Affective and Cognitive Impairments in Rodent Models of Diabetes


Цитировать

Полный текст

Аннотация

Diabetes and related acute and long-term complications have a profound impact on cognitive, emotional, and social behavior, suggesting that the central nervous system (CNS) is a crucial substrate for diabetic complications. When anxiety, depression, and cognitive deficits occur in diabetic patients, the symptoms and complications related to the disease worsen, contributing to lower quality of life while increasing health care costs and mortality. Experimental models of diabetes in rodents are a fundamental and valuable tool for improving our understanding of the mechanisms underlying the close and reciprocal link between diabetes and CNS alterations, including the development of affective and cognitive disorders. Such models must reproduce the different components of this pathological condition in humans and, therefore, must be associated with affective and cognitive behavioral alterations. Beyond tight glycemic control, there are currently no specific therapies for neuropsychiatric comorbidities associated with diabetes; animal models are, therefore, essential for the development of adequate therapies. To our knowledge, there is currently no review article that summarizes changes in affective and cognitive behavior in the most common models of diabetes in rodents. Therefore, in this review, we have reported the main evidence on the alterations of affective and cognitive behavior in the different models of diabetes in rodents, the main mechanisms underlying these comorbidities, and the applicable therapeutic strategy.

Об авторах

Enza Palazzo

Department of Experimental Medicine, Pharamacology Division,, University of Campania "L. Vanvitelli"

Автор, ответственный за переписку.
Email: info@benthamscience.net

Ida Marabese

Department of Experimental Medicine, Pharamacology Division,, University of Campania "L. Vanvitelli

Email: info@benthamscience.net

Serena Boccella

Department of Experimental Medicine, Pharamacology Division, University of Campania "L. Vanvitelli"

Email: info@benthamscience.net

Carmela Belardo

Department of Experimental Medicine, Pharamacology Division, University of Campania "L. Vanvitelli

Email: info@benthamscience.net

Gorizio Pierretti

Department of Plastic Surgery, University of Campania "L. Vanvitell

Email: info@benthamscience.net

Sabatino Maione

Department of Experimental Medicine, Pharamacology Division, University of Campania "L. Vanvitelli"

Email: info@benthamscience.net

Список литературы

  1. Lovic, D.; Piperidou, A.; Zografou, I.; Grassos, H.; Pittaras, A.; Manolis, A. The growing epidemic of diabetes mellitus. Curr. Vasc. Pharmacol., 2020, 18(2), 104-109. doi: 10.2174/1570161117666190405165911 PMID: 30961501
  2. Mooradian, A.D. Pathophysiology of central nervous system complications in diabetes mellitus. Clin. Neurosci., 1997, 4(6), 322-326. PMID: 9358975
  3. Gaspar, J.M.; Baptista, F.I.; Macedo, M.P.; Ambrósio, A.F. Inside the diabetic brain: Role of different players involved in cognitive decline. ACS Chem. Neurosci., 2016, 7(2), 131-142. doi: 10.1021/acschemneuro.5b00240 PMID: 26667832
  4. Martin, H.; Bullich, S.; Guiard, B.P.; Fioramonti, X. The impact of insulin on the serotonergic system and consequences on diabetes‐associated mood disorders. J. Neuroendocrinol., 2021, 33(4), e12928. doi: 10.1111/jne.12928 PMID: 33506507
  5. Asslih, S.; Damri, O.; Agam, G. Neuroinflammation as a common denominator of complex diseases (Cancer, Diabetes Type 2, and Neuropsychiatric Disorders). Int. J. Mol. Sci., 2021, 22(11), 6138. doi: 10.3390/ijms22116138 PMID: 34200240
  6. Anderson, R.J.; Freedland, K.E.; Clouse, R.E.; Lustman, P.J. The prevalence of comorbid depression in adults with diabetes: A meta-analysis. Diabetes Care, 2001, 24(6), 1069-1078. doi: 10.2337/diacare.24.6.1069 PMID: 11375373
  7. Harding, K.A.; Pushpanathan, M.E.; Whitworth, S.R.; Nanthakumar, S.; Bucks, R.S.; Skinner, T.C. Depression prevalence in Type 2 diabetes is not related to diabetes–depression symptom overlap but is related to symptom dimensions within patient self‐report measures: A meta‐analysis. Diabet. Med., 2019, 36(12), 1600-1611. doi: 10.1111/dme.14139 PMID: 31532013
  8. Farooqi, A.; Gillies, C.; Sathanapally, H.; Abner, S.; Seidu, S.; Davies, M.J.; Polonsky, W.H.; Khunti, K. A systematic review and meta-analysis to compare the prevalence of depression between people with and without Type 1 and Type 2 diabetes. Prim. Care Diabetes, 2022, 16(1), 1-10. doi: 10.1016/j.pcd.2021.11.001 PMID: 34810141
  9. Roy, T.; Lloyd, C.E. Epidemiology of depression and diabetes: A systematic review. J. Affect. Disord., 2012, 142, S8-S21. doi: 10.1016/S0165-0327(12)70004-6 PMID: 23062861
  10. Tomic, D.; Shaw, J.E.; Magliano, D.J. The burden and risks of emerging complications of diabetes mellitus. Nat. Rev. Endocrinol., 2022, 18(9), 525-539. doi: 10.1038/s41574-022-00690-7 PMID: 35668219
  11. Katon, W.; Von Korff, M.; Ciechanowski, P.; Russo, J.; Lin, E.; Simon, G.; Ludman, E.; Walker, E.; Bush, T.; Young, B. Behavioral and clinical factors associated with depression among individuals with diabetes. Diabetes Care, 2004, 27(4), 914-920. doi: 10.2337/diacare.27.4.914 PMID: 15047648
  12. Sartorius, N. Depression and diabetes. Dialogues Clin. Neurosci., 2018, 20(1), 47-52. doi: 10.31887/DCNS.2018.20.1/nsartorius PMID: 29946211
  13. Aftab, A.; Bhat, C.; Gunzler, D.; Cassidy, K.; Thomas, C.; McCormick, R.; Dawson, N.V.; Sajatovic, M. Associations among comorbid anxiety, psychiatric symptomatology, and diabetic control in a population with serious mental illness and diabetes: Findings from an interventional randomized controlled trial. Int. J. Psychiatry Med., 2018, 53(3), 126-140. doi: 10.1177/0091217417749795 PMID: 29280685
  14. Boden, M.T. Prevalence of mental disorders and related functioning and treatment engagement among people with diabetes. J. Psychosom. Res., 2018, 106, 62-69. doi: 10.1016/j.jpsychores.2018.01.001 PMID: 29455901
  15. Latas, M.; Vučinić, L.D.; Spasić, S.M. Anxiety disorders and medical illness comorbidity and treatment implications. Curr. Opin. Psychiatry, 2019, 32(5), 429-434. doi: 10.1097/YCO.0000000000000527 PMID: 31116127
  16. Ryan, J.P.; Fine, D.F.; Rosano, C. Type 2 diabetes and cognitive impairment: Contributions from neuroimaging. J. Geriatr. Psychiatry Neurol., 2014, 27(1), 47-55. doi: 10.1177/0891988713516543 PMID: 24394151
  17. Koekkoek, P.S.; Kappelle, L.J.; van den Berg, E.; Rutten, G.E.H.M.; Biessels, G.J. Cognitive function in patients with diabetes mellitus: Guidance for daily care. Lancet Neurol., 2015, 14(3), 329-340. doi: 10.1016/S1474-4422(14)70249-2 PMID: 25728442
  18. Rees, D.A.; Alcolado, J.C. Animal models of diabetes mellitus. Diabet. Med., 2005, 22(4), 359-370. doi: 10.1111/j.1464-5491.2005.01499.x PMID: 15787657
  19. Al-awar, A.; Kupai, K.; Veszelka, M.; Szűcs, G.; Attieh, Z.; Murlasits, Z.; Török, S.; Pósa, A.; Varga, C. Experimental diabetes mellitus in different animal models. J. Diabetes Res., 2016, 2016, 1-12. doi: 10.1155/2016/9051426 PMID: 27595114
  20. Pandey, S.; Dvorakova, M.C. Future perspective of diabetic animal models. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(1), 25-38. doi: 10.2174/1871530319666190626143832 PMID: 31241444
  21. Herder, C.; Schmitt, A.; Budden, F.; Reimer, A.; Kulzer, B.; Roden, M.; Haak, T.; Hermanns, N. Association between pro- and anti-inflammatory cytokines and depressive symptoms in patients with diabetes-potential differences by diabetes type and depression scores. Transl. Psychiatry, 2018, 7(11), 1. doi: 10.1038/s41398-017-0009-2 PMID: 29520075
  22. Bąk, E.; Marcisz-Dyla, E.; Młynarska, A.; Sternal, D.; Kadłubowska, M.; Marcisz, C. Prevalence of depressive symptoms in patients with type 1 and 2 diabetes mellitus. Patient Prefer. Adherence, 2020, 14, 443-454. doi: 10.2147/PPA.S237767 PMID: 32184573
  23. Réus, G.Z.; Carlessi, A.S.; Silva, R.H.; Ceretta, L.B.; Quevedo, J. Relationship of oxidative stress as a link between diabetes mellitus and major depressive disorder. Oxid. Med. Cell. Longev., 2019, 2019, 1-6. doi: 10.1155/2019/8637970 PMID: 30944699
  24. Ceretta, L.B.; Réus, G.Z.; Stringari, R.B.; Ribeiro, K.F.; Zappellini, G.; Aguiar, B.W.; Pfaffenseller, B.; Lersh, C.; Kapczinski, F.; Quevedo, J. Imipramine treatment reverses depressive-like behavior in alloxan-diabetic rats. Diabetes Metab. Res. Rev., 2012, 28(2), 139-144. doi: 10.1002/dmrr.1285 PMID: 22423384
  25. Tang, Z.J.; Zou, W.; Yuan, J.; Zhang, P.; Tian, Y.; Xiao, Z.F.; Li, M.H.; Wei, H.J.; Tang, X.Q. Antidepressant-like and anxiolytic-like effects of hydrogen sulfide in streptozotocin-induced diabetic rats through inhibition of hippocampal oxidative stress. Behav. Pharmacol., 2015, 26(5), 427-435. doi: 10.1097/FBP.0000000000000143 PMID: 25932716
  26. Miyata, S.; Hirano, S.; Kamei, J. Diabetes attenuates the antidepressant-like effect mediated by the activation of 5-HT1A receptor in the mouse tail suspension test. Neuropsychopharmacology, 2004, 29(3), 461-469. doi: 10.1038/sj.npp.1300354 PMID: 14628002
  27. Huang, C.W.; Hong, T.W.; Wang, Y.J.; Chen, K.C.; Pei, J.C.; Chuang, T.Y.; Lai, W.S.; Tsai, S.H.; Chu, R.; Chen, W.C.; Sheen, L.Y.; Takahashi, S.; Ding, S.T.; Shen, T.L. Ophiocordyceps formosana improves hyperglycemia and depression-like behavior in an STZ-induced diabetic mouse model. BMC Complement. Altern. Med., 2016, 16(1), 310. doi: 10.1186/s12906-016-1278-7 PMID: 27553852
  28. Miyata, S.; Yamada, N.; Hirano, S.; Tanaka, S.; Kamei, J. Diabetes attenuates psychological stress-elicited 5-HT secretion in the prefrontal cortex but not in the amygdala of mice. Brain Res., 2007, 1147, 233-239. doi: 10.1016/j.brainres.2007.02.001 PMID: 17320057
  29. Youssef, D.A.; El-Fayoumi, H.M.; Mahmoud, M.F. Beta-caryophyllene alleviates diet-induced neurobehavioral changes in rats: The role of CB2 and PPAR-γ receptors. Biomed. Pharmacother., 2019, 110, 145-154. doi: 10.1016/j.biopha.2018.11.039 PMID: 30469079
  30. Dutheil, S.; Ota, K.T.; Wohleb, E.S.; Rasmussen, K.; Duman, R.S. High-fat diet induced anxiety and anhedonia: Impact on brain homeostasis and inflammation. Neuropsychopharmacology, 2016, 41(7), 1874-1887. doi: 10.1038/npp.2015.357 PMID: 26658303
  31. Hassan, A.M.; Mancano, G.; Kashofer, K.; Fröhlich, E.E.; Matak, A.; Mayerhofer, R.; Reichmann, F.; Olivares, M.; Neyrinck, A.M.; Delzenne, N.M.; Claus, S.P.; Holzer, P. High-fat diet induces depression-like behaviour in mice associated with changes in microbiome, neuropeptide Y, and brain metabolome. Nutr. Neurosci., 2019, 22(12), 877-893. doi: 10.1080/1028415X.2018.1465713 PMID: 29697017
  32. Sharma, A.N.; Elased, K.M.; Garrett, T.L.; Lucot, J.B. Neurobehavioral deficits in db/db diabetic mice. Physiol. Behav., 2010, 101(3), 381-388. doi: 10.1016/j.physbeh.2010.07.002 PMID: 20637218
  33. Dinel, A.L.; André, C.; Aubert, A.; Ferreira, G.; Layé, S.; Castanon, N. Cognitive and emotional alterations are related to hippocampal inflammation in a mouse model of metabolic syndrome. PLoS One, 2011, 6(9), e24325. doi: 10.1371/journal.pone.0024325 PMID: 21949705
  34. Li, S.; Zhai, X.; Rong, P.; McCabe, M.F.; Wang, X.; Zhao, J.; Ben, H.; Wang, S. Therapeutic effect of vagus nerve stimulation on depressive-like behavior, hyperglycemia and insulin receptor expression in Zucker fatty rats. PLoS One, 2014, 9(11), e112066. doi: 10.1371/journal.pone.0112066 PMID: 25365428
  35. Pan, Y.; Hong, Y.; Zhang, Q.Y.; Kong, L.D. Impaired hypothalamic insulin signaling in CUMS rats: Restored by icariin and fluoxetine through inhibiting CRF system. Psychoneuroendocrinology, 2013, 38(1), 122-134. doi: 10.1016/j.psyneuen.2012.05.007 PMID: 22663897
  36. Tsuneki, H.; Tokai, E.; Sugawara, C.; Wada, T.; Sakurai, T.; Sasaoka, T. Hypothalamic orexin prevents hepatic insulin resistance induced by social defeat stress in mice. Neuropeptides, 2013, 47(3), 213-219. doi: 10.1016/j.npep.2013.02.002 PMID: 23510906
  37. Delanogare, E.; de Souza, R.M.; Rosa, G.K.; Guanabara, F.G.; Rafacho, A.; Moreira, E.L.G. Enriched environment ameliorates dexamethasone effects on emotional reactivity and metabolic parameters in mice. Stress, 2020, 23(4), 466-473. doi: 10.1080/10253890.2020.1735344 PMID: 32107952
  38. Sestile, C.C.; Maraschin, J.C.; Rangel, M.P.; Cuman, R.K.N.; Audi, E.A. Antidepressant-like effect of insulin in streptozotocin-induced type 2 diabetes mellitus rats. Basic Clin. Pharmacol. Toxicol., 2016, 119(3), 243-248. doi: 10.1111/bcpt.12563 PMID: 26857652
  39. Kleinridders, A.; Cai, W.; Cappellucci, L.; Ghazarian, A.; Collins, W.R.; Vienberg, S.G.; Pothos, E.N.; Kahn, C.R. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc. Natl. Acad. Sci., 2015, 112(11), 3463-3468. doi: 10.1073/pnas.1500877112 PMID: 25733901
  40. Grillo, C.A.; Piroli, G.G.; Kaigler, K.F.; Wilson, S.P.; Wilson, M.A.; Reagan, L.P. Downregulation of hypothalamic insulin receptor expression elicits depressive-like behaviors in rats. Behav. Brain Res., 2011, 222(1), 230-235. doi: 10.1016/j.bbr.2011.03.052 PMID: 21458499
  41. Grillo, C.A.; Piroli, G.G.; Lawrence, R.C.; Wrighten, S.A.; Green, A.J.; Wilson, S.P.; Sakai, R.R.; Kelly, S.J.; Wilson, M.A.; Mott, D.D.; Reagan, L.P. Hippocampal insulin resistance impairs spatial learning and synaptic plasticity. Diabetes, 2015, 64(11), 3927-3936. doi: 10.2337/db15-0596 PMID: 26216852
  42. Heni, M.; Hennige, A.M.; Peter, A.; Siegel-Axel, D.; Ordelheide, A.M.; Krebs, N.; Machicao, F.; Fritsche, A.; Häring, H.U.; Staiger, H. Insulin promotes glycogen storage and cell proliferation in primary human astrocytes. PLoS One, 2011, 6(6), e21594. doi: 10.1371/journal.pone.0021594 PMID: 21738722
  43. Cai, W.; Xue, C.; Sakaguchi, M.; Konishi, M.; Shirazian, A.; Ferris, H.A.; Li, M.E.; Yu, R.; Kleinridders, A.; Pothos, E.N.; Kahn, C.R. Insulin regulates astrocyte gliotransmission and modulates behavior. J. Clin. Invest., 2018, 128(7), 2914-2926. doi: 10.1172/JCI99366 PMID: 29664737
  44. Ramos-Rodriguez, J.J.; Molina-Gil, S.; Ortiz-Barajas, O.; Jimenez-Palomares, M.; Perdomo, G.; Cozar-Castellano, I.; Lechuga-Sancho, A.M.; Garcia-Alloza, M. Central proliferation and neurogenesis is impaired in type 2 diabetes and prediabetes animal models. PLoS One, 2014, 9(2), e89229. doi: 10.1371/journal.pone.0089229 PMID: 24586614
  45. Murata, Y.; Narisawa, Y.; Shimono, R.; Ohmori, H.; Mori, M.; Ohe, K.; Mine, K.; Enjoji, M. A high fat diet-induced decrease in hippocampal newly-born neurons of male mice is exacerbated by mild psychological stress using a Communication Box. J. Affect. Disord., 2017, 209, 209-216. doi: 10.1016/j.jad.2016.11.046 PMID: 27930914
  46. Nam, S.M.; Kim, J.W.; Kwon, H.J.; Yoo, D.Y.; Jung, H.Y.; Kim, D.W.; Hwang, I.K.; Seong, J.K.; Yoon, Y.S. Differential effects of low- and high-dose zinc supplementation on synaptic plasticity and neurogenesis in the hippocampus of control and high-fat diet-fed mice. Neurochem. Res., 2017, 42(11), 3149-3159. doi: 10.1007/s11064-017-2353-2 PMID: 28770438
  47. Okuyama, S.; Shinoka, W.; Nakamura, K.; Kotani, M.; Sawamoto, A.; Sugawara, K.; Sudo, M.; Nakajima, M.; Furukawa, Y. Suppressive effects of the peel of Citrus kawachiensis (Kawachi Bankan) on astroglial activation, tau phosphorylation, and inhibition of neurogenesis in the hippocampus of type 2 diabetic db/db mice. Biosci. Biotechnol. Biochem., 2018, 82(8), 1384-1395. doi: 10.1080/09168451.2018.1469396 PMID: 29732953
  48. Mayanil, C.S.K.; Kazmi, S.M.I.; Baquer, N.Z. Changes in monoamine oxidase activity in rat brain during alloxan diabetes. J. Neurochem., 1982, 38(1), 179-183. doi: 10.1111/j.1471-4159.1982.tb10869.x PMID: 7050304
  49. Ohtani, N.; Ohta, M.; Sugano, T. Microdialysis study of modification of hypothalamic neurotransmitters in streptozotocin-diabetic rats. J. Neurochem., 1997, 69(4), 1622-1628. doi: 10.1046/j.1471-4159.1997.69041622.x PMID: 9326291
  50. Sandrini, M.; Vitale, G.; Vergoni, A.V.; Ottani, A.; Bertolini, A. Streptozotocin-induced diabetes provokes changes in serotonin concentration and on 5-HT1A and 5-HT2 receptors in the rat brain. Life Sci., 1997, 60(16), 1393-1397. doi: 10.1016/S0024-3205(97)00084-2 PMID: 9096260
  51. Barber, M.; Kasturi, B.S.; Austin, M.E.; Patel, K.P. MohanKumar, S.M.J.; MohanKumar, P.S. Diabetes-induced neuroendocrine changes in rats: Role of brain monoamines, insulin and leptin. Brain Res., 2003, 964(1), 128-135. doi: 10.1016/S0006-8993(02)04091-X PMID: 12573521
  52. Yamato, T.; Misumi, Y.; Yamasaki, S.; Kino, M.; Aomine, M. Diabetes mellitus decreases hippocampal release of neurotransmitters: An in vivo microdialysis study of awake, freely moving rats. Diabetes Nutr. Metab., 2004, 17(3), 128-136. PMID: 15334789
  53. Abraham, P.M.; Paul, J.; Paulose, C.S. Down regulation of cerebellar serotonergic receptors in streptozotocin induced diabetic rats: Effect of pyridoxine and Aegle marmelose. Brain Res. Bull., 2010, 82(1-2), 87-94. doi: 10.1016/j.brainresbull.2010.02.005 PMID: 20170713
  54. Gupta, D.; Kurhe, Y.; Radhakrishnan, M. Antidepressant effects of insulin in streptozotocin induced diabetic mice: Modulation of brain serotonin system. Physiol. Behav., 2014, 129, 73-78. doi: 10.1016/j.physbeh.2014.02.036 PMID: 24582678
  55. Petrišić, M.Š.; Augood, S.J.; Bicknell, R.J. Monoamine transporter gene expression in the central nervous system in diabetes mellitus. J. Neurochem., 1997, 68(6), 2435-2441. doi: 10.1046/j.1471-4159.1997.68062435.x PMID: 9166737
  56. Zemdegs, J.; Quesseveur, G.; Jarriault, D.; Pénicaud, L.; Fioramonti, X.; Guiard, B.P. High-fat diet-induced metabolic disorders impairs 5-HT function and anxiety-like behavior in mice. Br. J. Pharmacol., 2016, 173(13), 2095-2110. doi: 10.1111/bph.13343 PMID: 26472268
  57. Zemdegs, J.; Martin, H.; Pintana, H.; Bullich, S.; Manta, S.; Marqués, M.A.; Moro, C.; Layé, S.; Ducrocq, F.; Chattipakorn, N.; Chattipakorn, S.C.; Rampon, C.; Pénicaud, L.; Fioramonti, X.; Guiard, B.P. Metformin promotes anxiolytic and antidepressant-like responses in insulin-resistant mice by decreasing circulating branched-chain amino acids. J. Neurosci., 2019, 39(30), 5935-5948. doi: 10.1523/JNEUROSCI.2904-18.2019 PMID: 31160539
  58. Fernstrom, J.D. Large neutral amino acids: Dietary effects on brain neurochemistry and function. Amino Acids, 2013, 45(3), 419-430. doi: 10.1007/s00726-012-1330-y PMID: 22677921
  59. Balali Dehkordi, S.; Sajedianfard, J.; Owji, A.A. The effect of intra-cerebroventricular injection of insulin on the levels of monoamines on the raphe magnus nucleus of non-diabetic and short-term diabetic rats in the formalin test. Iran. J. Basic Med. Sci., 2019, 22(8), 915-921. PMID: 31579448
  60. Soliman, E.; Essmat, N.; Mahmoud, M.F.; Mahmoud, A.A.A. Impact of some oral hypoglycemic agents on type 2 diabetes-associated depression and reserpine-induced depression in rats: the role of brain oxidative stress and inflammation. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(8), 1391-1404. doi: 10.1007/s00210-020-01838-w PMID: 32077986
  61. Essmat, N.; Soliman, E.; Mahmoud, M.F.; Mahmoud, A.A.A. Antidepressant activity of anti-hyperglycemic agents in experimental models: A review. Diabetes Metab. Syndr., 2020, 14(5), 1179-1186. doi: 10.1016/j.dsx.2020.06.021 PMID: 32673838
  62. Barnard, K.; Peveler, R.C.; Holt, R.I.G. Antidepressant medication as a risk factor for type 2 diabetes and impaired glucose regulation: Systematic review. Diabetes Care, 2013, 36(10), 3337-3345. doi: 10.2337/dc13-0560 PMID: 24065841
  63. Bhattacharjee, S.; Bhattacharya, R.; Kelley, G.A.; Sambamoorthi, U. Antidepressant use and new-onset diabetes: A systematic review and meta-analysis. Diabetes Metab. Res. Rev., 2013, 29(4), 273-284. doi: 10.1002/dmrr.2393 PMID: 23390036
  64. Salvi, V.; Grua, I.; Cerveri, G.; Mencacci, C.; Barone-Adesi, F. The risk of new-onset diabetes in antidepressant users - A systematic review and meta-analysis. PLoS One, 2017, 12(7), e0182088. doi: 10.1371/journal.pone.0182088 PMID: 28759599
  65. Potter van Loon, B.J.; Radder, J.K.; Frölich, M.; Krans, H.M.; Zwinderman, A.H.; Meinders, A.E. Fluoxetine increases insulin action in obese nondiabetic and in obese non-insulin-dependent diabetic individuals. Int. J. Obes. Relat. Metab. Disord., 1992, 16(2), 79-85. PMID: 1316330
  66. Maheux, P.; Ducros, F.; Bourque, J.; Garon, J.; Chiasson, J-L. Fluoxetine improves insulin sensitivity in obese patients with non-insulin-dependent diabetes mellitus independently of weight loss. Int. J. Obes., 1997, 21(2), 97-102. doi: 10.1038/sj.ijo.0800372 PMID: 9043962
  67. McIntyre, R.S.; Soczynska, J.K.; Konarski, J.Z.; Kennedy, S.H. The effect of antidepressants on glucose homeostasis and insulin sensitivity: synthesis and mechanisms. Expert Opin. Drug Saf., 2006, 5(1), 157-168. doi: 10.1517/14740338.5.1.157 PMID: 16370964
  68. Brieler, J.A.; Lustman, P.J.; Scherrer, J.F.; Salas, J.; Schneider, F.D. Antidepressant medication use and glycaemic control in co-morbid type 2 diabetes and depression. Fam. Pract., 2016, 33(1), 30-36. doi: 10.1093/fampra/cmv100 PMID: 26743722
  69. Hennings, J.M.; Schaaf, L.; Fulda, S. Glucose metabolism and antidepressant medication. Curr. Pharm. Des., 2012, 18(36), 5900-5919. doi: 10.2174/138161212803523662 PMID: 22681169
  70. Knol, M.J.; Geerlings, M.I.; Egberts, A.C.G.; Gorter, K.J.; Grobbee, D.E.; Heerdink, E.R. No increased incidence of diabetes in antidepressant users. Int. Clin. Psychopharmacol., 2007, 22(6), 382-386. doi: 10.1097/YIC.0b013e3282202c0e PMID: 17917558
  71. Erenmemisoglu, A.; Ozdogan, U.K.; Saraymen, R.; Tutus, A. Effect of some antidepressants on glycaemia and insulin levels of normoglycaemic and alloxan-induced hyperglycaemic mice. J. Pharm. Pharmacol., 2010, 51(6), 741-743. doi: 10.1211/0022357991772899 PMID: 10454053
  72. Yamada, J.; Sugimoto, Y.; Inoue, K. Selective serotonin reuptake inhibitors fluoxetine and fluvoxamine induce hyperglycemia by different mechanisms. Eur. J. Pharmacol., 1999, 382(3), 211-215. doi: 10.1016/S0014-2999(99)00593-2 PMID: 10556672
  73. Thorré, K.; Chaouloff, F.; Sarre, S.; Meeusen, R.; Ebinger, G.; Michotte, Y. Differential effects of restraint stress on hippocampal 5-HT metabolism and extracellular levels of 5-HT in streptozotocin-diabetic rats. Brain Res., 1997, 772(1-2), 209-216. doi: 10.1016/S0006-8993(97)00841-X PMID: 9406974
  74. Aksu, I.; Ates, M.; Baykara, B.; Kiray, M.; Sisman, A.R.; Buyuk, E.; Baykara, B.; Cetinkaya, C.; Gumus, H.; Uysal, N. Anxiety correlates to decreased blood and prefrontal cortex IGF-1 levels in streptozotocin induced diabetes. Neurosci. Lett., 2012, 531(2), 176-181. doi: 10.1016/j.neulet.2012.10.045 PMID: 23123774
  75. Gambeta, E.; de Souza, C.P.; de Morais, H.; Zanoveli, J.M. Reestablishment of the hyperglycemia to the normal levels seems not to be essential to the anxiolytic-like effect induced by insulin. Metab. Brain Dis., 2016, 31(3), 563-571. doi: 10.1007/s11011-015-9770-1 PMID: 26608284
  76. Rebolledo-Solleiro, D.; Araiza, L.F.O.; Broccoli, L.; Hansson, A.C.; Rocha-Arrieta, L.L.; Aguilar-Roblero, R.; Crespo-Ramírez, M.; Fuxe, K.; Pérez de la, M.M. Dopamine D1 receptor activity is involved in the increased anxiety levels observed in STZ-induced diabetes in rats. Behav. Brain Res., 2016, 313, 293-301. doi: 10.1016/j.bbr.2016.06.060 PMID: 27374159
  77. Aswar, U.; Chepurwar, S.; Shintre, S.; Aswar, M. Telmisartan attenuates diabetes induced depression in rats. Pharmacol. Rep., 2017, 69(2), 358-364. doi: 10.1016/j.pharep.2016.12.004 PMID: 28189098
  78. Caliskan, H.; Akat, F.; Tatar, Y.; Zaloglu, N.; Dursun, A.D.; Bastug, M.; Ficicilar, H. Effects of exercise training on anxiety in diabetic rats. Behav. Brain Res., 2019, 376, 112084. doi: 10.1016/j.bbr.2019.112084 PMID: 31356829
  79. Farbood, Y.; Rashno, M.; Ghaderi, S.; Khoshnam, S.E.; Sarkaki, A.; Rashidi, K.; Rashno, M.; Badavi, M. Ellagic acid protects against diabetes-associated behavioral deficits in rats: Possible involved mechanisms. Life Sci., 2019, 225, 8-19. doi: 10.1016/j.lfs.2019.03.078 PMID: 30943382
  80. de Souza, C.P.; Gambeta, E.; Stern, C.A.J.; Zanoveli, J.M. Posttraumatic stress disorder-type behaviors in streptozotocin-induced diabetic rats can be prevented by prolonged treatment with vitamin E. Behav. Brain Res., 2019, 359, 749-754. doi: 10.1016/j.bbr.2018.09.008 PMID: 30219262
  81. Bikri, S.; Aboussaleh, Y.; Berrani, A.; Louragli, I.; Hafid, A.; Chakib, S.; Ahami, A. Effects of date seeds administration on anxiety and depressive symptoms in streptozotocin-induced diabetic rats: biochemical and behavioral evidences. J. Basic Clin. Physiol. Pharmacol., 2021, 32(6), 1031-1040. doi: 10.1515/jbcpp-2020-0225 PMID: 33705613
  82. de Lima Silva, A.H.B.; Radulski, D.R.; Pereira, G.S.; Acco, A.; Zanoveli, J.M. A single injection of pregabalin induces short- and long-term beneficial effects on fear memory and anxiety-like behavior in rats with experimental type-1 diabetes mellitus. Metab. Brain Dis., 2022, 37(4), 1095-1110. doi: 10.1007/s11011-022-00936-3 PMID: 35239142
  83. Chaves, Y.C.; Genaro, K.; Stern, C.A.; de Oliveira, G.G.; de Souza, C.J.A.; da Cunha, J.M.; Zanoveli, J.M. Two-weeks treatment with cannabidiol improves biophysical and behavioral deficits associated with experimental type-1 diabetes. Neurosci. Lett., 2020, 729, 135020. doi: 10.1016/j.neulet.2020.135020 PMID: 32360935
  84. Maciel, R.M.; Carvalho, F.B.; Olabiyi, A.A.; Schmatz, R.; Gutierres, J.M.; Stefanello, N.; Zanini, D.; Rosa, M.M.; Andrade, C.M.; Rubin, M.A.; Schetinger, M.R.; Morsch, V.M.; Danesi, C.C.; Lopes, S.T.A. Neuroprotective effects of quercetin on memory and anxiogenic-like behavior in diabetic rats: Role of ectonucleotidases and acetylcholinesterase activities. Biomed. Pharmacother., 2016, 84, 559-568. doi: 10.1016/j.biopha.2016.09.069 PMID: 27694000
  85. Rajabi, M.; Mohaddes, G.; Farajdokht, F.; Nayebi Rad, S.; Mesgari, M.; Babri, S. Impact of loganin on pro-inflammatory cytokines and depression- and anxiety-like behaviors in male diabetic rats. Physiol. Int., 2018, 105(2), 116-126. doi: 10.1556/2060.105.2018.2.8 PMID: 29975123
  86. Ghaderi, S.; Rashno, M.; Nesari, A.; Khoshnam, S.E.; Sarkaki, A.; Khorsandi, L.; Farbood, Y.; Rashidi, K. Sesamin alleviates diabetes-associated behavioral deficits in rats: The role of inflammatory and neurotrophic factors. Int. Immunopharmacol., 2021, 92, 107356. doi: 10.1016/j.intimp.2020.107356 PMID: 33440305
  87. Pereira, M.M.; de Morais, H.; dos Santos Silva, E.; Corso, C.R.; Adami, E.R.; Carlos, R.M.; Acco, A.; Zanoveli, J.M. The antioxidant gallic acid induces anxiolytic-, but not antidepressant-like effect, in streptozotocin-induced diabetes. Metab. Brain Dis., 2018, 33(5), 1573-1584. doi: 10.1007/s11011-018-0264-9 PMID: 29934859
  88. Rahmani, G.; Farajdokht, F.; Mohaddes, G.; Babri, S.; Ebrahimi, V.; Ebrahimi, H. Garlic (Allium sativum) improves anxiety- and depressive-related behaviors and brain oxidative stress in diabetic rats. Arch. Physiol. Biochem., 2020, 126(2), 95-100. doi: 10.1080/13813455.2018.1494746 PMID: 30169970
  89. Rajizadeh, M.A.; Aminizadeh, A.H.; Esmaeilpour, K.; Bejeshk, M.A.; Sadeghi, A.; Salimi, F. Investigating the effects of Citrullus colocynthis on cognitive performance and anxiety-like behaviors in STZ-induced diabetic rats. Int. J. Neurosci., 2021, 26, 1-13. PMID: 33848216
  90. Şahin, T.D.; Göçmez, S.S.; Eraldemir, F.C.; Utkan, T. Anxiolytic-like and antidepressant-like effects of resveratrol in streptozotocin-induced diabetic rats. Noro Psikiyatri Arsivi, 2019, 56(2), 144-149. PMID: 31223249
  91. Jiang, W.; Tang, Y.Y.; Zhu, W.W.; Li, C.; Zhang, P.; Li, R.Q.; Chen, Y.J.; Zou, W.; Tang, X.Q. PI3K/AKT pathway mediates the antidepressant- and anxiolytic-like roles of hydrogen sulfide in streptozotocin-induced diabetic rats via promoting hippocampal neurogenesis. Neurotoxicology, 2021, 85, 201-208. doi: 10.1016/j.neuro.2021.05.016 PMID: 34087334
  92. Wang, H.; Shi, X.; Qiu, M.; Lv, S.; Zheng, H.; Niu, B.; Liu, H. Hydrogen Sulfide plays an important role by influencing NLRP3 inflammasome. Int. J. Biol. Sci., 2020, 16(14), 2752-2760. doi: 10.7150/ijbs.47595 PMID: 33110394
  93. Kotagale, N.; Rahangdale, S.; Borkar, A.; Singh, K.; Ikhar, A.; Takale, N.; Umekar, M.; Taksande, B. Possible involvement of agmatine in neuropharmacological actions of metformin in diabetic mice. Eur. J. Pharmacol., 2021, 907, 174255. doi: 10.1016/j.ejphar.2021.174255 PMID: 34129880
  94. Yuan, P.; Zhang, J.; Li, L.; Song, Z. Fluoxetine attenuated anxiety-like behaviors in streptozotocin-induced diabetic mice by mitigating the inflammation. Mediators Inflamm., 2019, 2019, 1-8. doi: 10.1155/2019/4315038 PMID: 31396018
  95. López-Rubalcava, C.; Paez-Martinez, N.; Oikawa, J. Blockade of corticosteroid receptors induces anxiolytic-like effects in streptozotocin-induced diabetic mice, and synergizes with diazepam. Behav. Pharmacol., 2013, 24(4), 320-327. doi: 10.1097/FBP.0b013e3283637de2 PMID: 23764904
  96. Li, Z.G.; Zhang, W.; Grunberger, G.; Sima, A.A.F. Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res., 2002, 946(2), 221-231. doi: 10.1016/S0006-8993(02)02887-1 PMID: 12137925
  97. Yamamoto, Y.; Akiyoshi, J.; Kiyota, A.; Katsuragi, S.; Tsutsumi, T.; Isogawa, K.; Nagayama, H. Increased anxiety behavior in OLETF rats without cholecystokinin-A receptor. Brain Res. Bull., 2000, 53(6), 789-792. doi: 10.1016/S0361-9230(00)00407-X PMID: 11179844
  98. Ochi, R.; Fujita, N.; Goto, N.; Nguyen, S.T.; Le, D.T.; Matsushita, K.; Ono, T.; Nishijo, H.; Urakawa, S. Region-specific brain area reductions and increased cholecystokinin positive neurons in diabetic OLETF rats: Implication for anxiety-like behavior. J. Physiol. Sci., 2020, 70(1), 42. doi: 10.1186/s12576-020-00771-0 PMID: 32938363
  99. Ochi, R.; Fujita, N.; Goto, N.; Takaishi, K.; Oshima, T.; Nguyen, S.T.; Nishijo, H.; Urakawa, S. Medial prefrontal area reductions, altered expressions of cholecystokinin, parvalbumin, and activating transcription factor 4 in the corticolimbic system, and altered emotional behavior in a progressive rat model of type 2 diabetes. PLoS One, 2021, 16(9), e0256655. doi: 10.1371/journal.pone.0256655 PMID: 34506507
  100. Khare, P.; Datusalia, A.K.; Sharma, S.S. Parthenolide, an NF-κB inhibitor ameliorates diabetes-induced behavioural deficit, neurotransmitter imbalance and neuroinflammation in type 2 diabetes rat model. Neuromolecular Med., 2017, 19(1), 101-112. doi: 10.1007/s12017-016-8434-6 PMID: 27553015
  101. Jabri, M.A.; Rtibi, K.; Sebai, H. Chamomile decoction mitigates high fat diet-induced anxiety-like behavior, neuroinflammation and cerebral ROS overload. Nutr. Neurosci., 2022, 25(7), 1350-1361. doi: 10.1080/1028415X.2020.1859727 PMID: 33314994
  102. Pechlivanova, D.; Krumova, E.; Kostadinova, N.; Mitreva-Staleva, J.; Grozdanov, P.; Stoynev, A. Protective effects of losartan on some type 2 diabetes mellitus-induced complications in Wistar and spontaneously hypertensive rats. Metab. Brain Dis., 2020, 35(3), 527-538. doi: 10.1007/s11011-020-00534-1 PMID: 31997264
  103. Garabadu, D.; Krishnamurthy, S. Diazepam potentiates the antidiabetic, antistress and anxiolytic activities of metformin in type-2 diabetes mellitus with cooccurring stress in experimental animals. BioMed Res. Int., 2014, 2014, 1-15. doi: 10.1155/2014/693074 PMID: 24995322
  104. Morshedi, M.; Valenlia, K.B.; Hosseinifard, E.S.; Shahabi, P.; Abbasi, M.M.; Ghorbani, M.; Barzegari, A.; Sadigh-Eteghad, S.; Saghafi-Asl, M. Beneficial psychological effects of novel psychobiotics in diabetic rats: The interaction among the gut, blood and amygdala. J. Nutr. Biochem., 2018, 57, 145-152. doi: 10.1016/j.jnutbio.2018.03.022 PMID: 29730508
  105. Hosseinifard, E.S.; Morshedi, M.; Bavafa-Valenlia, K.; Saghafi-Asl, M. The novel insight into anti-inflammatory and anxiolytic effects of psychobiotics in diabetic rats: Possible link between gut microbiota and brain regions. Eur. J. Nutr., 2019, 58(8), 3361-3375. doi: 10.1007/s00394-019-01924-7 PMID: 30826905
  106. Matinfar, P.; Peeri, M.; Azarbayjani, M.A. Swimming exercise attenuates anxiety-like behavior by reducing brain oxidative stress in type 2 diabetic mice. Physiol. Behav., 2021, 237, 113449. doi: 10.1016/j.physbeh.2021.113449 PMID: 33945802
  107. Murotomi, K.; Umeno, A.; Yasunaga, M.; Shichiri, M.; Ishida, N.; Koike, T.; Matsuo, T.; Abe, H.; Yoshida, Y.; Nakajima, Y. Oleuropein-rich diet attenuates hyperglycemia and impaired glucose tolerance in type 2 diabetes model mouse. J. Agric. Food Chem., 2015, 63(30), 6715-6722. doi: 10.1021/acs.jafc.5b00556 PMID: 26165358
  108. Stranahan, A.M.; Arumugam, T.V.; Cutler, R.G.; Lee, K.; Egan, J.M.; Mattson, M.P. Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat. Neurosci., 2008, 11(3), 309-317. doi: 10.1038/nn2055 PMID: 18278039
  109. Dorsemans, A.C.; Couret, D.; Hoarau, A.; Meilhac, O.; Lefebvre d’Hellencourt, C.; Diotel, N. Diabetes, adult neurogenesis and brain remodeling: New insights from rodent and zebrafish models. Neurogenesis, 2017, 4(1), e1281862. doi: 10.1080/23262133.2017.1281862 PMID: 28439518
  110. Biessels, G.J.; Kamal, A.; Urban, I.J.A.; Spruijt, B.M.; Erkelens, D.W.; Gispen, W.H. Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: Effects of insulin treatment. Brain Res., 1998, 800(1), 125-135. doi: 10.1016/S0006-8993(98)00510-1 PMID: 9685609
  111. Popoviç, M.; Biessels, G.J.; Isaacson, R.L.; Gispen, W.H. Learning and memory in streptozotocin-induced diabetic rats in a novel spatial/object discrimination task. Behav. Brain Res., 2001, 122(2), 201-207. doi: 10.1016/S0166-4328(01)00186-3 PMID: 11334650
  112. Stranahan, A.M. Models and mechanisms for hippocampal dysfunction in obesity and diabetes. Neuroscience, 2015, 309, 125-139. doi: 10.1016/j.neuroscience.2015.04.045 PMID: 25934036
  113. Moreira, P.; Santos, M.; Sena, C.; Nunes, E.; Seiça, R.; Oliveira, C. CoQ10 therapy attenuates amyloid β-peptide toxicity in brain mitochondria isolated from aged diabetic rats. Exp. Neurol., 2005, 196(1), 112-119. doi: 10.1016/j.expneurol.2005.07.012 PMID: 16126199
  114. Moreira, P.I.; Santos, M.S.; Moreno, A.M.; Seiça, R.; Oliveira, C.R. Increased vulnerability of brain mitochondria in diabetic (Goto-Kakizaki) rats with aging and amyloid-beta exposure. Diabetes, 2003, 52(6), 1449-1456. doi: 10.2337/diabetes.52.6.1449 PMID: 12765956
  115. Kuhad, A.; Bishnoi, M.; Tiwari, V.; Chopra, K. Suppression of NF-κβ signaling pathway by tocotrienol can prevent diabetes associated cognitive deficits. Pharmacol. Biochem. Behav., 2009, 92(2), 251-259. doi: 10.1016/j.pbb.2008.12.012 PMID: 19138703
  116. Sima, A.A.F.; Zhang, W.; Kreipke, C.W.; Rafols, J.A.; Hoffman, W.H. Inflammation in diabetic encephalopathy is prevented by c-peptide. Rev. Diabet. Stud., 2009, 6(1), 37-42. doi: 10.1900/RDS.2009.6.37 PMID: 19557294
  117. Nagayach, A.; Patro, N.; Patro, I. Astrocytic and microglial response in experimentally induced diabetic rat brain. Metab. Brain Dis., 2014, 29(3), 747-761. doi: 10.1007/s11011-014-9562-z PMID: 24833555
  118. Kuhad, A.; Sethi, R.; Chopra, K. Lycopene attenuates diabetes-associated cognitive decline in rats. Life Sci., 2008, 83(3-4), 128-134. doi: 10.1016/j.lfs.2008.05.013 PMID: 18585396
  119. Stranahan, A.M.; Lee, K.; Pistell, P.J.; Nelson, C.M.; Readal, N.; Miller, M.G.; Spangler, E.L.; Ingram, D.K.; Mattson, M.P. Accelerated cognitive aging in diabetic rats is prevented by lowering corticosterone levels. Neurobiol. Learn. Mem., 2008, 90(2), 479-483. b doi: 10.1016/j.nlm.2008.05.005 PMID: 18579418
  120. Magariños, A.M.; McEwen, B.S. Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proc. Natl. Acad. Sci., 2000, 97(20), 11056-11061. doi: 10.1073/pnas.97.20.11056 PMID: 11005876
  121. Grillo, C.A.; Piroli, G.G.; Wood, G.E.; Reznikov, L.R.; McEwen, B.S.; Reagan, L.P. Immunocytochemical analysis of synaptic proteins provides new insights into diabetes-mediated plasticity in the rat hippocampus. Neuroscience, 2005, 136(2), 477-486. doi: 10.1016/j.neuroscience.2005.08.019 PMID: 16226381
  122. Beauquis, J.; Homo-Delarche, F.; Revsin, Y.; De Nicola, A.F.; Saravia, F. Brain alterations in autoimmune and pharmacological models of diabetes mellitus: Focus on hypothalamic-pituitary-adrenocortical axis disturbances. Neuroimmunomodulation, 2008, 15(1), 61-67. doi: 10.1159/000135625 PMID: 18667801
  123. Saravia, F.E.; Revsin, Y.; Gonzalez Deniselle, M.C.; Gonzalez, S.L.; Roig, P.; Lima, A.; Homo-Delarche, F.; De Nicola, A.F. Increased astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: The nonobese diabetic (NOD) and streptozotocin-treated mice. Brain Res., 2002, 957(2), 345-353. doi: 10.1016/S0006-8993(02)03675-2 PMID: 12445977
  124. Duarte, J.M.N.; Carvalho, R.A.; Cunha, R.A.; Gruetter, R. Caffeine consumption attenuates neurochemical modifications in the hippocampus of streptozotocin-induced diabetic rats. J. Neurochem., 2009, 111(2), 368-379. doi: 10.1111/j.1471-4159.2009.06349.x PMID: 19694901
  125. Gaspar, J.M.; Baptista, F.I.; Galvão, J.; Castilho, Á.F.; Cunha, R.A.; Ambrósio, A.F. Diabetes differentially affects the content of exocytotic proteins in hippocampal and retinal nerve terminals. Neuroscience, 2010, 169(4), 1589-1600. doi: 10.1016/j.neuroscience.2010.06.021 PMID: 20600668
  126. Man, H.Y.; Lin, J.W.; Ju, W.H.; Ahmadian, G.; Liu, L.; Becker, L.E.; Sheng, M.; Wang, Y.T. Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron, 2000, 25(3), 649-662. doi: 10.1016/S0896-6273(00)81067-3 PMID: 10774732
  127. Zhao, W.Q.; Alkon, D.L. Role of insulin and insulin receptor in learning and memory. Mol. Cell. Endocrinol., 2001, 177(1-2), 125-134. doi: 10.1016/S0303-7207(01)00455-5 PMID: 11377828
  128. Ahmadian, G.; Ju, W.; Liu, L.; Wyszynski, M.; Lee, S.H.; Dunah, A.W.; Taghibiglou, C.; Wang, Y.; Lu, J.; Wong, T.P.; Sheng, M.; Wang, Y.T. Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J., 2004, 23(5), 1040-1050. doi: 10.1038/sj.emboj.7600126 PMID: 14976558
  129. Francis, G.J.; Martinez, J.A.; Liu, W.Q.; Xu, K.; Ayer, A.; Fine, J.; Tuor, U.I.; Glazner, G.; Hanson, L.R.; Frey, W.H., II; Toth, C. Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain, 2008, 131(Pt 12), 3311-3334. PMID: 19015157
  130. Lee, C.C.; Huang, C.C.; Hsu, K.S. Insulin promotes dendritic spine and synapse formation by the PI3K/Akt/mTOR and Rac1 signaling pathways. Neuropharmacology, 2011, 61(4), 867-879. doi: 10.1016/j.neuropharm.2011.06.003 PMID: 21683721
  131. Craft, S.; Stennis, W.G. Insulin and neurodegenerative disease: Shared and specific mechanisms. Lancet Neurol., 2004, 3(3), 169-178. doi: 10.1016/S1474-4422(04)00681-7 PMID: 14980532
  132. Freude, S.; Plum, L.; Schnitker, J.; Leeser, U.; Udelhoven, M.; Krone, W.; Bruning, J.C.; Schubert, M. Peripheral hyperinsulinemia promotes tau phosphorylation in vivo. Diabetes, 2005, 54(12), 3343-3348. doi: 10.2337/diabetes.54.12.3343 PMID: 16306348
  133. Iqbal, K.; Liu, F.; Gong, C.X.; Alonso, A.C.; Grundke-Iqbal, I. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol., 2009, 118(1), 53-69. doi: 10.1007/s00401-009-0486-3 PMID: 19184068
  134. Liu, Y.; Liu, F.; Grundke-Iqbal, I.; Iqbal, K.; Gong, C.X. Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J. Pathol., 2011, 225(1), 54-62. doi: 10.1002/path.2912 PMID: 21598254
  135. Qu, Z.; Jiao, Z.; Sun, X.; Zhao, Y.; Ren, J.; Xu, G. Effects of streptozotocin-induced diabetes on tau phosphorylation in the rat brain. Brain Res., 2011, 1383, 300-306. doi: 10.1016/j.brainres.2011.01.084 PMID: 21281610
  136. Jackson-Guilford, J.; Leander, J.D.; Nisenbaum, L.K. The effect of streptozotocin-induced diabetes on cell proliferation in the rat dentate gyrus. Neurosci. Lett., 2000, 293(2), 91-94. doi: 10.1016/S0304-3940(00)01502-0 PMID: 11027841
  137. McEwen, B.S.; Magariños, A.M.; Reagan, L.P. Studies of hormone action in the hippocampal formation. J. Psychosom. Res., 2002, 53(4), 883-890. doi: 10.1016/S0022-3999(02)00307-0 PMID: 12377298
  138. Li, Z.; Zhang, W.; Sima, A.A.F. The role of impaired insulin/IGF action in primary diabetic encephalopathy. Brain Res., 2005, 1037(1-2), 12-24. doi: 10.1016/j.brainres.2004.11.063 PMID: 15777748
  139. Sima, A.A.F.; Li, Z. The effect of C-peptide on cognitive dysfunction and hippocampal apoptosis in type 1 diabetic rats. Diabetes, 2005, 54(5), 1497-1505. doi: 10.2337/diabetes.54.5.1497 PMID: 15855338
  140. Beauquis, J.; Roig, P.; Homo-Delarche, F.; De Nicola, A.; Saravia, F. Reduced hippocampal neurogenesis and number of hilar neurones in streptozotocin-induced diabetic mice: Reversion by antidepressant treatment. Eur. J. Neurosci., 2006, 23(6), 1539-1546. doi: 10.1111/j.1460-9568.2006.04691.x PMID: 16553617
  141. Malone, J.I.; Hanna, S.; Saporta, S.; Mervis, R.F.; Park, C.R.; Chong, L.; Diamond, D.M. Hyperglycemia not hypoglycemia alters neuronal dendrites and impairs spatial memory. Pediatr. Diabetes, 2008, 9(6), 531-539. doi: 10.1111/j.1399-5448.2008.00431.x PMID: 19067891
  142. Zhang, L.; Bruce-Keller, A.J.; Dasuri, K.; Nguyen, A.; Liu, Y.; Keller, J.N. Diet-induced metabolic disturbances as modulators of brain homeostasis. Biochim. Biophys. Acta Mol. Basis Dis., 2009, 1792(5), 417-422. doi: 10.1016/j.bbadis.2008.09.006 PMID: 18926905
  143. Hernández-Fonseca, J.P.; Rincón, J.; Pedreañez, A.; Viera, N.; Arcaya, J.L.; Carrizo, E.; Mosquera, J. Structural and ultrastructural analysis of cerebral cortex, cerebellum, and hypothalamus from diabetic rats. Exp. Diabetes Res., 2009, 2009, 1-12. doi: 10.1155/2009/329632 PMID: 19812703
  144. Alvarez-Nölting, R.; Arnal, E.; Barcia, J.M.; Miranda, M.; Romero, F.J. Protection by DHA of early hippocampal changes in diabetes: Possible role of CREB and NF-κB. Neurochem. Res., 2012, 37(1), 105-115. doi: 10.1007/s11064-011-0588-x PMID: 21909958
  145. Guyot, L.L.; Diaz, F.G.; O’Regan, M.H.; Song, D.; Phillis, J.W. The effect of streptozotocin-induced diabetes on the release of excitotoxic and other amino acids from the ischemic rat cerebral cortex. Neurosurgery, 2001, 48(2), 385-390. PMID: 11220383
  146. Duarte, J.M.N.; Oses, J.P.; Rodrigues, R.J.; Cunha, R.A. Modification of purinergic signaling in the hippocampus of streptozotocin-induced diabetic rats. Neuroscience, 2007, 149(2), 382-391. doi: 10.1016/j.neuroscience.2007.08.005 PMID: 17869435
  147. Satoh, E.; Takahashi, A. Experimental diabetes enhances Ca2+ mobilization and glutamate exocytosis in cerebral synaptosomes from mice. Diabetes Res. Clin. Pract., 2008, 81(2), e14-e17. doi: 10.1016/j.diabres.2008.04.017 PMID: 18508149
  148. Sherin, A.; Anu, J.; Peeyush, K.T.; Smijin, S.; Anitha, M.; Roshni, B.T.; Paulose, C.S. Cholinergic and GABAergic receptor functional deficit in the hippocampus of insulin-induced hypoglycemic and streptozotocin-induced diabetic rats. Neuroscience, 2012, 202, 69-76. doi: 10.1016/j.neuroscience.2011.11.058 PMID: 22155651
  149. Gardoni, F.; Kamal, A.; Bellone, C.; Biessels, G.J.; Ramakers, G.M.J.; Cattabeni, F.; Gispen, W.H.; Di Luca, M. Effects of streptozotocin-diabetes on the hippocampal NMDA receptor complex in rats. J. Neurochem., 2002, 80(3), 438-447. doi: 10.1046/j.0022-3042.2001.00713.x PMID: 11908465
  150. Biessels, G.J.; van der Heide, L.P.; Kamal, A.; Bleys, R.L.A.W.; Gispen, W.H. Ageing and diabetes: Implications for brain function. Eur. J. Pharmacol., 2002, 441(1-2), 1-14. doi: 10.1016/S0014-2999(02)01486-3 PMID: 12007915
  151. Heng, L.J.; Yang, R.H.; Jia, D. Diabetes impairs learning performance through affecting membrane excitability of hippocampal pyramidal neurons. Behav. Brain Res., 2011, 224(2), 250-258. doi: 10.1016/j.bbr.2011.05.043 PMID: 21722676
  152. Greenwood, C.E.; Winocur, G. Cognitive impairment in rats fed high-fat diets: A specific effect of saturated fatty-acid intake. Behav. Neurosci., 1996, 110(3), 451-459. doi: 10.1037/0735-7044.110.3.451 PMID: 8888990
  153. Winocur, G.; Greenwood, C.E.; Piroli, G.G.; Grillo, C.A.; Reznikov, L.R.; Reagan, L.P.; McEwen, B.S. Memory impairment in obese Zucker rats: An investigation of cognitive function in an animal model of insulin resistance and obesity. Behav. Neurosci., 2005, 119(5), 1389-1395. doi: 10.1037/0735-7044.119.5.1389 PMID: 16300445
  154. Pratchayasakul, W.; Kerdphoo, S.; Petsophonsakul, P.; Pongchaidecha, A.; Chattipakorn, N.; Chattipakorn, S.C. Effects of high-fat diet on insulin receptor function in rat hippocampus and the level of neuronal corticosterone. Life Sci., 2011, 88(13-14), 619-627. doi: 10.1016/j.lfs.2011.02.003 PMID: 21315737
  155. Miao, Y.; He, T.; Zhu, Y.; Li, W.; Wang, B.; Zhong, Y. Activation of hippocampal CREB by rolipram partially recovers balance between TNF-α and IL-10 levels and improves cognitive deficits in diabetic rats. Cell. Mol. Neurobiol., 2015, 35(8), 1157-1164. doi: 10.1007/s10571-015-0209-3 PMID: 26001770
  156. Pipatpiboon, N.; Pratchayasakul, W.; Chattipakorn, N.; Chattipakorn, S.C. PPARγ agonist improves neuronal insulin receptor function in hippocampus and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets. Endocrinology, 2012, 153(1), 329-338. doi: 10.1210/en.2011-1502 PMID: 22109891
  157. Kim, B.; Backus, C.; Oh, S.; Hayes, J.M.; Feldman, E.L. Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology, 2009, 150(12), 5294-5301. doi: 10.1210/en.2009-0695 PMID: 19819959
  158. Qiu, W.; Folstein, M. Insulin, insulin-degrading enzyme and amyloid-β peptide in Alzheimer’s disease: Review and hypothesis. Neurobiol. Aging, 2006, 27(2), 190-198. doi: 10.1016/j.neurobiolaging.2005.01.004 PMID: 16399206
  159. Oomura, Y.; Hori, N.; Shiraishi, T.; Fukunaga, K.; Takeda, H.; Tsuji, M.; Matsumiya, T.; Ishibashi, M.; Aou, S.; Li, X.L.; Kohno, D.; Uramura, K.; Sougawa, H.; Yada, T.; Wayner, M.J.; Sasaki, K. Leptin facilitates learning and memory performance and enhances hippocampal CA1 long-term potentiation and CaMK II phosphorylation in rats. Peptides, 2006, 27(11), 2738-2749. doi: 10.1016/j.peptides.2006.07.001 PMID: 16914228
  160. Moult, P.R.; Harvey, J. Hormonal regulation of hippocampal dendritic morphology and synaptic plasticity. Cell Adhes. Migr., 2008, 2(4), 269-275. doi: 10.4161/cam.2.4.6354 PMID: 19262152
  161. Marwarha, G.; Ghribi, O. Leptin signaling and Alzheimer’s disease. Am. J. Neurodegener. Dis., 2012, 1(3), 245-265. PMID: 23383396
  162. Moon, H.S.; Dalamaga, M.; Kim, S.Y.; Polyzos, S.A.; Hamnvik, O.P.; Magkos, F.; Paruthi, J.; Mantzoros, C.S. Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocr. Rev., 2013, 34(3), 377-412. doi: 10.1210/er.2012-1053 PMID: 23475416
  163. Balland, E.; Cowley, M.A. New insights in leptin resistance mechanisms in mice. Front. Neuroendocrinol., 2015, 39, 59-65. doi: 10.1016/j.yfrne.2015.09.004 PMID: 26410445
  164. Alzoubi, K.H. M, A.; Aleisa, A.; Alkadhi, K.A. Impairment of long-term potentiation in the CA1, but not dentate gyrus, of the hippocampus in Obese Zucker rats: Role of calcineurin and phosphorylated CaMKII. J. Mol. Neurosci., 2005, 27(3), 337-347. doi: 10.1385/JMN:27:3:337 PMID: 16280604
  165. Tomassoni, D.; Nwankwo, I.E.; Gabrielli, M.G.; Bhatt, S.; Muhammad, A.B.; Lokhandwala, M.F.; Tayebati, S.K.; Amenta, F. Astrogliosis in the brain of obese Zucker rat: A model of metabolic syndrome. Neurosci. Lett., 2013, 543, 136-141. doi: 10.1016/j.neulet.2013.03.025 PMID: 23545209
  166. Beauquis, J.; Roig, P.; De Nicola, A.F.; Saravia, F. Neuronal plasticity and antidepressants in the diabetic brain. Ann. N. Y. Acad. Sci., 2009, 1153(1), 203-208. doi: 10.1111/j.1749-6632.2008.03983.x PMID: 19236343
  167. Rivera, P.; Pérez-Martín, M.; Pavón, F.J.; Serrano, A.; Crespillo, A.; Cifuentes, M.; López-Ávalos, M.D.; Grondona, J.M.; Vida, M.; Fernández-Llebrez, P.; de Fonseca, F.R.; Suárez, J. Pharmacological administration of the isoflavone daidzein enhances cell proliferation and reduces high fat diet-induced apoptosis and gliosis in the rat hippocampus. PLoS One, 2013, 8(5), e64750. doi: 10.1371/journal.pone.0064750 PMID: 23741384
  168. Pancani, T.; Anderson, K.L.; Brewer, L.D.; Kadish, I.; DeMoll, C.; Landfield, P.W.; Blalock, E.M.; Porter, N.M.; Thibault, O. Effect of high-fat diet on metabolic indices, cognition, and neuronal physiology in aging F344 rats. Neurobiol. Aging, 2013, 34(8), 1977-1987. doi: 10.1016/j.neurobiolaging.2013.02.019 PMID: 23545425

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024