi: 10.1152/jn.00639.2003 PMID: 14973313
  52. Stein, B.E.; Clamann, H.P. Control of pinna movements and sensorimotor register in cat superior colliculus. Brain Behav. Evol., 1981, 19(3-4), 180-192. doi: 10.1159/000121641 PMID: 7326575
  53. Cohen, J.D.; Castro-Alamancos, M.A. Behavioral state dependency of neural activity and sensory (whisker) responses in superior colliculus. J. Neurophysiol., 2010, 104(3), 1661-1672. doi: 10.1152/jn.00340.2010 PMID: 20610783
  54. Hemelt, M.E.; Keller, A. Superior colliculus control of vibrissa movements. J. Neurophysiol., 2008, 100(3), 1245-1254. doi: 10.1152/jn.90478.2008 PMID: 18562549
  55. Cowie, R.J.; Robinson, D.L. Subcortical contributions to head movements in macaques. I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus. J. Neurophysiol., 1994, 72(6), 2648-2664. doi: 10.1152/jn.1994.72.6.2648 PMID: 7897481
  56. Ellard, C.G.; Goodale, M.A. The role of the predorsal bundle in head and body movements elicited by electrical stimulation of the superior colliculus in the Mongolian gerbil. Exp. Brain Res., 1986, 64(3), 421-433. doi: 10.1007/BF00340479 PMID: 3803481
  57. Pisa, M. Motor functions of the striatum in the rat: Critical role of the lateral region in tongue and forelimb reaching. Neuroscience, 1988, 24(2), 453-463. doi: 10.1016/0306-4522(88)90341-7 PMID: 3362348
  58. Corneil, B.D.; Olivier, E.; Munoz, D.P. Neck muscle responses to stimulation of monkey superior colliculus. II. Gaze shift initiation and volitional head movements. J. Neurophysiol., 2002, 88(4), 2000-2018. doi: 10.1152/jn.2002.88.4.2000 PMID: 12364524
  59. Sahibzada, N.; Dean, P.; Redgrave, P. Movements resembling orientation or avoidance elicited by electrical stimulation of the superior colliculus in rats. J. Neurosci., 1986, 6(3), 723-733. doi: 10.1523/JNEUROSCI.06-03-00723.1986 PMID: 3958791
  60. Courjon, J.H.; Zénon, A.; Clément, G.; Urquizar, C.; Olivier, E.; Pélisson, D. Electrical stimulation of the superior colliculus induces non-topographically organized perturbation of reaching movements in cats. Front. Syst. Neurosci., 2015, 9, 109. doi: 10.3389/fnsys.2015.00109 PMID: 26283933
  61. Tehovnik, E.J.; Yeomans, J.S. Two converging brainstem pathways mediating circling behavior. Brain Res., 1986, 385(2), 329-342. doi: 10.1016/0006-8993(86)91080-2 PMID: 3779395
  62. Hu, F.; Dan, Y. An inferior-superior colliculus circuit controls auditory cue-directed visual spatial attention. Neuron, 2022, 110(1), 109-119. e103. doi: 10.1016/j.neuron.2021.10.004
  63. Zhaoping, L. From the optic tectum to the primary visual cortex: migration through evolution of the saliency map for exogenous attentional guidance. Curr. Opin. Neurobiol., 2016, 40, 94-102. doi: 10.1016/j.conb.2016.06.017 PMID: 27420378
  64. Favaro, P.D.N.; Gouvêa, T.S.; de Oliveira, S.R.; Vautrelle, N.; Redgrave, P.; Comoli, E. The influence of vibrissal somatosensory processing in rat superior colliculus on prey capture. Neuroscience, 2011, 176, 318-327. doi: 10.1016/j.neuroscience.2010.12.009 PMID: 21163336
  65. Furigo, I.C.; de Oliveira, W.F.; de Oliveira, A.R.; Comoli, E.; Baldo, M.V.C.; Mota-Ortiz, S.R.; Canteras, N.S. The role of the superior colliculus in predatory hunting. Neuroscience, 2010, 165(1), 1-15. doi: 10.1016/j.neuroscience.2009.10.004 PMID: 19825395
  66. Comoli, E.; Ribeiro-Barbosa, E.R.; Canteras, N.S. Predatory hunting and exposure to a live predator induce opposite patterns of Fos immunoreactivity in the PAG. Behav. Brain Res., 2003, 138(1), 17-28. doi: 10.1016/S0166-4328(02)00197-3 PMID: 12493627
  67. Comoli, E.; Ribeiro-Barbosa, É.R.; Negrão, N.; Goto, M.; Canteras, N.S. Functional mapping of the prosencephalic systems involved in organizing predatory behavior in rats. Neuroscience, 2005, 130(4), 1055-1067. doi: 10.1016/j.neuroscience.2004.10.020 PMID: 15653000
  68. Rossi, M.A.; Li, H.E.; Lu, D.; Kim, I.H.; Bartholomew, R.A.; Gaidis, E.; Barter, J.W.; Kim, N.; Cai, M.T.; Soderling, S.H.; Yin, H.H. A GABAergic nigrotectal pathway for coordination of drinking behavior. Nat. Neurosci., 2016, 19(5), 742-748. doi: 10.1038/nn.4285 PMID: 27043290
  69. Taha, E.B.; Dean, P.; Redgrave, P. Oral behaviour induced by intranigral muscimol is unaffected by haloperidol but abolished by large lesions of superior colliculus. Psychopharmacology, 1982, 77(3), 272-278. doi: 10.1007/BF00464579 PMID: 6812150
  70. Mitchell, I.J.; Dean, P.; Redgrave, P. The projection from superior colliculus to cuneiform area in the rat - II. Defence-like responses to stimulation with glutamate in cuneiform nucleus and surrounding structures. Exp. Brain Res., 1988, 72(3), 626-639. doi: 10.1007/BF00250607 PMID: 3234506
  71. Li, L.; Feng, X.; Zhou, Z.; Zhang, H.; Shi, Q.; Lei, Z.; Shen, P.; Yang, Q.; Zhao, B.; Chen, S.; Li, L.; Zhang, Y.; Wen, P.; Lu, Z.; Li, X.; Xu, F.; Wang, L. Stress accelerates defensive responses to looming in mice and involves a locus coeruleus-superior colliculus projection. Curr. Biol., 2018, 28(6), 859-871.e5. doi: 10.1016/j.cub.2018.02.005 PMID: 29502952
  72. Dean, P.; Mitchell, I.J.; Redgrave, P. Responses resembling defensive behaviour produced by microinjection of glutamate into superior colliculus of rats. Neuroscience, 1988, 24(2), 501-510. doi: 10.1016/0306-4522(88)90345-4 PMID: 2896313
  73. Vargas, L.C.; de Azevedo Marques, T.; Schenberg, L.C. Micturition and defensive behaviors are controlled by distinct neural networks within the dorsal periaqueductal gray and deep gray layer of the superior colliculus of the rat. Neurosci. Lett., 2000, 280(1), 45-48. doi: 10.1016/S0304-3940(99)00985-4 PMID: 10696808
  74. Isa, K.; Sooksawate, T.; Kobayashi, K.; Kobayashi, K.; Redgrave, P.; Isa, T. Dissecting the tectal output channels for orienting and defense responses. eNeuro, 2020, 7(5), ENEURO.0271-20.2020. doi: 10.1523/ENEURO.0271-20.2020 PMID: 32928881
  75. McHaffie, J.G.; Jiang, H.; May, P.J.; Coizet, V.; Overton, P.G.; Stein, B.E.; Redgrave, P. A direct projection from superior colliculus to substantia nigra pars compacta in the cat. Neuroscience, 2006, 138(1), 221-234. doi: 10.1016/j.neuroscience.2005.11.015 PMID: 16361067
  76. McHaffie, J.; Stanford, T.; Stein, B.; Coizet, V.; Redgrave, P. Subcortical loops through the basal ganglia. Trends Neurosci., 2005, 28(8), 401-407. doi: 10.1016/j.tins.2005.06.006 PMID: 15982753
  77. Redgrave, P.; Marrow, L.; Dean, P. Topographical organization of the nigrotectal projection in rat: Evidence for segregated channels. Neuroscience, 1992, 50(3), 571-595. doi: 10.1016/0306-4522(92)90448-B PMID: 1279464
  78. Redgrave, P.; Coizet, V.; Comoli, E.; McHaffie, J.G.; Leriche, M.; Vautrelle, N.; Hayes, L.M.; Overton, P. Interactions between the midbrain superior colliculus and the basal ganglia. Front. Neuroanat., 2010, 4, 132. doi: 10.3389/fnana.2010.00132 PMID: 20941324
  79. May, P.J.; Hall, W.C. Relationships between the nigrotectal pathway and the cells of origin of the predorsal bundle. J. Comp. Neurol., 1984, 226(3), 357-376. doi: 10.1002/cne.902260306 PMID: 6747028
  80. Liu, X.; Huang, H.; Snutch, T.P.; Cao, P.; Wang, L.; Wang, F. The superior colliculus: Cell types, connectivity, and behavior. Neurosci. Bull., 2022, 38(12), 1519-1540. doi: 10.1007/s12264-022-00858-1 PMID: 35484472
  81. May, P.J. The mammalian superior colliculus: Laminar structure and connections. Prog. Brain Res., 2006, 151, 321-378. doi: 10.1016/S0079-6123(05)51011-2 PMID: 16221594
  82. Comoli, E.; Das Neves Favaro, P.; Vautrelle, N.; Leriche, M.; Overton, P.G.; Redgrave, P. Segregated anatomical input to sub-regions of the rodent superior colliculus associated with approach and defense. Front. Neuroanat., 2012, 6, 9. doi: 10.3389/fnana.2012.00009 PMID: 22514521
  83. Boka, K.; Chomsung, R.; Li, J.; Bickford, M.E. Comparison of the ultrastructure of cortical and retinal terminals in the rat superior colliculus. Anat. Rec. A Discov. Mol. Cell. Evol. Biol., 2006, 288A(8), 850-858. doi: 10.1002/ar.a.20359 PMID: 16850432
  84. Ellis, E.M.; Gauvain, G.; Sivyer, B.; Murphy, G.J. Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus. J. Neurophysiol., 2016, 116(2), 602-610. doi: 10.1152/jn.00227.2016 PMID: 27169509
  85. Harting, J.K.; Huerta, M.F.; Hashikawa, T.; van Lieshout, D.P. Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: Organization of tectogeniculate pathways in nineteen species. J. Comp. Neurol., 1991, 304(2), 275-306. doi: 10.1002/cne.903040210 PMID: 1707899
  86. Harting, J.K.; Updyke, B.V.; van Lieshout, D.P. Corticotectal projections in the cat: Anterograde transport studies of twenty-five cortical areas. J. Comp. Neurol., 1992, 324(3), 379-414. doi: 10.1002/cne.903240308 PMID: 1401268
  87. Graham, J.; Lin, C.S.; Kaas, J.H. Subcortical projections of six visual cortical areas in the owl monkey, Aotus trivirgatus. J. Comp. Neurol., 1979, 187(3), 557-580. doi: 10.1002/cne.901870307 PMID: 114555
  88. Albano, J.E.; Norton, T.T.; Hall, W.C. Laminar origin of projections from the superficial layers of the superior colliculus in the tree shrew, Tupaia glis. Brain Res., 1979, 173(1), 1-11. doi: 10.1016/0006-8993(79)91090-4 PMID: 90538
  89. Shang, C.; Liu, Z.; Chen, Z.; Shi, Y.; Wang, Q.; Liu, S.; Li, D.; Cao, P. A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science, 2015, 348(6242), 1472-1477. doi: 10.1126/science.aaa8694 PMID: 26113723
  90. Gale, S.D.; Murphy, G.J. Active dendritic properties and local inhibitory input enable selectivity for object motion in mouse superior colliculus neurons. J. Neurosci., 2016, 36(35), 9111-9123. doi: 10.1523/JNEUROSCI.0645-16.2016 PMID: 27581453
  91. Gale, S.D.; Murphy, G.J. Distinct representation and distribution of visual information by specific cell types in mouse superficial superior colliculus. J. Neurosci., 2014, 34(40), 13458-13471. doi: 10.1523/JNEUROSCI.2768-14.2014 PMID: 25274823
  92. Hunter, P.R.; Lowe, A.S.; Thompson, I.D.; Meyer, M.P. Emergent properties of the optic tectum revealed by population analysis of direction and orientation selectivity. J. Neurosci., 2013, 33(35), 13940-13945. doi: 10.1523/JNEUROSCI.1493-13.2013 PMID: 23986231
  93. Guitton, D.; Munoz, D.P.; Galiana, H.L. Gaze control in the cat: Studies and modeling of the coupling between orienting eye and head movements in different behavioral tasks. J. Neurophysiol., 1990, 64(2), 509-531. doi: 10.1152/jn.1990.64.2.509 PMID: 2213129
  94. Guitton, D. Control of eye—head coordination during orienting gaze shifts. Trends Neurosci., 1992, 15(5), 174-179. doi: 10.1016/0166-2236(92)90169-9 PMID: 1377424
  95. Goodale, M.A.; Murison, R.C.C. The effects of lesions of the superior colliculus on locomotor orientation and the orienting reflex in the rat. Brain Res., 1975, 88(2), 243-261. doi: 10.1016/0006-8993(75)90388-1 PMID: 1148825
  96. Hall, W.C.; Lee, P. Interlaminar connections of the superior colliculus in the tree shrew. I. The superficial gray layer. J. Comp. Neurol., 1993, 332(2), 213-223. doi: 10.1002/cne.903320206 PMID: 8331213
  97. Lee, P.; Hall, W.C. Interlaminar connections of the superior colliculus in the tree shrew. II: Projections from the superficial gray to the optic layer. Vis. Neurosci., 1995, 12(3), 573-588. doi: 10.1017/S0952523800008464 PMID: 7544610
  98. Saito, Y.; Isa, T. Organization of interlaminar interactions in the rat superior colliculus. J. Neurophysiol., 2005, 93(5), 2898-2907. doi: 10.1152/jn.01051.2004 PMID: 15601732
  99. Basso, M.A.; May, P.J. Circuits for action and cognition: A view from the superior colliculus. Annu. Rev. Vis. Sci., 2017, 3(1), 197-226. doi: 10.1146/annurev-vision-102016-061234 PMID: 28617660
  100. Behan, M.; Appell, P.P. Intrinsic circuitry in the cat superior colliculus: Projections from the superficial layers. J. Comp. Neurol., 1992, 315(2), 230-243. doi: 10.1002/cne.903150209 PMID: 1372013
  101. Behan, M.; Kime, N.M. Spatial distribution of tectotectal connec tions in the cat. Prog. Brain Res., 1996, 112, 131-142.
  102. Helms, M.C.; Özen, G.; Hall, W.C. Organization of the intermediate gray layer of the superior colliculus. I. Intrinsic vertical connections. J. Neurophysiol., 2004, 91(4), 1706-1715. doi: 10.1152/jn.00705.2003 PMID: 15010497
  103. Rhoades, R.W.; Mooney, R.D.; Rohrer, W.H.; Nikoletseas, M.M.; Fish, S.E. Organization of the projection from the superficial to the deep layers of the hamster’s superior colliculus as demonstrated by the anterograde transport of Phaseolus vulgaris leucoagglutinin. J. Comp. Neurol., 1989, 283(1), 54-70. doi: 10.1002/cne.902830106 PMID: 2732361
  104. Mooney, R.D.; Klein, B.G.; Jacquin, M.F.; Rhoades, R.W. Dendrites of deep layer, somatosensory superior collicular neurons extend into the superficial laminae. Brain Res., 1984, 324(2), 361-365. doi: 10.1016/0006-8993(84)90050-7 PMID: 6529626
  105. Moschovakis, A.K.; Karabelas, A.B.; Highstein, S.M. Structure-function relationships in the primate superior colliculus. I. Morphological classification of efferent neurons. J. Neurophysiol., 1988, 60(1), 232-262. doi: 10.1152/jn.1988.60.1.232 PMID: 3404219
  106. Hall, W.C.; Lee, P. Interlaminar connections of the superior colliculus in the tree shrew. III: The optic layer. Vis. Neurosci., 1997, 14(4), 647-661. doi: 10.1017/S095252380001261X PMID: 9278994
  107. Villalobos, C.A.; Wu, Q.; Lee, P.H.; May, P.J.; Basso, M.A. Parvalbumin and GABA microcircuits in the mouse superior colliculus. Front. Neu. Circ., 2018, 12, 1-35. doi: 10.3389/fncir.2018.00035
  108. Lee, P.H.; Sooksawate, T.; Yanagawa, Y.; Isa, K.; Isa, T.; Hall, W.C. Identity of a pathway for saccadic suppression. Proc. Natl. Acad. Sci. USA, 2007, 104(16), 6824-6827. doi: 10.1073/pnas.0701934104 PMID: 17420449
  109. Lee, K.H.; Tran, A.; Turan, Z.; Meister, M. The sifting of visual information in the superior colliculus. elife, 2020, 9, e50678.
  110. Scholes, C.; McGraw, P.V.; Roach, N.W. Learning to silence saccadic suppression. Proc. Natl. Acad. Sci. USA, 2021, 118(6), e2012937118. doi: 10.1073/pnas.2012937118 PMID: 33526665
  111. Essig, J.; Hunt, J.B.; Felsen, G. Inhibitory neurons in the superior colliculus mediate selection of spatially-directed movements. Commun. Biol., 2021, 4(1), 719. doi: 10.1038/s42003-021-02248-1 PMID: 34117346
  112. Phongphanphanee, P.; Mizuno, F.; Lee, P.H.; Yanagawa, Y.; Isa, T.; Hall, W.C. A circuit model for saccadic suppression in the superior colliculus. J. Neurosci., 2011, 31(6), 1949-1954. doi: 10.1523/JNEUROSCI.2305-10.2011 PMID: 21307233
  113. Kardamakis, A.A.; Saitoh, K.; Grillner, S. Tectal microcircuit generating visual selection commands on gaze-controlling neurons. Proc. Natl. Acad. Sci. USA, 2015, 112(15), E1956-E1965. doi: 10.1073/pnas.1504866112 PMID: 25825743
  114. Appell, P.P.; Behan, M. Sources of subcortical GABAergic projections to the superior colliculus in the cat. J. Comp. Neurol., 1990, 302(1), 143-158. doi: 10.1002/cne.903020111 PMID: 2086611
  115. Olivier, E.; Corvisier, J.; Pauluis, Q.; Hardy, O. Evidence for glutamatergic tectotectal neurons in the cat superior colliculus: A comparison with GABAergic tectotectal neurons. Eur. J. Neurosci., 2000, 12(7), 2354-2366. doi: 10.1046/j.1460-9568.2000.00132.x PMID: 10947814
  116. Zingg, B.; Hintiryan, H.; Gou, L.; Song, M.Y.; Bay, M.; Bienkowski, M.S.; Foster, N.N.; Yamashita, S.; Bowman, I.; Toga, A.W.; Dong, H.W. Neural networks of the mouse neocortex. Cell, 2014, 156(5), 1096-1111. doi: 10.1016/j.cell.2014.02.023 PMID: 24581503
  117. Vertes, R.P. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse, 2004, 51(1), 32-58. doi: 10.1002/syn.10279 PMID: 14579424
  118. de Lima, M.A.X.; Baldo, M.V.C.; Canteras, N.S. Revealing a cortical circuit responsive to predatory threats and mediating contextual fear memory. Cereb. Cortex, 2019, 29(7), 3074-3090. doi: 10.1093/cercor/bhy173 PMID: 30085040
  119. de Lima, M.A.X.; Baldo, M.V.C.; Oliveira, F.A.; Canteras, N.S. The anterior cingulate cortex and its role in controlling contextual fear memory to predatory threats. elife, 2022, 11, e67007.
  120. Redgrave, P.; Dean, P. Tonic desynchronisation of cortical electroencephalogram by electrical and chemical stimulation of superior colliculus and surrounding structures in urethane-anaesthetised rats. Neuroscience, 1985, 16(3), 659-671. doi: 10.1016/0306-4522(85)90199-X PMID: 2869444
  121. Dean, P.; Simkins, M.; Hetherington, L.; Mitchell, I.J.; Redgrave, P. Tectal induction of cortical arousal: Evidence implicating multiple output pathways. Brain Res. Bull., 1991, 26(1), 1-10. doi: 10.1016/0361-9230(91)90184-L PMID: 2015507
  122. Meredith, M.A.; Stein, B.E. Interactions among converging sensory inputs in the superior colliculus. Science, 1983, 221(4608), 389-391. doi: 10.1126/science.6867718 PMID: 6867718
  123. Wallace, M.T.; Wilkinson, L.K.; Stein, B.E. Representation and integration of multiple sensory inputs in primate superior colliculus. J. Neurophysiol., 1996, 76(2), 1246-1266. doi: 10.1152/jn.1996.76.2.1246 PMID: 8871234
  124. Herkenham, M.; Nauta, W.J.H. Efferent connections of the habenular nuclei in the rat. J. Comp. Neurol., 1979, 187(1), 19-47. doi: 10.1002/cne.901870103 PMID: 226566
  125. Matsumoto, M.; Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature, 2007, 447(7148), 1111-1115. doi: 10.1038/nature05860 PMID: 17522629
  126. Morissette, M.C.; Boye, S.M. Electrolytic lesions of the habenula attenuate brain stimulation reward. Behav. Brain Res., 2008, 187(1), 17-26. doi: 10.1016/j.bbr.2007.08.021 PMID: 17889943
  127. Shabel, S.J.; Proulx, C.D.; Trias, A.; Murphy, R.T.; Malinow, R. Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin. Neuron, 2012, 74(3), 475-481. doi: 10.1016/j.neuron.2012.02.037 PMID: 22578499
  128. Stamatakis, A.M.; Van Swieten, M.; Basiri, M.L.; Blair, G.A.; Kantak, P.; Stuber, G.D. Lateral hypothalamic area glutamatergic neurons and their projections to the lateral habenula regulate feeding and reward. J. Neurosci., 2016, 36(2), 302-311. doi: 10.1523/JNEUROSCI.1202-15.2016 PMID: 26758824
  129. Golden, S.A.; Heshmati, M.; Flanigan, M.; Christoffel, D.J.; Guise, K.; Pfau, M.L.; Aleyasin, H.; Menard, C.; Zhang, H.; Hodes, G.E.; Bregman, D.; Khibnik, L.; Tai, J.; Rebusi, N.; Krawitz, B.; Chaudhury, D.; Walsh, J.J.; Han, M.H.; Shapiro, M.L.; Russo, S.J. Basal forebrain projections to the lateral habenula modulate aggression reward. Nature, 2016, 534(7609), 688-692. doi: 10.1038/nature18601 PMID: 27357796
  130. Hu, H.; Cui, Y.; Yang, Y. Circuits and functions of the lateral habenula in health and in disease. Nat. Rev. Neurosci., 2020, 21(5), 277-295. doi: 10.1038/s41583-020-0292-4 PMID: 32269316
  131. Canteras, N.S.; Simerly, R.B.; Swanson, L.W. Organization of projections from the ventromedial nucleus of the hypothalamus: APhaseolus vulgaris-Leucoagglutinin study in the rat. J. Comp. Neurol., 1994, 348(1), 41-79. doi: 10.1002/cne.903480103 PMID: 7814684
  132. Melleu, F.F.; de Oliveira, A.R.; Grego, K.F.; Blanchard, D.C.; Canteras, N.S. Dissecting the brain’s fear systems responding to snake threats. Eur. J. Neurosci., 2022, 56(6), 4788-4802. doi: 10.1111/ejn.15794 PMID: 35971965
  133. Kunwar, P.S.; Zelikowsky, M.; Remedios, R.; Cai, H.; Yilmaz, M.; Meister, M.; Anderson, D.J. Ventromedial hypothalamic neurons control a defensive emotion state. elife, 2015, 4, e06633.
  134. Gross, C.T.; Canteras, N.S. The many paths to fear. Nat. Rev. Neurosci., 2012, 13(9), 651-658. doi: 10.1038/nrn3301 PMID: 22850830
  135. Canteras, N.S. Hypothalamic survival circuits related to social and predatory defenses and their interactions with metabolic control, reproductive behaviors and memory systems. Curr. Opin. Behav. Sci., 2018, 24, 7-13. doi: 10.1016/j.cobeha.2018.01.017
  136. Motta, S.C.; Goto, M.; Gouveia, F.V.; Baldo, M.V.C.; Canteras, N.S.; Swanson, L.W. Dissecting the brain’s fear system reveals the hypothalamus is critical for responding in subordinate conspecific intruders. Proc. Natl. Acad. Sci. USA, 2009, 106(12), 4870-4875. doi: 10.1073/pnas.0900939106 PMID: 19273843
  137. Falkner, A.L.; Lin, D. Recent advances in understanding the role of the hypothalamic circuit during aggression. Front. Syst. Neurosci., 2014, 8, 168. doi: 10.3389/fnsys.2014.00168 PMID: 25309351
  138. Wang, L.; Talwar, V.; Osakada, T.; Kuang, A.; Guo, Z.; Yamaguchi, T.; Lin, D. Hypothalamic control of conspecific self-defense. Cell Rep., 2019, 26(7), 1747-1758. doi: 10.1016/j.celrep.2019.01.078
  139. Yin, L.; Hashikawa, K.; Hashikawa, Y.; Osakada, T.; Lischinsky, J.E.; Diaz, V.; Lin, D. VMHvllCckar cells dynamically control female sexual behaviors over the reproductive cycle. Neuron, 2022, 110(18), 3000-3017.e8. doi: 10.1016/j.neuron.2022.06.026 PMID: 35896109
  140. Hashikawa, K.; Hashikawa, Y.; Tremblay, R.; Zhang, J.; Feng, J.E.; Sabol, A.; Piper, W.T.; Lee, H.; Rudy, B.; Lin, D. Esr1+ cells in the ventromedial hypothalamus control female aggression. Nat. Neurosci., 2017, 20(11), 1580-1590. doi: 10.1038/nn.4644 PMID: 28920934
  141. de Almeida, A.P.; Baldo, M.V.C.; Motta, S.C. Dynamics in brain activation and behaviour in acute and repeated social defensive behaviour. Proc. Biol. Sci., 2022, 289(1977), 20220799. doi: 10.1098/rspb.2022.0799 PMID: 35703050
  142. Motta, S.C.; Guimarães, C.C.; Furigo, I.C.; Sukikara, M.H.; Baldo, M.V.C.; Lonstein, J.S.; Canteras, N.S. Ventral premammillary nucleus as a critical sensory relay to the maternal aggression network. Proc. Natl. Acad. Sci. USA, 2013, 110(35), 14438-14443. doi: 10.1073/pnas.1305581110 PMID: 23918394
  143. Canteras, N.S.; Swanson, L.W. The dorsal premammillary nucleus: An unusual component of the mammillary body. Proc. Natl. Acad. Sci. USA, 1992, 89(21), 10089-10093. doi: 10.1073/pnas.89.21.10089 PMID: 1279669
  144. Grobstein, P. Between the retinotectal projection and directed movement: Topography of a sensorimotor interface. Brain Behav. Evol., 1988, 31(1), 34-48. doi: 10.1159/000116574 PMID: 3334904
  145. Dean, P.; Redgrave, P.; Westby, G.W.M. Event or emergency? Two response systems in the mammalian superior colliculus. Trends Neurosci., 1989, 12(4), 137-147. doi: 10.1016/0166-2236(89)90052-0 PMID: 2470171
  146. Boehnke, S.E.; Munoz, D.P. On the importance of the transient visual response in the superior colliculus. Curr. Opin. Neurobiol., 2008, 18(6), 544-551. doi: 10.1016/j.conb.2008.11.004 PMID: 19059772
  147. Felsen, G.; Mainen, Z.F. Neural substrates of sensory-guided locomotor decisions in the rat superior colliculus. Neuron, 2008, 60(1), 137-148. doi: 10.1016/j.neuron.2008.09.019 PMID: 18940594
  148. Stubblefield, E.A.; Costabile, J.D.; Felsen, G. Optogenetic investigation of the role of the superior colliculus in orienting movements. Behav. Brain Res., 2013, 255, 55-63. doi: 10.1016/j.bbr.2013.04.040 PMID: 23643689
  149. Wurtz, R.H.; Goldberg, M.E. Superior colliculus cell responses related to eye movements in awake monkeys. Science, 1971, 171(3966), 82-84. doi: 10.1126/science.171.3966.82 PMID: 4992313
  150. Harris, L.R. The superior colliculus and movements of the head and eyes in cats. J. Physiol., 1980, 300(1), 367-391. doi: 10.1113/jphysiol.1980.sp013167 PMID: 6770082
  151. Masullo, L.; Mariotti, L.; Alexandre, N.; Freire-Pritchett, P.; Boulanger, J.; Tripodi, M. Genetically defined functional modules for spatial orienting in the mouse superior colliculus. Curr. Biol., 2019, 29(17), 2892-2904.e8. doi: 10.1016/j.cub.2019.07.083 PMID: 31474533
  152. Wang, S.; Redgrave, P. Microinjections of muscimol into lateral superior colliculus disrupt orienting and oral movements in the formalin model of pain. Neuroscience, 1997, 81(4), 967-988. doi: 10.1016/S0306-4522(97)00191-7 PMID: 9330360
  153. Dean, P.; Mitchell, I.J.; Redgrave, P. Contralateral head movements produced by microinjection of glutamate into superior colliculus of rats: Evidence for mediation by multiple output pathways. Neuroscience, 1988, 24(2), 491-500. doi: 10.1016/0306-4522(88)90344-2 PMID: 2896312
  154. Kilpatrick, I.C.; Collingridge, G.L.; Starr, M.S. Evidence for the participation of nigrotectal γ-aminobutyrate-containing neurones in striatal and nigral-derived circling in the rat. Neuroscience, 1982, 7(1), 207-222. doi: 10.1016/0306-4522(82)90161-0 PMID: 7078726
  155. Huerta, M.F.; Harting, J.K. Connectional organization of the superior colliculus. Trends Neurosci., 1984, 7(8), 286-289. doi: 10.1016/S0166-2236(84)80197-6
  156. Redgrave, P.; Odekunle, A.; Dean, P. Tectal cells of origin of predorsal bundle in rat: location and segregation from ipsilateral descending pathway. Exp. Brain Res., 1986, 63(2), 279-293. doi: 10.1007/BF00236845 PMID: 3093259
  157. Coizet, V.; Graham, J.H.; Moss, J.; Bolam, J.P.; Savasta, M.; McHaffie, J.G.; Redgrave, P.; Overton, P.G. Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J. Neurosci., 2009, 29(17), 5701-5709. doi: 10.1523/JNEUROSCI.0247-09.2009 PMID: 19403836
  158. Comoli, E.; Coizet, V.; Boyes, J.; Bolam, J.P.; Canteras, N.S.; Quirk, R.H.; Overton, P.G.; Redgrave, P. A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nat. Neurosci., 2003, 6(9), 974-980. doi: 10.1038/nn1113 PMID: 12925855
  159. May, P.J.; McHaffie, J.G.; Stanford, T.R.; Jiang, H.; Costello, M.G.; Coizet, V.; Hayes, L.M.; Haber, S.N.; Redgrave, P. Tectonigral projections in the primate: a pathway for pre-attentive sensory input to midbrain dopaminergic neurons. Eur. J. Neurosci., 2009, 29(3), 575-587. doi: 10.1111/j.1460-9568.2008.06596.x PMID: 19175405
  160. Salay, L.D.; Ishiko, N.; Huberman, A.D. A midline thalamic circuit determines reactions to visual threat. Nature, 2018, 557(7704), 183-189. doi: 10.1038/s41586-018-0078-2 PMID: 29720647
  161. Sommer, M.A.; Wurtz, R.H. What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge. J. Neurophysiol., 2004, 91(3), 1403-1423. doi: 10.1152/jn.00740.2003 PMID: 14573557
  162. Schäfer, C.B.; Hoebeek, F.E. Convergence of primary sensory cortex and cerebellar nuclei pathways in the whisker system. Neuroscience, 2018, 368, 229-239. doi: 10.1016/j.neuroscience.2017.07.036 PMID: 28743454
  163. Tokuno, H.; Takada, M.; Ikai, Y.; Mizuno, N. Direct projections from the deep layers of the superior colliculus to the subthalamic nucleus in the rat. Brain Res., 1994, 639(1), 156-160. doi: 10.1016/0006-8993(94)91776-0 PMID: 8180831
  164. Beckstead, R.M.; Domesick, V.B.; Nauta, W.J.H. Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res., 1979, 175(2), 191-217. doi: 10.1016/0006-8993(79)91001-1 PMID: 314832
  165. Swanson, L.W. The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull., 1982, 9(1-6), 321-353. doi: 10.1016/0361-9230(82)90145-9 PMID: 6816390
  166. Zhou, N.; Maire, P.S.; Masterson, S.P.; Bickford, M. The mouse pulvinar nucleus: Organization of the tectorecipient zones. Vis. Neurosci., 2017, 34, E011. doi: 10.1017/S0952523817000050 PMID: 28965504
  167. Major, D.E.; Luksch, H.; Karten, H.J. Bottlebrush dendritic endings and large dendritic fields: Motion-detecting neurons in the mammalian tectum. J. Comp. Neurol., 2000, 423(2), 243-260. doi: 10.1002/1096-9861(20000724)423:23.0.CO;2-5 PMID: 10867657
  168. Hoy, J.L.; Bishop, H.I.; Niell, C.M. Defined cell types in superior colliculus make distinct contributions to prey capture behavior in the mouse. Curr. Biol., 2019, 29(23), 4130-4138. doi: 10.1016/j.cub.2019.10.017
  169. Harting, J.K.; Updyke, B.V.; Van Lieshout, D.P. Striatal projections from the cat visual thalamus. Eur. J. Neurosci., 2001, 14(5), 893-896. doi: 10.1046/j.0953-816x.2001.01712.x PMID: 11576195
  170. Takada, M.; Itoh, K.; Yasui, Y.; Sugimoto, T.; Mizuno, N. Topographical projections from the posterior thalamic regions to the striatum in the cat, with reference to possible tecto-thalamo-striatal connections. Exp. Brain Res., 1985, 60(2), 385-396. doi: 10.1007/BF00235934 PMID: 4054280
  171. Hikosaka, O.; Wurtz, R.H. Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. J. Neurophysiol., 1983, 49(5), 1230-1253. doi: 10.1152/jn.1983.49.5.1230 PMID: 6864248
  172. Hikosaka, O.; Sakamoto, M.; Usui, S. Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. J. Neurophysiol., 1989, 61(4), 780-798. doi: 10.1152/jn.1989.61.4.780 PMID: 2723720
  173. Hikosaka, O.; Sakamoto, M.; Miyashita, N. Effects of caudate nucleus stimulation on substantia nigra cell activity in monkey. Exp. Brain Res., 1993, 95(3), 457-472. doi: 10.1007/BF00227139 PMID: 8224072
  174. Chevalier, G.; Vacher, S.; Deniau, J.M.; Desban, M. Disinhibition as a basic process in the expression of striatal functions. I. The striato-nigral influence on tecto-spinal/tecto-diencephalic neurons. Brain Res., 1985, 334(2), 215-226. doi: 10.1016/0006-8993(85)90213-6 PMID: 2859912
  175. Hikosaka, O. Basal ganglia mechanisms of reward-oriented eye movement. Ann. N. Y. Acad. Sci., 2007, 1104(1), 229-249. doi: 10.1196/annals.1390.012 PMID: 17360800
  176. Wei, P.; Liu, N.; Zhang, Z.; Liu, X.; Tang, Y.; He, X.; Wu, B.; Zhou, Z.; Liu, Y.; Li, J.; Zhang, Y.; Zhou, X.; Xu, L.; Chen, L.; Bi, G.; Hu, X.; Xu, F.; Wang, L. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat. Commun., 2015, 6(1), 6756. doi: 10.1038/ncomms7756
  177. Day-Brown, J.D.; Wei, H.; Chomsung, R.D.; Petry, H.M.; Bickford, M.E. Pulvinar projections to the striatum and amygdala in the tree shrew. Front. Neuroanat., 2010, 4, 143. doi: 10.3389/fnana.2010.00143 PMID: 21120139
  178. Zhou, N.; Masterson, S.P.; Damron, J.K.; Guido, W.; Bickford, M.E. The mouse pulvinar nucleus links the lateral extrastriate cortex, striatum, and amygdala. J. Neurosci., 2018, 38(2), 347-362. doi: 10.1523/JNEUROSCI.1279-17.2017 PMID: 29175956
  179. Zingg, B.; Chou, X.; Zhang, Z.; Mesik, L.; Liang, F.; Tao, H.W.; Zhang, L.I. AAV-mediated anterograde transsynaptic tagging: Mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron, 2017, 93(1), 33-47. doi: 10.1016/j.neuron.2016.11.045 PMID: 27989459
  180. Doron, N.N.; Ledoux, J.E. Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. J. Comp. Neurol., 1999, 412(3), 383-409. doi: 10.1002/(SICI)1096-9861(19990927)412:33.0.CO;2-5 PMID: 10441229
  181. Shang, C.; Chen, Z.; Liu, A.; Li, Y.; Zhang, J.; Qu, B.; Yan, F.; Zhang, Y.; Liu, W.; Liu, Z.; Guo, X.; Li, D.; Wang, Y.; Cao, P. Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nat. Commun., 2018, 9(1), 1232. doi: 10.1038/s41467-018-03580-7 PMID: 29581428
  182. Lee, J.; Wang, W.; Sabatini, B.L. Anatomically segregated basal ganglia pathways allow parallel behavioral modulation. Nat. Neurosci., 2020, 23(11), 1388-1398. doi: 10.1038/s41593-020-00712-5 PMID: 32989293
  183. Mandelbaum, G.; Taranda, J.; Haynes, T.M.; Hochbaum, D.R.; Huang, K.W.; Hyun, M.; Venkataraju, K.U.; Straub, C.; Wang, W.; Robertson, K. Distinct cortical-thalamic-striatal circuits through the parafascicular nucleus. Neuron, 2019, 102(3), 636-652. doi: 10.1016/j.neuron.2019.02.035
  184. Watson, G.D.R.; Smith, J.B.; Alloway, K.D. The zona incerta regulates communication between the superior colliculus and the posteromedial thalamus: Implications for thalamic interactions with the dorsolateral striatum. J. Neurosci., 2015, 35(25), 9463-9476. doi: 10.1523/JNEUROSCI.1606-15.2015 PMID: 26109669
  185. Watson, G.D.R.; Alloway, K.D. Opposing collicular influences on the parafascicular (Pf) and posteromedial (POm) thalamic nuclei: relationship to POm-induced inhibition in the substantia nigra pars reticulata (SNR). Brain Struct. Funct., 2018, 223(1), 535-543. doi: 10.1007/s00429-017-1534-8 PMID: 28988338
  186. Alloway, K.D.; Smith, J.B.; Watson, G.D.R. Thalamostriatal projections from the medial posterior and parafascicular nuclei have distinct topographic and physiologic properties. J. Neurophysiol., 2014, 111(1), 36-50. doi: 10.1152/jn.00399.2013 PMID: 24108793
  187. Smith, J.B.; Mowery, T.M.; Alloway, K.D. Thalamic POm projections to the dorsolateral striatum of rats: Potential pathway for mediating stimulus-response associations for sensorimotor habits. J. Neurophysiol., 2012, 108(1), 160-174. doi: 10.1152/jn.00142.2012 PMID: 22496533
  188. Kamishina, H.; Yurcisin, G.H.; Corwin, J.V.; Reep, R.L. Striatal projections from the rat lateral posterior thalamic nucleus. Brain Res., 2008, 1204, 24-39. doi: 10.1016/j.brainres.2008.01.094 PMID: 18342841
  189. Coizet, V.; Overton, P.G.; Redgrave, P. Collateralization of the tectonigral projection with other major output pathways of superior colliculus in the rat. J. Comp. Neurol., 2007, 500(6), 1034-1049. doi: 10.1002/cne.21202 PMID: 17183537
  190. Masri, R.; Bezdudnaya, T.; Trageser, J.C.; Keller, A. Encoding of stimulus frequency and sensor motion in the posterior medial thalamic nucleus. J. Neurophysiol., 2008, 100(2), 681-689. doi: 10.1152/jn.01322.2007 PMID: 18234976
  191. Alloway, K.D.; Smith, J.B.; Mowery, T.M.; Watson, G.D.R. Sensory processing in the dorsolateral striatum: The contribution of thalamostriatal pathways. Front. Syst. Neurosci., 2017, 11, 53. doi: 10.3389/fnsys.2017.00053 PMID: 28790899
  192. Mowery, T.M.; Harrold, J.B.; Alloway, K.D. Repeated whisker stimulation evokes invariant neuronal responses in the dorsolateral striatum of anesthetized rats: a potential correlate of sensorimotor habits. J. Neurophysiol., 2011, 105(5), 2225-2238. doi: 10.1152/jn.01018.2010 PMID: 21389309
  193. Reig, R.; Silberberg, G. Multisensory integration in the mouse striatum. Neuron, 2014, 83(5), 1200-1212. doi: 10.1016/j.neuron.2014.07.033 PMID: 25155959
  194. Yin, H.H.; Knowlton, B.J. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci., 2006, 7(6), 464-476. doi: 10.1038/nrn1919 PMID: 16715055
  195. Cromwell, H.C.; Berridge, K.C. Implementation of action sequences by a neostriatal site: A lesion mapping study of grooming syntax. J. Neurosci., 1996, 16(10), 3444-3458. doi: 10.1523/JNEUROSCI.16-10-03444.1996 PMID: 8627378
  196. Berridge, K.; Whishaw, I. Cortex, striatum and cerebellum: control of serial order in a grooming sequence. Exp. Brain Res., 1992, 90(2), 275-290. doi: 10.1007/BF00227239 PMID: 1397142
  197. Hoover, J.E.; Hoffer, Z.S.; Alloway, K.D. Projections from primary somatosensory cortex to the neostriatum: the role of somatotopic continuity in corticostriatal convergence. J. Neurophysiol., 2003, 89(3), 1576-1587. doi: 10.1152/jn.01009.2002 PMID: 12611938
  198. Gharaei, S.; Honnuraiah, S.; Arabzadeh, E.; Stuart, G.J. Superior colliculus modulates cortical coding of somatosensory information. Nat. Commun., 2020, 11(1), 1693. doi: 10.1038/s41467-020-15443-1 PMID: 32245963
  199. Krout, K.E.; Loewy, A.D.; Westby, G.W.M.; Redgrave, P. Superior colliculus projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol., 2001, 431(2), 198-216. doi: 10.1002/1096-9861(20010305)431:23.0.CO;2-8 PMID: 11170000
  200. Yamasaki, D.S.G.; Krauthamer, G.M.; Rhoades, R.W. Superior collicular projection to intralaminar thalamus in rat. Brain Res., 1986, 378(2), 223-233. doi: 10.1016/0006-8993(86)90925-X PMID: 3730874
  201. Fisher, S.D.; Reynolds, J.N.J. The intralaminar thalamusâ€"an expressway linking visual stimuli to circuits determining agency and action selection. Front. Behav. Neurosci., 2014, 8, 115. doi: 10.3389/fnbeh.2014.00115 PMID: 24765070
  202. Van der Werf, Y.D.; Witter, M.P.; Groenewegen, H.J. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res. Brain Res. Rev., 2002, 39(2-3), 107-140. doi: 10.1016/S0165-0173(02)00181-9 PMID: 12423763
  203. Vertes, R.P.; Linley, S.B.; Rojas, A.K.P. Structural and functional organization of the midline and intralaminar nuclei of the thalamus. Front. Behav. Neurosci., 2022, 16, 964644. doi: 10.3389/fnbeh.2022.964644 PMID: 36082310
  204. Berendse, H.W.; Groenewegen, H.J. Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J. Comp. Neurol., 1990, 299(2), 187-228. doi: 10.1002/cne.902990206 PMID: 2172326
  205. McKenna, J.T.; Vertes, R.P. Afferent projections to nucleus reuniens of the thalamus. J. Comp. Neurol., 2004, 480(2), 115-142. doi: 10.1002/cne.20342 PMID: 15514932
  206. Dolleman-van Der Weel, M.J.; Witter, M.P. Projections from the nucleus reuniens thalami to the entorhinal cortex, hippocampal field CA1, and the subiculum in the rat arise from different populations of neurons. J. Comp. Neurol., 1996, 364(4), 637-650. doi: 10.1002/(SICI)1096-9861(19960122)364:43.0.CO;2-4 PMID: 8821451
  207. Herkenham, M. The connections of the nucleus reuniens thalami: Evidence for a direct thalamo-hippocampal pathway in the rat. J. Comp. Neurol., 1978, 177(4), 589-609. doi: 10.1002/cne.901770405 PMID: 624792
  208. Jankowski, M.M.; Islam, M.N.; Wright, N.F.; Vann, S.D.; Erichsen, J.T.; Aggleton, J.P.; O'Mara, S.M. Nucleus reuniens of the thalamus contains head direction cells. elife, 2014, 3, e03075.
  209. Deniau, J.M.; Chevalier, G. Disinhibition as a basic process in the expression of striatal functions. II. The striato-nigral influence on thalamocortical cells of the ventromedial thalamic nucleus. Brain Res., 1985, 334(2), 227-233. doi: 10.1016/0006-8993(85)90214-8 PMID: 3995318
  210. Kita, T.; Shigematsu, N.; Kita, H. Intralaminar and tectal projections to the subthalamus in the rat. Eur. J. Neurosci., 2016, 44(11), 2899-2908. doi: 10.1111/ejn.13413 PMID: 27717088
  211. Hanini-Daoud, M.; Jaouen, F.; Salin, P.; Kerkerian-Le Goff, L.; Maurice, N. Processing of information from the parafascicular nucleus of the thalamus through the basal ganglia. J. Neurosci. Res., 2022, 100(6), 1370-1385. doi: 10.1002/jnr.25046 PMID: 35355316
  212. Watson, G.D.R.; Hughes, R.N.; Petter, E.A.; Fallon, I.P.; Kim, N.; Severino, F.P.U.; Yin, H.H. Thalamic projections to the subthalamic nucleus contribute to movement initiation and rescue of parkinsonian symptoms. Sci. Adv., 2021, 7(6), eabe9192. doi: 10.1126/sciadv.abe9192 PMID: 33547085
  213. Buot, A.; Welter, M.L.; Karachi, C.; Pochon, J.B.; Bardinet, E.; Yelnik, J.; Mallet, L. Processing of emotional information in the human subthalamic nucleus. J. Neurol. Neurosurg. Psychiatry, 2013, 84(12), 1331-1339. doi: 10.1136/jnnp-2011-302158 PMID: 23100448
  214. Baunez, C.; Amalric, M.; Robbins, T.W. Enhanced food-related motivation after bilateral lesions of the subthalamic nucleus. J. Neurosci., 2002, 22(2), 562-568. doi: 10.1523/JNEUROSCI.22-02-00562.2002 PMID: 11784803
  215. Lardeux, S.; Paleressompoulle, D.; Pernaud, R.; Cador, M.; Baunez, C. Different populations of subthalamic neurons encode cocaine vs. sucrose reward and predict future error. J. Neurophysiol., 2013, 110(7), 1497-1510. doi: 10.1152/jn.00160.2013 PMID: 23864369
  216. Isoda, M.; Hikosaka, O. Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. J. Neurosci., 2008, 28(28), 7209-7218. doi: 10.1523/JNEUROSCI.0487-08.2008 PMID: 18614691
  217. Narayanan, N.S.; Wessel, J.R.; Greenlee, J.D.W. The fastest way to stop: inhibitory control and IFG-STN hyperdirect connectivity. Neuron, 2020, 106(4), 549-551. doi: 10.1016/j.neuron.2020.04.017 PMID: 32437650
  218. Jahanshahi, M.; Obeso, I.; Rothwell, J.C.; Obeso, J.A. A fronto-striato-subthalamic-pallidal network for goal-directed and habitual inhibition. Nat. Rev. Neurosci., 2015, 16(12), 719-732. doi: 10.1038/nrn4038 PMID: 26530468
  219. Mirzaei, A.; Kumar, A.; Leventhal, D.; Mallet, N.; Aertsen, A.; Berke, J.; Schmidt, R. Sensorimotor processing in the basal ganglia leads to transient beta oscillations during behavior. J. Neurosci., 2017, 37(46), 11220-11232. doi: 10.1523/JNEUROSCI.1289-17.2017 PMID: 29038241
  220. Pautrat, A.; Rolland, M.; Barthelemy, M.; Baunez, C.; Sinniger, V.; Piallat, B.; Savasta, M.; Overton, P.G.; David, O.; Coizet, V. Revealing a novel nociceptive network that links the subthalamic nucleus to pain processing. elife, 2018, 7, e36607.
  221. Hammond, C.; Deniau, J.M.; Rizk, A.; Feger, J. Electrophysiological demonstration of an excitatory subthalamonigral pathway in the rat. Brain Res., 1978, 151(2), 235-244. doi: 10.1016/0006-8993(78)90881-8 PMID: 209862
  222. Nambu, A.; Tokuno, H.; Takada, M. Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci. Res., 2002, 43(2), 111-117. doi: 10.1016/S0168-0102(02)00027-5 PMID: 12067746
  223. Al Tannir, R.; Pautrat, A.; Baufreton, J.; Overton, P.; Coizet, V. The subthalamic nucleus: A hub for sensory control via short three-lateral loop connections with the brainstem? Curr. Neuropharmacol., 2022, 21(1), 22-30. PMID: 35850655
  224. Rolland, M.; Carcenac, C.; Overton, P.G.; Savasta, M.; Coizet, V. Enhanced visual responses in the superior colliculus and subthalamic nucleus in an animal model of Parkinson’s disease. Neuroscience, 2013, 252, 277-288. doi: 10.1016/j.neuroscience.2013.07.047 PMID: 23916713
  225. McElvain, L.E.; Chen, Y.; Moore, J.D.; Brigidi, G.S.; Bloodgood, B.L.; Lim, B.K.; Costa, R.M.; Kleinfeld, D. Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon. Neuron, 2021, 109(10), 1721-1738. doi: 10.1016/j.neuron.2021.03.017
  226. Matsumura, M.; Kojima, J.; Gardiner, T.W.; Hikosaka, O. Visual and oculomotor functions of monkey subthalamic nucleus. J. Neurophysiol., 1992, 67(6), 1615-1632. doi: 10.1152/jn.1992.67.6.1615 PMID: 1629767
  227. Afsharpour, S. Topographical projections of the cerebral cortex to the subthalamic nucleus. J. Comp. Neurol., 1985, 236(1), 14-28. doi: 10.1002/cne.902360103 PMID: 2414329
  228. Canteras, N.S.; Shammah-Lagnado, S.J.; Silva, B.A.; Ricardo, J.A. Afferent connections of the subthalamic nucleus: A combined retrograde and anterograde horseradish peroxidase study in the rat. Brain Res., 1990, 513(1), 43-59. doi: 10.1016/0006-8993(90)91087-W PMID: 2350684
  229. Wiener, M.; Magaro, C.M.; Matell, M.S. Accurate timing but increased impulsivity following excitotoxic lesions of the subthalamic nucleus. Neurosci. Lett., 2008, 440(2), 176-180. doi: 10.1016/j.neulet.2008.05.071 PMID: 18562098
  230. Hikosaka, O.; Takikawa, Y.; Kawagoe, R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev., 2000, 80(3), 953-978. doi: 10.1152/physrev.2000.80.3.953 PMID: 10893428
  231. Féger, J.; Bevan, M.; Crossman, A.R. The projections from the parafascicular thalamic nucleus to the subthalamic nucleus and the striatum arise from separate neuronal populations: A comparison with the corticostriatal and corticosubthalamic efferents in a retrograde fluorescent double-labelling study. Neuroscience, 1994, 60(1), 125-132. doi: 10.1016/0306-4522(94)90208-9 PMID: 8052406
  232. Wang, M.; Qu, Q.; He, T.; Li, M.; Song, Z.; Chen, F.; Zhang, X.; Xie, J.; Geng, X.; Yang, M.; Wang, X.; Lei, C.; Hou, Y. Distinct temporal spike and local field potential activities in the thalamic parafascicular nucleus of parkinsonian rats during rest and limb movement. Neuroscience, 2016, 330, 57-71. doi: 10.1016/j.neuroscience.2016.05.031 PMID: 27238892
  233. Beatty, J.A.; Sylwestrak, E.L.; Cox, C.L. Two distinct populations of projection neurons in the rat lateral parafascicular thalamic nucleus and their cholinergic responsiveness. Neuroscience, 2009, 162(1), 155-173. doi: 10.1016/j.neuroscience.2009.04.043 PMID: 19393292
  234. Coizet, V.; Comoli, E.; Westby, G.W.M.; Redgrave, P. Phasic activation of substantia nigra and the ventral tegmental area by chemical stimulation of the superior colliculus: An electrophysiological investigation in the rat. Eur. J. Neurosci., 2003, 17(1), 28-40. doi: 10.1046/j.1460-9568.2003.02415.x PMID: 12534966
  235. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol., 1998, 80(1), 1-27. doi: 10.1152/jn.1998.80.1.1 PMID: 9658025
  236. Schultz, W.; Dayan, P.; Montague, P.R. A neural substrate of prediction and reward. Science, 1997, 275(5306), 1593-1599. doi: 10.1126/science.275.5306.1593 PMID: 9054347
  237. Freeze, B.S.; Kravitz, A.V.; Hammack, N.; Berke, J.D.; Kreitzer, A.C. Control of basal ganglia output by direct and indirect pathway projection neurons. J. Neurosci., 2013, 33(47), 18531-18539. doi: 10.1523/JNEUROSCI.1278-13.2013 PMID: 24259575
  238. Grillner, S.; Robertson, B. The basal ganglia over 500 million years. Curr. Biol., 2016, 26(20), R1088-R1100. doi: 10.1016/j.cub.2016.06.041 PMID: 27780050
  239. Graybiel, A.M. The basal ganglia. Curr. Biol., 2000, 10(14), R509-R511. doi: 10.1016/S0960-9822(00)00593-5 PMID: 10899013
  240. Redgrave, P.; Gurney, K. The short-latency dopamine signal: A role in discovering novel actions? Nat. Rev. Neurosci., 2006, 7(12), 967-975. doi: 10.1038/nrn2022 PMID: 17115078
  241. Freeman, A.S.; Meltzer, L.T.; Bunney, B.S. Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci., 1985, 36(20), 1983-1994. doi: 10.1016/0024-3205(85)90448-5 PMID: 3990520
  242. Guarraci, F.A.; Kapp, B.S. An electrophysiological characterization of ventral tegmental area dopaminergic neurons during differential pavlovian fear conditioning in the awake rabbit. Behav. Brain Res., 1999, 99(2), 169-179. doi: 10.1016/S0166-4328(98)00102-8 PMID: 10512583
  243. Overton, P.G.; Clark, D. Burst firing in midbrain dopaminergic neurons. Brain Res. Brain Res. Rev., 1997, 25(3), 312-334. doi: 10.1016/S0165-0173(97)00039-8 PMID: 9495561
  244. Horvitz, J.C.; Stewart, T.; Jacobs, B.L. Burst activity of ventral tegmental dopamine neurons is elicited by sensory stimuli in the awake cat. Brain Res., 1997, 759(2), 251-258. doi: 10.1016/S0006-8993(97)00265-5 PMID: 9221945
  245. Ljungberg, T.; Apicella, P.; Schultz, W. Responses of monkey dopamine neurons during learning of behavioral reactions. J. Neurophysiol., 1992, 67(1), 145-163. doi: 10.1152/jn.1992.67.1.145 PMID: 1552316
  246. Dommett, E.; Coizet, V.; Blaha, C.D.; Martindale, J.; Lefebvre, V.; Walton, N.; Mayhew, J.E.W.; Overton, P.G.; Redgrave, P. How visual stimuli activate dopaminergic neurons at short latency. Science, 2005, 307(5714), 1476-1479. doi: 10.1126/science.1107026 PMID: 15746431
  247. Horvitz, J.C. Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience, 2000, 96(4), 651-656. doi: 10.1016/S0306-4522(00)00019-1 PMID: 10727783
  248. Redgrave, P.; Prescott, T.J.; Gurney, K. Is the short-latency dopamine response too short to signal reward error? Trends Neurosci., 1999, 22(4), 146-151. doi: 10.1016/S0166-2236(98)01373-3 PMID: 10203849
  249. Beier, K.T.; Steinberg, E.E.; DeLoach, K.E.; Xie, S.; Miyamichi, K.; Schwarz, L.; Gao, X.J.; Kremer, E.J.; Malenka, R.C.; Luo, L. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell, 2015, 162(3), 622-634. doi: 10.1016/j.cell.2015.07.015 PMID: 26232228
  250. Bertram, C.; Dahan, L.; Boorman, L.W.; Harris, S.; Vautrelle, N.; Leriche, M.; Redgrave, P.; Overton, P.G. Cortical regulation of dopaminergic neurons: Role of the midbrain superior colliculus. J. Neurophysiol., 2014, 111(4), 755-767. doi: 10.1152/jn.00329.2013 PMID: 24225541
  251. Cox, J.; Witten, I.B. Striatal circuits for reward learning and decision-making. Nat. Rev. Neurosci., 2019, 20(8), 482-494. doi: 10.1038/s41583-019-0189-2 PMID: 31171839
  252. Redgrave, P.; Gurney, K.; Reynolds, J. What is reinforced by phasic dopamine signals? Brain Res. Brain Res. Rev., 2008, 58(2), 322-339. doi: 10.1016/j.brainresrev.2007.10.007 PMID: 18055018
  253. Obeso, J.A.; Rodriguez-Oroz, M.C.; Stamelou, M.; Bhatia, K.P.; Burn, D.J.J.T.L. The expanding universe of disorders of the basal ganglia. Lancet, 2014, 384(9942), 523-531. doi: 10.1016/S0140-6736(13)62418-6
  254. Moro, E.; Bellot, E.; Meoni, S.; Pelissier, P.; Hera, R.; Dojat, M.; Coizet, V.; Group, S.C.S. Visual dysfunction of the superior colliculus in de novo parkinsonian patients. Ann. Neurol., 2020, 87(4), 533-546. doi: 10.1002/ana.25696 PMID: 32030799
  255. Terao, Y.; Fukuda, H.; Ugawa, Y.; Hikosaka, O.J.C.n. New perspectives on the pathophysiology of Parkinson’s disease as assessed by saccade performance: A clinical review. Clin. Neurophysiol., 2013, 124(8), 1491-1506. doi: 10.1016/j.clinph.2013.01.021
  256. Meoni, S.; Cury, R.G.; Moro, E.J.P.r. New players in basal ganglia dysfunction in Parkinson’s disease. Prog. Brain Res., 2020, 252, 307-327. doi: 10.1016/bs.pbr.2020.01.001
  257. Bohnen, N.I.; Yarnall, A.J.; Weil, R.S.; Moro, E.; Moehle, M.S.; Borghammer, P.; Bedard, M-A.; Albin, R.L.J.T.L.N. Cholinergic system changes in Parkinson’s disease: Emerging therapeutic approaches. Lancet Neurol., 2022, 21(4), 381-392. doi: 10.1016/S1474-4422(21)00377-X
  258. Shires, J.; Joshi, S.; Basso, M.A.J.C.n. Shedding new light on the role of the basal ganglia-superior colliculus pathway in eye movements. Curr. Opin. Neurobiol., 2010, 20(6), 717-725. doi: 10.1016/j.conb.2010.08.008
  259. Anderson, T.J.; MacAskill, M.R.J.N.R.N. Eye movements in patients with neurodegenerative disorders. Nat. Rev. Neurol., 2013, 9(2), 74-85. doi: 10.1038/nrneurol.2012.273
  260. Basso, M.A.; Powers, A.S.; Evinger, C.J.J.N. An explanation for reflex blink hyperexcitability in Parkinson’s disease. I. Superior colliculus. J. Neurosci., 1996, 16(22), 7308-7317.
  261. Nakamura, T.; Bronstein, A.M.; Lueck, C.; Marsden, C.; Rudge, P.J.B. Vestibular, cervical and visual remembered saccades in Parkinson’s disease. Brain, 1994, 117(Pt 6), 1423-1432. doi: 10.1093/brain/117.6.1423
  262. Munoz, M.J.; Reilly, J.L.; Pal, G.D.; Metman, L.V.; Rivera, Y.M.; Drane, Q.H.; Corcos, D.M.; David, F.J.; Goelz, L.C.J.C.N. Medication adversely impacts visually-guided eye movements in Parkinson’s disease. Clin. Neurophysiol., 2022, 143, 145-153. doi: 10.1016/j.clinph.2022.07.505
  263. Hood, A.J.; Amador, S.C.; Cain, A.E.; Briand, K.A.; Al-Refai, A.H.; Schiess, M.C.; Sereno, A.B. Levodopa slows prosaccades and improves antisaccades: An eye movement study in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry, 2007, 78(6), 565-570.
  264. Basso, M.A.; Liu, P.J.J.n. Context-dependent effects of substantia nigra stimulation on eye movements. J. Neurophysiol., 2007, 97(6), 4129-4142. doi: 10.1152/jn.00094.2007
  265. Chambers, J.M.; Prescott, T.J.J.N. Response times for visually guided saccades in persons with Parkinson’s disease: A meta-analytic review. Neuropsychologia, 2010, 48(4), 887-899. doi: 10.1016/j.neuropsychologia.2009.11.006
  266. Bakhtiari, S.; Altinkaya, A.; Pack, C.C.; Sadikot, A.F.J.S.R. The role of the subthalamic nucleus in inhibitory control of oculomotor behavior in Parkinson’s disease. Sci. Rep., 2020, 10(1), 5429. doi: 10.1038/s41598-020-61572-4
  267. Pflug, C.; Nienstedt, J.C.; Gulberti, A.; Müller, F.; Vettorazzi, E.; Koseki, J.C.; Niessen, A.; Flügel, T.; Hidding, U.; Buhmann, C.J.A.C.; Neurology, T. Impact of simultaneous subthalamic and nigral stimulation on dysphagia in Parkinson’s disease. Ann. Clin. Transl. Neurol., 2020, 7(5), 628-638. doi: 10.1002/acn3.51027
  268. Su, Z.H.; Patel, S.; Gavine, B.; Buchanan, T.; Bogdanovic, M.; Sarangmat, N.; Green, A.L.; Bloem, B.R.; FitzGerald, J.J.; Antoniades, C.A. Deep brain stimulation and levodopa affect gait variability in Parkinson disease differently. Neuromodulation, 2023, 26(2), 382-393.
  269. Ossowska, K.J. Zona incerta as a therapeutic target in Parkinson’s disease. J. Neurol., 2020, 267(3), 591-606. doi: 10.1007/s00415-019-09486-8
  270. Hussein, A.; Guevara, C.A.; Del Valle, P.; Gupta, S.; Benson, D.L.; Huntley, G.W.J.T.N. Non-motor symptoms of Parkinson’s disease: The neurobiology of early psychiatric and cognitive dysfunction. Neuroscientist., 2023, 29(1), 97.(116). doi: 10.1177/10738584211011979
  271. Pretegiani, E.; Vanegas‐Arroyave, N.; FitzGibbon, E.J.; Hallett, M.; Optican, L.M.J.M.D. Evidence from Parkinson’s disease that the superior colliculus couples action and perception. Mov. Disord., 2019, 34(11), 1680-1689. doi: 10.1002/mds.27861
  272. Overton, P.G.; Coizet, V.J.M.H. The neuropathological basis of anxiety in Parkinson’s disease. Med. Hypotheses, 2020, 144, 110048. doi: 10.1016/j.mehy.2020.110048
  273. Palmeri, R.; Corallo, F.; Bonanno, L.; Currò, S.; Merlino, P.; Di Lorenzo, G.; Bramanti, P.; Marino, S.; Buono, V.L.J.M. Apathy and impulsiveness in Parkinson disease: Two faces of the same coin? Medicine, 2022, 101(26), e29766.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024