Immunomodulatory Effects of Clozapine: More Than Just a Side Effect in Schizophrenia


Цитировать

Полный текст

Аннотация

Recent evidence suggests a possible relationship between the immune system and schizophrenia spectrum disorders (SSDs), as neuroinflammation appears to play a role in major psychiatric conditions. Neuroinflammation is as a broad concept representing a physiological protective response to infection or injury, but in some cases, especially if chronic, it may represent an expression of maladaptive processes, potentially driving to clinical dysfunction and neurodegeneration. Several studies are concurrently highlighting the importance of microglia, the resident immune cells of the central nervous system, in a huge number of neurodegenerative diseases, including multiple sclerosis, Alzheimer’s and Parkinson’s diseases, as well as SSDs. A more fundamental phenomenon of maladaptive coupling of microglia may contribute to the genesis of dysfunctional brain inflammation involved in SSDs, from the onset of their neurophenomenological evolution. Clozapine and other antipsychotic drugs seem to express a provable immunomodulant effect and a more specific action on microglia, while neuroactive steroids and nonsteroidal anti-inflammatory drugs may reduce some SSDs symptoms in add-on therapy. Given these theoretical premises, this article aims to summarize and interpret the available scientific evidence about psychotropic and anti-inflammatory drugs that could express an immunomodulant activity on microglia.

Об авторах

Andrea Amerio

Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa

Автор, ответственный за переписку.
Email: info@benthamscience.net

Luca Magnani

University of Genoa, University of Genoa

Email: info@benthamscience.net

Gabriele Arduino

Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa

Email: info@benthamscience.net

Fabio Fesce

Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa

Email: info@benthamscience.net

Renato de Filippis

Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro

Email: info@benthamscience.net

Alberto Parise

Department of Geriatric-Rehabilitation, Azienda Ospedaliero-Universitaria di Parma

Email: info@benthamscience.net

Alessandra Costanza

Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE)

Email: info@benthamscience.net

Khoa Nguyen

Department of Microbiology and Immunology, Stanford University

Email: info@benthamscience.net

Daniele Saverino

, IRCCS Ospedale Policlinico San Martino

Email: info@benthamscience.net

Domenico De Berardis

NHS, Department of Mental Health, Psychiatric Service for Diagnosis and Treatment, Hospital "G. Mazzini"

Email: info@benthamscience.net

Andrea Aguglia

Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa

Email: info@benthamscience.net

Andrea Escelsior

Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa

Email: info@benthamscience.net

Gianluca Serafini

Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa

Email: info@benthamscience.net

Pasquale De Fazio

Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro

Email: info@benthamscience.net

Mario Amore

Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa

Email: info@benthamscience.net

Список литературы

  1. Owen, M.J.; O’Donovan, M.C.; Thapar, A.; Craddock, N. Neurodevelopmental hypothesis of Schizophrenia. Br. J. Psychiatry, 2011, 198(3), 173-175. doi: 10.1192/bjp.bp.110.084384 PMID: 21357874
  2. Mullin, A.P.; Gokhale, A.; Moreno-De-Luca, A.; Sanyal, S.; Waddington, J.L.; Faundez, V. Neurodevelopmental disorders: Mechanisms and boundary definitions from genomes, interactomes and proteomes. Transl. Psychiatry, 2013, 3(12), e329. doi: 10.1038/tp.2013.108 PMID: 24301647
  3. Belsky, J.; Pluess, M. Beyond diathesis stress: Differential susceptibility to environmental influences. Psychol. Bull., 2009, 135(6), 885-908. doi: 10.1037/a0017376 PMID: 19883141
  4. Ripke, S.; Neale, B.M.; Corvin, A.; Walters, J.T.R.; Farh, K.H.; Holmans, P.A. Biological insights from 108 Schizophrenia-associated genetic loci. Nature, 2014, 511(7510), 421-427. doi: 10.1038/nature13595 PMID: 25056061
  5. Stefansson, H.; Ophoff, R.A.; Steinberg, S.; Andreassen, O.A.; Cichon, S.; Rujescu, D.; Werge, T.; Pietiläinen, O.P.H.; Mors, O.; Mortensen, P.B.; Sigurdsson, E.; Gustafsson, O.; Nyegaard, M.; Tuulio-Henriksson, A.; Ingason, A.; Hansen, T.; Suvisaari, J.; Lonnqvist, J.; Paunio, T.; Børglum, A.D.; Hartmann, A.; Fink-Jensen, A.; Nordentoft, M.; Hougaard, D.; Norgaard-Pedersen, B.; Böttcher, Y.; Olesen, J.; Breuer, R.; Möller, H.J.; Giegling, I.; Rasmussen, H.B.; Timm, S.; Mattheisen, M.; Bitter, I.; Réthelyi, J.M.; Magnusdottir, B.B.; Sigmundsson, T.; Olason, P.; Masson, G.; Gulcher, J.R.; Haraldsson, M.; Fossdal, R.; Thorgeirsson, T.E.; Thorsteinsdottir, U.; Ruggeri, M.; Tosato, S.; Franke, B.; Strengman, E.; Kiemeney, L.A.; Melle, I.; Djurovic, S.; Abramova, L.; Kaleda, V.; Sanjuan, J.; de Frutos, R.; Bramon, E.; Vassos, E.; Fraser, G.; Ettinger, U.; Picchioni, M.; Walker, N.; Toulopoulou, T.; Need, A.C.; Ge, D.; Yoon, J.; Shianna, K.V.; Freimer, N.B.; Cantor, R.M.; Murray, R.; Kong, A.; Golimbet, V.; Carracedo, A.; Arango, C.; Costas, J.; Jönsson, E.G.; Terenius, L.; Agartz, I.; Petursson, H.; Nöthen, M.M.; Rietschel, M.; Matthews, P.M.; Muglia, P.; Peltonen, L.; St Clair, D.; Goldstein, D.B.; Stefansson, K.; Collier, D.A. Common variants conferring risk of schizophrenia. Nature, 2009, 460(7256), 744-747. doi: 10.1038/nature08186 PMID: 19571808
  6. Pardiñas, A.F.; Holmans, P.; Pocklington, A.J.; Escott-Price, V.; Ripke, S.; Carrera, N.; Legge, S.E.; Bishop, S.; Cameron, D.; Hamshere, M.L.; Han, J.; Hubbard, L.; Lynham, A.; Mantripragada, K.; Rees, E.; MacCabe, J.H.; McCarroll, S.A.; Baune, B.T.; Breen, G.; Byrne, E.M.; Dannlowski, U.; Eley, T.C.; Hayward, C.; Martin, N.G.; McIntosh, A.M.; Plomin, R.; Porteous, D.J.; Wray, N.R.; Caballero, A.; Geschwind, D.H.; Huckins, L.M.; Ruderfer, D.M.; Santiago, E.; Sklar, P.; Stahl, E.A.; Won, H.; Agerbo, E.; Als, T.D.; Andreassen, O.A.; Bækvad-Hansen, M.; Mortensen, P.B.; Pedersen, C.B.; Børglum, A.D.; Bybjerg-Grauholm, J.; Djurovic, S.; Durmishi, N.; Pedersen, M.G.; Golimbet, V.; Grove, J.; Hougaard, D.M.; Mattheisen, M.; Molden, E.; Mors, O.; Nordentoft, M.; Pejovic-Milovancevic, M.; Sigurdsson, E.; Silagadze, T.; Hansen, C.S.; Stefansson, K.; Stefansson, H.; Steinberg, S.; Tosato, S.; Werge, T.; Collier, D.A.; Rujescu, D.; Kirov, G.; Owen, M.J.; O’Donovan, M.C.; Walters, J.T.R. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet., 2018, 50(3), 381-389. doi: 10.1038/s41588-018-0059-2 PMID: 29483656
  7. Benros, M.E.; Pedersen, M.G.; Rasmussen, H.; Eaton, W.W.; Nordentoft, M.; Mortensen, P.B. A nationwide study on the risk of autoimmune diseases in individuals with a personal or a family history of schizophrenia and related psychosis. Am. J. Psychiatry, 2014, 171(2), 218-226. doi: 10.1176/appi.ajp.2013.13010086 PMID: 24129899
  8. Sekar, A.; Bialas, A.R.; de Rivera, H.; Davis, A.; Hammond, T.R.; Kamitaki, N.; Tooley, K.; Presumey, J.; Baum, M.; Van Doren, V.; Genovese, G.; Rose, S.A.; Handsaker, R.E.; Daly, M.J.; Carroll, M.C.; Stevens, B.; McCarroll, S.A. Schizophrenia risk from complex variation of complement component 4. Nature, 2016, 530(7589), 177-183. doi: 10.1038/nature16549 PMID: 26814963
  9. Pouget, J.G.; Han, B.; Wu, Y.; Mignot, E.; Ollila, H.M.; Barker, J.; Spain, S.; Dand, N.; Trembath, R.; Martin, J.; Mayes, M.D.; Bossini-Castillo, L.; López-Isac, E.; Jin, Y.; Santorico, S.A.; Spritz, R.A.; Hakonarson, H.; Polychronakos, C.; Raychaudhuri, S.; Knight, J. Cross-disorder analysis of schizophrenia and 19 immune-mediated diseases identifies shared genetic risk. Hum. Mol. Genet., 2019, 28(20), 3498-3513. doi: 10.1093/hmg/ddz145 PMID: 31211845
  10. van Mierlo, H.C.; Schot, A.; Boks, M.P.M.; de Witte, L.D. The association between schizophrenia and the immune system: Review of the evidence from unbiased ‘omic-studies’. Schizophr. Res., 2020, 217, 114-123. doi: 10.1016/j.schres.2019.05.028 PMID: 31130400
  11. Nutma, E.; Willison, H.; Martino, G.; Amor, S. Neuroimmunology: The past, present and future. Clin. Exp. Immunol., 2019, 197(3), 278-293. doi: 10.1111/cei.13279 PMID: 30768789
  12. Pollak, T.A.; Drndarski, S.; Stone, J.M.; David, A.S.; McGuire, P.; Abbott, N.J. The blood-brain barrier in psychosis. Lancet Psychiatry, 2018, 5(1), 79-92. doi: 10.1016/S2215-0366(17)30293-6 PMID: 28781208
  13. van Kesteren, C F M.G.; Gremmels, H.; de Witte, L.D.; Hol, E.M.; Van Gool, A.R.; Falkai, P.G.; Kahn, R.S.; Sommer, I.E.C. Immune involvement in the pathogenesis of Schizophrenia: A meta-analysis on postmortem brain studies. Transl. Psychiatry, 2017, 7(3), e1075. doi: 10.1038/tp.2017.4 PMID: 28350400
  14. Snijders, G.J.L.J.; Zuiden, W.; Sneeboer, M.A.M.; Berdenis van Berlekom, A.; Geest, A.T.; Schnieder, T.; MacIntyre, D.J.; Hol, E.M.; Kahn, R.S.; Witte, L.D. A loss of mature microglial markers without immune activation in Schizophrenia. Glia, 2021, 69(5), 1251-1267. doi: 10.1002/glia.23962 PMID: 33410555
  15. Peferoen, L.; Kipp, M.; van der Valk, P.; van Noort, J.M.; Amor, S. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology, 2014, 141(3), 302-313. doi: 10.1111/imm.12163 PMID: 23981039
  16. Perry, V.H.; Cunningham, C.; Holmes, C. Systemic infections and inflammation affect chronic neurodegeneration. Nat. Rev. Immunol., 2007, 7(2), 161-167. doi: 10.1038/nri2015 PMID: 17220915
  17. Paolicelli, R.C.; Bolasco, G.; Pagani, F.; Maggi, L.; Scianni, M.; Panzanelli, P.; Giustetto, M.; Ferreira, T.A.; Guiducci, E.; Dumas, L.; Ragozzino, D.; Gross, C.T. Synaptic pruning by microglia is necessary for normal brain development. Science, 2011, 333(6048), 1456-1458. doi: 10.1126/science.1202529 PMID: 21778362
  18. Akiyoshi, R.; Wake, H.; Kato, D.; Horiuchi, H.; Ono, R.; Ikegami, A.; Haruwaka, K.; Omori, T.; Tachibana, Y.; Moorhouse, A.J.; Nabekura, J. Microglia enhance synapse activity to promote local network synchronization. eNeuro, 2018, 5(5), ENEURO.0088-18.2018. doi: 10.1523/ENEURO.0088-18.2018 PMID: 30406198
  19. Bartels, T.; De Schepper, S.; Hong, S. Microglia modulate neurodegeneration in Alzheimer’s and Parkinson’s diseases. Science, 2020, 370(6512), 66-69. doi: 10.1126/science.abb8587 PMID: 33004513
  20. Schaafsma, W.; Basterra, L.B.; Jacobs, S.; Brouwer, N.; Meerlo, P.; Schaafsma, A.; Boddeke, E.W.G.M.; Eggen, B.J.L. Maternal inflammation induces immune activation of fetal microglia and leads to disrupted microglia immune responses, behavior, and learning performance in adulthood. Neurobiol. Dis., 2017, 106, 291-300. doi: 10.1016/j.nbd.2017.07.017 PMID: 28751257
  21. Choi, G.B.; Yim, Y.S.; Wong, H.; Kim, S.; Kim, H.; Kim, S.V.; Hoeffer, C.A.; Littman, D.R.; Huh, J.R. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science, 2016, 351(6276), 933-939. doi: 10.1126/science.aad0314 PMID: 26822608
  22. Neher, J.J.; Cunningham, C. Priming microglia for innate immune memory in the brain. Trends Immunol., 2019, 40(4), 358-374. doi: 10.1016/j.it.2019.02.001 PMID: 30833177
  23. Lahiri, D.K.; Maloney, B.; Zawia, N.H. The LEARn model: An epigenetic explanation for idiopathic neurobiological diseases. Mol. Psychiatry, 2009, 14(11), 992-1003. doi: 10.1038/mp.2009.82 PMID: 19851280
  24. Davis, J.; Eyre, H.; Jacka, F.N.; Dodd, S.; Dean, O.; McEwen, S.; Debnath, M.; McGrath, J.; Maes, M.; Amminger, P.; McGorry, P.D.; Pantelis, C.; Berk, M. A review of vulnerability and risks for schizophrenia: Beyond the two hit hypothesis. Neurosci. Biobehav. Rev., 2016, 65, 185-194. doi: 10.1016/j.neubiorev.2016.03.017 PMID: 27073049
  25. Sankowski, R.; Böttcher, C.; Masuda, T.; Geirsdottir, L. Sagar; Sindram, E.; Seredenina, T.; Muhs, A.; Scheiwe, C.; Shah, M.J.; Heiland, D.H.; Schnell, O.; Grün, D.; Priller, J.; Prinz, M. Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat. Neurosci., 2019, 22(12), 2098-2110. doi: 10.1038/s41593-019-0532-y PMID: 31740814
  26. Safaiyan, S.; Besson-Girard, S.; Kaya, T.; Cantuti-Castelvetri, L.; Liu, L.; Ji, H.; Schifferer, M.; Gouna, G.; Usifo, F.; Kannaiyan, N.; Fitzner, D.; Xiang, X.; Rossner, M.J.; Brendel, M.; Gokce, O.; Simons, M. White matter aging drives microglial diversity. Neuron, 2021, 109(7), 1100-1117.e10. doi: 10.1016/j.neuron.2021.01.027 PMID: 33606969
  27. Schultze-Lutter, F.; Theodoridou, A. The concept of basic symptoms: Its scientific and clinical relevance. World Psychiatry, 2017, 16(1), 104-105. doi: 10.1002/wps.20404 PMID: 28127912
  28. Jiang, L.; Wu, X.; Wang, S.; Chen, S.H.; Zhou, H.; Wilson, B.; Jin, C.Y.; Lu, R.B.; Xie, K.; Wang, Q.; Hong, J.S. Clozapine metabolites protect dopaminergic neurons through inhibition of microglial NADPH oxidase. J. Neuroinflammation, 2016, 13(1), 110. doi: 10.1186/s12974-016-0573-z PMID: 27184631
  29. Shaerzadeh, F.; Streit, W.J.; Heysieattalab, S.; Khoshbouei, H. Methamphetamine neurotoxicity, microglia, and neuroinflammation. J. Neuroinflammation, 2018, 15(1), 341. doi: 10.1186/s12974-018-1385-0 PMID: 30541633
  30. Ribeiro, B.M.M.; do Carmo, M.R.S.; Freire, R.S.; Rocha, N.F.M.; Borella, V.C.M.; de Menezes, A.T.; Monte, A.S.; Gomes, P.X.L.; de Sousa, F.C.F.; Vale, M.L.; de Lucena, D.F.; Gama, C.S.; Macêdo, D. Evidences for a progressive microglial activation and increase in iNOS expression in rats submitted to a neurodevelopmental model of schizophrenia: Reversal by clozapine. Schizophr. Res., 2013, 151(1-3), 12-19. doi: 10.1016/j.schres.2013.10.040 PMID: 24257517
  31. Buchanan, R.W.; Kreyenbuhl, J.; Kelly, D.L.; Noel, J.M.; Boggs, D.L.; Fischer, B.A.; Himelhoch, S.; Fang, B.; Peterson, E.; Aquino, P.R.; Keller, W. The 2009 schizophrenia PORT psychopharmacological treatment recommendations and summary statements. Schizophr. Bull., 2010, 36(1), 71-93. doi: 10.1093/schbul/sbp116 PMID: 19955390
  32. Rubio, J.M.; Kane, J.M. How and when to use clozapine. Acta Psychiatr. Scand., 2020, 141(3), 178-189. doi: 10.1111/acps.13111 PMID: 31603988
  33. Üçok, A.; Çikrikçili, U.; Karabulut, S.; Salaj, A.; Öztürk, M.; Tabak, Ö.; Durak, R. Delayed initiation of clozapine may be related to poor response in treatment-resistant schizophrenia. Int. Clin. Psychopharmacol., 2015, 30(5), 290-295. doi: 10.1097/YIC.0000000000000086 PMID: 26163875
  34. Khokhar, J.Y.; Henricks, A.M.; Sullivan, E.D.K.; Green, A.I. Unique effects of clozapine: A pharmacological perspective. Adv. Pharmacol., 2018, 82, 137-162. doi: 10.1016/bs.apha.2017.09.009 PMID: 29413518
  35. Wenthur, C.J.; Lindsley, C.W. Classics in chemical neuroscience. Clozapine. ACS Chem. Neurosci., 2013, 4(7), 1018-1025. doi: 10.1021/cn400121z PMID: 24047509
  36. Park, H.S.; Kim, E.; Moon, B.S.; Lim, N.H.; Lee, B.C.; Kim, S.E. In vivo tissue pharmacokinetics of carbon-11-labeled clozapine in healthy volunteers: A positron emission tomography study. CPT Pharmacometrics Syst. Pharmacol., 2015, 4(5), 305-311. doi: 10.1002/psp4.38 PMID: 26225256
  37. Ceylan, U.; Haupeltshofer, S.; Kämper, L.; Dann, J.; Ambrosius, B.; Gold, R.; Faissner, S. Clozapine regulates microglia and is effective in chronic experimental autoimmune encephalomyelitis. Front. Immunol., 2021, 12, 656941. doi: 10.3389/fimmu.2021.656941 PMID: 34012440
  38. Constantinescu, C.S.; Farooqi, N.; O’Brien, K.; Gran, B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br. J. Pharmacol., 2011, 164(4), 1079-1106. doi: 10.1111/j.1476-5381.2011.01302.x PMID: 21371012
  39. Stamoula, Ε Ainatzoglou, A.; Stamatellos, V.P.; Dardalas, I.; Siafis, S.; Matsas, A.; Stamoulas, K.; Papazisis, G. Atypical antipsychotics in multiple sclerosis: A review of their in vivo immunomodulatory effects. Mult. Scler. Relat. Disord., 2022, 58, 103522. doi: 10.1016/j.msard.2022.103522 PMID: 35063906
  40. Robichon, K.; Patel, V.; Connor, B.; La Flamme, A.C. Clozapine reduces infiltration into the CNS by targeting migration in experimental autoimmune encephalomyelitis. J. Neuroinflammation, 2020, 17(1), 53. doi: 10.1186/s12974-020-01733-4 PMID: 32050980
  41. Robichon, K.; Sondhauss, S.; Jordan, T.W.; Keyzers, R.A.; Connor, B.; La Flamme, A.C. Localisation of clozapine during experimental autoimmune encephalomyelitis and its impact on dopamine and its receptors. Sci. Rep., 2021, 11(1), 2966. doi: 10.1038/s41598-021-82667-6 PMID: 33536582
  42. Green, L.K.; Zareie, P.; Templeton, N.; Keyzers, R.A.; Connor, B.; La Flamme, A.C. Enhanced disease reduction using clozapine, an atypical antipsychotic agent, and glatiramer acetate combination therapy in experimental autoimmune encephalomyelitis. Mult. Scler. J. Exp. Transl. Clin., 2017, 3(1), 2055217317698724. doi: 10.1177/2055217317698724 PMID: 28607752
  43. Dodd, S.; Maes, M.; Anderson, G.; Dean, O.M.; Moylan, S.; Berk, M. Putative neuroprotective agents in neuropsychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 42, 135-145. doi: 10.1016/j.pnpbp.2012.11.007 PMID: 23178231
  44. MacDowell, K.S.; García-Bueno, B.; Madrigal, J.L.M.; Parellada, M.; Arango, C.; Micó, J.A.; Leza, J.C. Risperidone normalizes increased inflammatory parameters and restores anti-inflammatory pathways in a model of neuroinflammation. Int. J. Neuropsychopharmacol., 2013, 16(1), 121-135. doi: 10.1017/S1461145711001775 PMID: 22176740
  45. Basta-Kaim, A.; Budziszewska, B.; Jaworska-Feil, L.; Tetich, M.; Kubera, M. Leśkiewicz, M.; Otczyk, M.; Lasoń, W. Antipsychotic drugs inhibit the human corticotropin-releasing-hormone gene promoter activity in neuro-2A cells-an involvement of protein kinases. Neuropsychopharmacology, 2006, 31(4), 853-865. doi: 10.1038/sj.npp.1300911 PMID: 16205782
  46. Kato, T.; Monji, A.; Hashioka, S.; Kanba, S. Risperidone significantly inhibits interferon-γ-induced microglial activation in vitro. Schizophr. Res., 2007, 92(1-3), 108-115. doi: 10.1016/j.schres.2007.01.019 PMID: 17363222
  47. Sugino, H.; Futamura, T.; Mitsumoto, Y.; Maeda, K.; Marunaka, Y. Atypical antipsychotics suppress production of proinflammatory cytokines and up-regulate interleukin-10 in lipopolysaccharide-treated mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, 33(2), 303-307. doi: 10.1016/j.pnpbp.2008.12.006 PMID: 19138716
  48. Shin, H.; Kim, J.; Song, J.H. Clozapine and olanzapine inhibit proton currents in BV2 microglial cells. Eur. J. Pharmacol., 2015, 755, 74-79. doi: 10.1016/j.ejphar.2015.03.003 PMID: 25771455
  49. Racki, V.; Marcelic, M.; Stimac, I.; Petric, D.; Kucic, N. Effects of haloperidol, risperidone, and aripiprazole on the immunometabolic properties of BV-2 microglial cells. Int. J. Mol. Sci., 2021, 22(9), 4399. doi: 10.3390/ijms22094399 PMID: 33922377
  50. Zhu, S.; Shi, R.; Li, V.; Wang, J.; Zhang, R.; Tempier, A.; He, J.; Kong, J.; Wang, J-F.; Li, X-M. Quetiapine attenuates glial activation and proinflammatory cytokines in APP/PS1 transgenic mice via inhibition of nuclear factor- b pathway. Int. J. Neuropsychopharmacol., 2015, 18(3), pyu022. doi: 10.1093/ijnp/pyu022
  51. Wang, H.; Liu, S.; Tian, Y.; Wu, X.; He, Y.; Li, C.; Namaka, M.; Kong, J.; Li, H.; Xiao, L. Quetiapine inhibits microglial activation by neutralizing abnormal STIM1-mediated intercellular calcium homeostasis and promotes myelin repair in a cuprizone-induced mouse model of demyelination. Front. Cell. Neurosci., 2015, 9, 492. doi: 10.3389/fncel.2015.00492 PMID: 26732345
  52. Marcinowicz, P. Więdłocha, M.; Zborowska, N.; Dębowska, W.; Podwalski, P.; Misiak, B.; Tyburski, E.; Szulc, A. A meta-analysis of the influence of antipsychotics on cytokines levels in first episode psychosis. J. Clin. Med., 2021, 10(11), 2488. doi: 10.3390/jcm10112488 PMID: 34199832
  53. Tourjman, V.; Kouassi, É.; Koué, M.È.; Rocchetti, M.; Fortin-Fournier, S.; Fusar-Poli, P.; Potvin, S. Antipsychotics’ effects on blood levels of cytokines in schizophrenia: A meta-analysis. Schizophr. Res., 2013, 151(1-3), 43-47. doi: 10.1016/j.schres.2013.10.011 PMID: 24200418
  54. Romeo, B.; Brunet-Lecomte, M.; Martelli, C.; Benyamina, A. Kinetics of cytokine levels during antipsychotic treatment in schizophrenia: A meta-analysis. Int. J. Neuropsychopharmacol., 2018, 21(9), 828-836. doi: 10.1093/ijnp/pyy062 PMID: 30016466
  55. Capuzzi, E.; Bartoli, F.; Crocamo, C.; Clerici, M.; Carrà, G. Acute variations of cytokine levels after antipsychotic treatment in drug-naïve subjects with a first-episode psychosis: A meta-analysis. Neurosci. Biobehav. Rev., 2017, 77, 122-128. doi: 10.1016/j.neubiorev.2017.03.003 PMID: 28285148
  56. Goldsmith, D.R.; Rapaport, M.H.; Miller, B.J. A meta-analysis of blood cytokine network alterations in psychiatric patients: Comparisons between schizophrenia, bipolar disorder and depression. Mol. Psychiatry, 2016, 21(12), 1696-1709. doi: 10.1038/mp.2016.3 PMID: 26903267
  57. Miller, B.J.; Buckley, P.; Seabolt, W.; Mellor, A.; Kirkpatrick, B. Meta-analysis of cytokine alterations in schizophrenia: Clinical status and antipsychotic effects. Biol. Psychiatry, 2011, 70(7), 663-671. doi: 10.1016/j.biopsych.2011.04.013 PMID: 21641581
  58. Fraguas, D.; Díaz-Caneja, C.M.; Rodríguez-Quiroga, A.; Arango, C. Oxidative stress and inflammation in early onset first episode psychosis: A systematic review and meta-analysis. Int. J. Neuropsychopharmacol., 2017, 20(6), 435-444. doi: 10.1093/ijnp/pyx015 PMID: 28575316
  59. Ishijima, T.; Nakajima, K. Inflammatory cytokines TNFα IL-1β and IL-6 are induced in endotoxin- stimulated microglia through different signaling cascades. Sci. Prog., 2021, 104(4) doi: 10.1177/00368504211054985 PMID: 34821182
  60. Şimşek, Ş.; Yıldırım, V.; Çim, A.; Kaya, S. Serum IL-4 and IL-10 levels correlate with the symptoms of the drug-naive adolescents with first episode, early onset schizophrenia. J. Child Adolesc. Psychopharmacol., 2016, 26(8), 721-726. doi: 10.1089/cap.2015.0220 PMID: 27384868
  61. Noto, C.; Ota, V.K.; Gouvea, E.S.; Rizzo, L.B.; Spindola, L.M.N.; Honda, P.H.S.; Cordeiro, Q.; Belangero, S.I.; Bressan, R.A.; Gadelha, A.; Maes, M.; Brietzke, E. Effects of risperidone on cytokine profile in drug-naïve first-episode psychosis. Int. J. Neuropsychopharmacol., 2015, 18(4), pyu042-pyu042. doi: 10.1093/ijnp/pyu042 PMID: 25522386
  62. Coughlin, J.M.; Wang, Y.; Ambinder, E.B.; Ward, R.E.; Minn, I.; Vranesic, M.; Kim, P.K.; Ford, C.N.; Higgs, C.; Hayes, L.N.; Schretlen, D.J.; Dannals, R.F.; Kassiou, M.; Sawa, A.; Pomper, M.G. In vivo markers of inflammatory response in recent-onset schizophrenia: A combined study using 11CDPA-713 PET and analysis of CSF and plasma. Transl. Psychiatry, 2016, 6(4), e777-e777. doi: 10.1038/tp.2016.40 PMID: 27070405
  63. Kato, T.A.; Monji, A.; Mizoguchi, Y.; Hashioka, S.; Horikawa, H.; Seki, Y.; Kasai, M.; Utsumi, H.; Kanba, S. Anti-Inflammatory properties of antipsychotics via microglia modulations: Are antipsychotics a ‘fire extinguisher’ in the brain of Schizophrenia? Mini Rev. Med. Chem., 2011, 11(7), 565-574. doi: 10.2174/138955711795906941 PMID: 21699487
  64. Dinesh, A.A.; Islam, J.; Khan, J.; Turkheimer, F.; Vernon, A.C. Effects of antipsychotic drugs: Cross talk between the nervous and innate immune system. CNS Drugs, 2020, 34(12), 1229-1251. doi: 10.1007/s40263-020-00765-x PMID: 32975758
  65. Färber, K.; Pannasch, U.; Kettenmann, H. Dopamine and noradrenaline control distinct functions in rodent microglial cells. Mol. Cell. Neurosci., 2005, 29(1), 128-138. doi: 10.1016/j.mcn.2005.01.003 PMID: 15866053
  66. Kato, T.; Mizoguchi, Y.; Monji, A.; Horikawa, H.; Suzuki, S.O.; Seki, Y.; Iwaki, T.; Hashioka, S.; Kanba, S. Inhibitory effects of aripiprazole on interferon--induced microglial activation via intracellular Ca 2+ regulation in vitro. J. Neurochem., 2008, 106(2), 815-825. doi: 10.1111/j.1471-4159.2008.05435.x PMID: 18429930
  67. O’Sullivan, D.; Green, L.; Stone, S.; Zareie, P.; Kharkrang, M.; Fong, D.; Connor, B.; La Flamme, A.C. Treatment with the antipsychotic agent, risperidone, reduces disease severity in experimental autoimmune encephalomyelitis. PLoS One, 2014, 9(8), e104430. doi: 10.1371/journal.pone.0104430 PMID: 25116424
  68. Martel, J.C.; Gatti McArthur, S. Dopamine receptor subtypes, physiology and pharmacology: New ligands and concepts in schizophrenia. Front. Pharmacol., 2020, 11, 1003. doi: 10.3389/fphar.2020.01003 PMID: 32765257
  69. Besser, M.J.; Ganor, Y.; Levite, M. Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10, TNFα or both. J. Neuroimmunol., 2005, 169(1-2), 161-171. doi: 10.1016/j.jneuroim.2005.07.013 PMID: 16150496
  70. Levite, M. Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors. Curr. Opin. Pharmacol., 2008, 8(4), 460-471. doi: 10.1016/j.coph.2008.05.001 PMID: 18579442
  71. Arreola, R.; Alvarez-Herrera, S.; Pérez-Sánchez, G.; Becerril-Villanueva, E.; Cruz-Fuentes, C.; Flores-Gutierrez, E.O.; Garcés-Alvarez, M.E.; de la Cruz-Aguilera, D.L.; Medina-Rivero, E.; Hurtado-Alvarado, G.; Quintero-Fabián, S.; Pavón, L. Immunomodulatory effects mediated by dopamine. J. Immunol. Res., 2016, 2016, 1-31. doi: 10.1155/2016/3160486 PMID: 27795960
  72. Vidal, P.M.; Pacheco, R. The cross-talk between the dopaminergic and the immune system involved in schizophrenia. Front. Pharmacol., 2020, 11, 394. doi: 10.3389/fphar.2020.00394 PMID: 32296337
  73. Jeon, S.; Kim, S.H.; Shin, S.Y.; Lee, Y.H. Clozapine reduces toll-like receptor 4/NF-κB-mediated inflammatory responses through inhibition of calcium/calmodulin-dependent Akt activation in microglia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 81, 477-487. doi: 10.1016/j.pnpbp.2017.04.012 PMID: 28431901
  74. Shin, S.Y.; Choi, B.H.; Ko, J.; Kim, S.H.; Kim, Y.S.; Lee, Y.H. Clozapine, a neuroleptic agent, inhibits Akt by counteracting Ca2+/calmodulin in PTEN-negative U-87MG human glioblastoma cells. Cell. Signal., 2006, 18(11), 1876-1886. doi: 10.1016/j.cellsig.2006.02.004 PMID: 16542821
  75. Zheng, W.; Wang, H.; Zeng, Z.; Lin, J.; Little, P.J.; Srivastava, L.K.; Quirion, R. The possible role of the Akt signaling pathway in schizophrenia. Brain Res., 2012, 1470, 145-158. doi: 10.1016/j.brainres.2012.06.032 PMID: 22771711
  76. Chen, P.; Bornhorst, J.; Neely, M.D.; Avila, D.S. Mechanisms and disease pathogenesis underlying metal-induced oxidative stress. Oxid. Med. Cell. Longev., 2018, 2018, 7612172. doi: 10.1155/2018/7612172
  77. Giridharan, V.V.; Scaini, G.; Colpo, G.D.; Doifode, T.; Pinjari, O.F.; Teixeira, A.L.; Petronilho, F.; Macêdo, D.; Quevedo, J.; Barichello, T. Clozapine prevents poly (I:C) induced inflammation by modulating NLRP3 pathway in microglial cells. Cells, 2020, 9(3), 577. doi: 10.3390/cells9030577 PMID: 32121312
  78. Sato-Kasai, M.; Kato, T.A.; Ohgidani, M.; Mizoguchi, Y.; Sagata, N.; Inamine, S.; Horikawa, H.; Hayakawa, K.; Shimokawa, N.; Kyuragi, S.; Seki, Y.; Monji, A.; Kanba, S. Aripiprazole inhibits polyI:C-induced microglial activation possibly via TRPM7. Schizophr. Res., 2016, 178(1-3), 35-43. doi: 10.1016/j.schres.2016.08.022 PMID: 27614570
  79. Meyer, U.; Feldon, J. To poly(I:C) or not to poly(I:C): Advancing preclinical schizophrenia research through the use of prenatal immune activation models. Neuropharmacology, 2012, 62(3), 1308-1321. doi: 10.1016/j.neuropharm.2011.01.009 PMID: 21238465
  80. Yuen, J.W.Y.; Kim, D.D.; Procyshyn, R.M.; White, R.F.; Honer, W.G.; Barr, A.M. Clozapine-induced cardiovascular side effects and autonomic dysfunction: A systematic review. Front. Neurosci., 2018, 12, 203. doi: 10.3389/fnins.2018.00203 PMID: 29670504
  81. Yuen, J.W.Y.; Kim, D.D.; Procyshyn, R.M.; Panenka, W.J.; Honer, W.G.; Barr, A.M. A focused review of the metabolic side-effects of clozapine.Front Endocrinol; Frontiers Media S.A.: Lausanne, 2021.
  82. Wiciński, M.; Węclewicz, M.M. Clozapine-induced agranulocytosis/granulocytopenia. Curr. Opin. Hematol., 2018, 25(1), 22-28. doi: 10.1097/MOH.0000000000000391 PMID: 28984748
  83. de With, S A J.; Pulit, S.L.; Staal, W.G.; Kahn, R.S.; Ophoff, R.A. More than 25 years of genetic studies of clozapine-induced agranulocytosis. Pharmacogenomics J., 2017, 17(4), 304-311. doi: 10.1038/tpj.2017.6 PMID: 28418011
  84. Li, X.H.; Zhong, X.M.; Lu, L.; Zheng, W.; Wang, S.; Rao, W.; Wang, S.; Ng, C.H.; Ungvari, G.S.; Wang, G.; Xiang, Y.T. The prevalence of agranulocytosis and related death in clozapine-treated patients: A comprehensive meta-analysis of observational studies. Psychol. Med., 2020, 50(4), 583-594. doi: 10.1017/S0033291719000369 PMID: 30857568
  85. Naumann, R.; Felber, W.; Heilemann, H.; Reuster, T. Olanzapine-induced agranulocytosis. Lancet, 1999, 354(9178), 566-567. doi: 10.1016/S0140-6736(99)03111-6 PMID: 10470705
  86. Ng, W.; Kennar, R.; Uetrecht, J. Effect of clozapine and olanzapine on neutrophil kinetics: implications for drug-induced agranulocytosis. Chem. Res. Toxicol., 2014, 27(7), 1104-1108. doi: 10.1021/tx500183x PMID: 24968069
  87. Chen, J.; Yang, P.; Zhang, Q.; Chen, R.; Wang, P.; Liu, B.; Sun, W.; Jian, X.; Xiang, S.; Zhou, J.; Li, N.; Wang, K.; Gao, C.; Wen, Y.; Wu, C.; Zhang, J.; Zhao, Y.; Yang, Q.; Li, M.; Stewart, R.; Sun, Y.; Pan, D.; Niu, Y.; Wang, Z.; Xu, Y.; Li, X.; He, L.; Li, Z.; Shi, Y. Genetic risk of clozapine-induced leukopenia and neutropenia: A genome-wide association study. Transl. Psychiatry, 2021, 11(1), 343. doi: 10.1038/s41398-021-01470-z
  88. van der Weide, K.; Loovers, H.; Pondman, K.; Bogers, J.; van der Straaten, T.; Langemeijer, E.; Cohen, D.; Commandeur, J.; van der Weide, J. Genetic risk factors for clozapine-induced neutropenia and agranulocytosis in a Dutch psychiatric population. Pharmacogenomics J., 2017, 17(5), 471-478. doi: 10.1038/tpj.2016.32 PMID: 27168101
  89. Konte, B.; Walters, J.T.R.; Rujescu, D.; Legge, S.E.; Pardiñas, A.F.; Cohen, D.; Pirmohamed, M.; Tiihonen, J.; Hartmann, A.M.; Bogers, J.P.; van der Weide, J.; van der Weide, K.; Putkonen, A.; Repo-Tiihonen, E.; Hallikainen, T.; Silva, E.; Ingimarsson, O.; Sigurdsson, E.; Kennedy, J.L.; Sullivan, P.F.; Rietschel, M.; Breen, G.; Stefansson, H.; Stefansson, K.; Collier, D.A.; O’Donovan, M.C.; Giegling, I. HLA-DQB1 6672G>C (rs113332494) is associated with clozapine-induced neutropenia and agranulocytosis in individuals of European ancestry. Transl. Psychiatry, 2021, 11(1), 214. doi: 10.1038/s41398-021-01322-w PMID: 33846298
  90. Numata, S.; Umehara, H.; Ohmori, T.; Hashimoto, R. Clozapine pharmacogenetic studies in schizophrenia: Efficacy and agranulocytosis. Front. Pharmacol., 2018, 9, 1049. doi: 10.3389/fphar.2018.01049 PMID: 30319405
  91. Gerson, S.L.; Arce, C.; Meltzer, H.Y. N-desmethylclozapine: A clozapine metabolite that suppresses haemopoiesis. Br. J. Haematol., 1994, 86(3), 555-561. doi: 10.1111/j.1365-2141.1994.tb04786.x PMID: 8043437
  92. Borges, R.S.; Nagurniak, G.R.; Queiroz, L.M.D.; Maia, C.S.F.; Barros, C.A.L.; Orestes, E.; da Silva, A.B.F. Structure and toxicity of clozapine and olanzapine on agranulocytosis. Med. Chem. Res., 2016, 25(2), 322-328. doi: 10.1007/s00044-015-1484-8
  93. Haslund-Vinding, J.; McBean, G.; Jaquet, V.; Vilhardt, F. NADPH oxidases in oxidant production by microglia: activating receptors, pharmacology and association with disease. Br. J. Pharmacol., 2017, 174(12), 1733-1749. doi: 10.1111/bph.13425 PMID: 26750203
  94. Pollmächer, T.; Fenzel, T.; Mullington, J.; Hinze-Selch, D. The influence of clozapine treatment on plasma granulocyte colony-stimulating (G-CSF) levels. Pharmacopsychiatry, 1997, 30(4), 118-121. doi: 10.1055/s-2007-979495 PMID: 9271776
  95. Lobach, A.R.; Uetrecht, J. Clozapine promotes the proliferation of granulocyte progenitors in the bone marrow leading to increased granulopoiesis and neutrophilia in rats. Chem. Res. Toxicol., 2014, 27(7), 1109-1119. doi: 10.1021/tx500184c PMID: 24968143
  96. Löffler, S.; Klimke, A.; Kronenwett, R.; Kobbe, G.; Haas, R.; Fehsel, K. Clozapine mobilizes CD34+ hematopoietic stem and progenitor cells and increases plasma concentration of interleukin 6 in patients with schizophrenia. J. Clin. Psychopharmacol., 2010, 30(5), 591-595. doi: 10.1097/JCP.0b013e3181eeb7f7 PMID: 20814329
  97. Delieu, J.M.; Badawoud, M.; Williams, M.A.; Horobin, R.W.; Duguid, J.K. Antipsychotic drugs result in the formation of immature neutrophil leucocytes in Schizophrenic patients. J. Psychopharmacol., 2001, 15(3), 191-194. doi: 10.1177/026988110101500306 PMID: 11565627
  98. Spiekermann, K.; Roesler, J.; Emmendoerffer, A.; Elsner, J.; Welte, K. Functional features of neutrophils induced by G-CSF and GM-CSF treatment: Differential effects and clinical implications. Leukemia, 1997, 11(4), 466-478. doi: 10.1038/sj.leu.2400607 PMID: 9096685
  99. Iverson, S.; Kautiainen, A.; Ip, J.; Uetrecht, J.P. Effect of clozapine on neutrophil kinetics in rabbits. Chem. Res. Toxicol., 2010, 23(7), 1184-1191. doi: 10.1021/tx100035k PMID: 20553052
  100. Suzumura, A.; Sawada, M.; Yamamoto, H.; Marunouchi, T. Effects of colony stimulating factors on isolated microglia in vitro. J. Neuroimmunol., 1990, 30(2-3), 111-120. doi: 10.1016/0165-5728(90)90094-4 PMID: 2229405
  101. Peng, W. RETRACTED ARTICLE: Neuroprotective effects of G-CSF administration in microglia-mediated reactive T cell activation in vitro. Immunol. Res., 2017, 65(4), 888-902. doi: 10.1007/s12026-017-8928-9 PMID: 28646409
  102. Dikmen, H.O.; Hemmerich, M.; Lewen, A.; Hollnagel, J.O.; Chausse, B.; Kann, O. GM-CSF induces noninflammatory proliferation of microglia and disturbs electrical neuronal network rhythms in situ. J. Neuroinflammation, 2020, 17(1), 235. doi: 10.1186/s12974-020-01903-4 PMID: 32782006
  103. Fedi, V.; Guidi, A.; Altamura, M. Tricyclic structures in medicinal chemistry: An overview of their recent uses in non-CNS pathologies. Mini Rev. Med. Chem., 2008, 8(14), 1464-1484. doi: 10.2174/138955708786786453 PMID: 19075805
  104. de Filippis, R.; Soldevila-Matías, P.; De Fazio, P.; Guinart, D.; Fuentes-Durá, I.; Rubio, J.M.; Kane, J.M.; Schoretsanitis, G. Clozapine-related drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome: A systematic review. Expert Rev. Clin. Pharmacol., 2020, 13(8), 875-883. doi: 10.1080/17512433.2020.1787831 PMID: 32576056
  105. Eyre, H.; Lavretsky, H.; Kartika, J.; Qassim, A.; Baune, B. Modulatory effects of antidepressant classes on the innate and adaptive immune system in depression. Pharmacopsychiatry, 2016, 49(3), 85-96. doi: 10.1055/s-0042-103159 PMID: 26951496
  106. Szałach, Ł.P.; Lisowska, K.A.; Cubała, W.J. The influence of antidepressants on the immune system. Arch. Immunol. Ther. Exp., 2019, 67(3), 143-151. doi: 10.1007/s00005-019-00543-8 PMID: 31032529
  107. Evans, B.E.; Rittle, K.E.; Bock, M.G.; DiPardo, R.M.; Freidinger, R.M.; Whitter, W.L.; Lundell, G.F.; Veber, D.F.; Anderson, P.S.; Chang, R.S.L.; Lotti, V.J.; Cerino, D.J.; Chen, T.B.; Kling, P.J.; Kunkel, K.A.; Springer, J.P.; Hirshfield, J. Methods for drug discovery: Development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem., 1988, 31(12), 2235-2246. doi: 10.1021/jm00120a002 PMID: 2848124
  108. Çakici, N.; van Beveren, N.J.M.; Judge-Hundal, G.; Koola, M.M.; Sommer, I.E.C. An update on the efficacy of anti-inflammatory agents for patients with schizophrenia: A meta-analysis. Psychol. Med., 2019, 49(14), 2307-2319. doi: 10.1017/S0033291719001995 PMID: 31439071
  109. Sommer, I.E.; van Westrhenen, R.; Begemann, M.J.H.; de Witte, L.D.; Leucht, S.; Kahn, R.S. Efficacy of anti-inflammatory agents to improve symptoms in patients with schizophrenia: An update. Schizophr. Bull., 2014, 40(1), 181-191. doi: 10.1093/schbul/sbt139 PMID: 24106335
  110. Compagnone, N.A.; Mellon, S.H. Neurosteroids: Biosynthesis and function of these novel neuromodulators. Front. Neuroendocrinol., 2000, 21(1), 1-56. doi: 10.1006/frne.1999.0188 PMID: 10662535
  111. Mellon, S.H.; Griffin, L.D. Neurosteroids: Biochemistry and clinical significance. Trends Endocrinol. Metab., 2002, 13(1), 35-43. doi: 10.1016/S1043-2760(01)00503-3 PMID: 11750861
  112. Yilmaz, C.; Karali, K.; Fodelianaki, G.; Gravanis, A.; Chavakis, T.; Charalampopoulos, I.; Alexaki, V.I. Neurosteroids as regulators of neuroinflammation. Front. Neuroendocrinol., 2019, 55, 100788. doi: 10.1016/j.yfrne.2019.100788 PMID: 31513776
  113. Schumacher, M.; Weill-Engerer, S.; Liere, P.; Robert, F.; Franklin, R.J.M.; Garcia-Segura, L.M.; Lambert, J.J.; Mayo, W.; Melcangi, R.C.; Parducz, A.; Suter, U.; Carelli, C.; Baulieu, E.E.; Akwa, Y. Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Prog. Neurobiol., 2003, 71(1), 3-29. doi: 10.1016/j.pneurobio.2003.09.004 PMID: 14611864
  114. Stárka, L.; Dušková, M.; Hill, M. Dehydroepiandrosterone: A neuroactive steroid. J. Steroid Biochem. Mol. Biol., 2015, 145, 254-260. doi: 10.1016/j.jsbmb.2014.03.008 PMID: 24704258
  115. Charalampopoulos, I.; Alexaki, V.I.; Tsatsanis, C.; Minas, V.; Dermitzaki, E.; Lasaridis, I.; Vardouli, L.; Stournaras, C.; Margioris, A.N.; Castanas, E.; Gravanis, A. Neurosteroids as endogenous inhibitors of neuronal cell apoptosis in aging. Ann. N. Y. Acad. Sci., 2006, 1088(1), 139-152. doi: 10.1196/annals.1366.003 PMID: 17192562
  116. Charalampopoulos, I.; Remboutsika, E.; Margioris, A.N.; Gravanis, A. Neurosteroids as modulators of neurogenesis and neuronal survival. Trends Endocrinol. Metab., 2008, 19(8), 300-307. doi: 10.1016/j.tem.2008.07.004 PMID: 18771935
  117. Alexaki, V.I.; Fodelianaki, G.; Neuwirth, A.; Mund, C.; Kourgiantaki, A.; Ieronimaki, E.; Lyroni, K.; Troullinaki, M.; Fujii, C.; Kanczkowski, W.; Ziogas, A.; Peitzsch, M.; Grossklaus, S.; Sönnichsen, B.; Gravanis, A.; Bornstein, S.R.; Charalampopoulos, I.; Tsatsanis, C.; Chavakis, T. DHEA inhibits acute microglia-mediated inflammation through activation of the TrkA-Akt1/2-CREB-Jmjd3 pathway. Mol. Psychiatry, 2018, 23(6), 1410-1420. doi: 10.1038/mp.2017.167 PMID: 28894299
  118. Zwain, I.H.; Yen, S.S.C. Neurosteroidogenesis in astrocytes, oligodendrocytes, and neurons of cerebral cortex of rat brain. Endocrinology, 1999, 140(8), 3843-3852. doi: 10.1210/endo.140.8.6907 PMID: 10433246
  119. Gago, N.; Akwa, Y.; Sananès, N.; Guennoun, R.; Baulieu, E.E.; El-Etr, M.; Schumacher, M. Progesterone and the oligodendroglial lineage: Stage-dependent biosynthesis and metabolism. Glia, 2001, 36(3), 295-308. doi: 10.1002/glia.1117 PMID: 11746767
  120. Gottfried-Blackmore, A.; Sierra, A.; Jellinck, P.H.; McEwen, B.S.; Bulloch, K. Brain microglia express steroid-converting enzymes in the mouse. J. Steroid Biochem. Mol. Biol., 2008, 109(1-2), 96-107. doi: 10.1016/j.jsbmb.2007.12.013 PMID: 18329265
  121. Saijo, K.; Collier, J.G.; Li, A.C.; Katzenellenbogen, J.A.; Glass, C.K. An ADIOL-ERβ-CtBP transrepression pathway negatively regulates microglia-mediated inflammation. Cell, 2011, 145(4), 584-595. doi: 10.1016/j.cell.2011.03.050 PMID: 21565615
  122. Schaufelberger, S.A.; Rosselli, M.; Barchiesi, F.; Gillespie, D.G.; Jackson, E.K.; Dubey, R.K. 2-Methoxyestradiol, an endogenous 17β-estradiol metabolite, inhibits microglial proliferation and activation via an estrogen receptor-independent mechanism. Am. J. Physiol. Endocrinol. Metab., 2016, 310(5), E313-E322. doi: 10.1152/ajpendo.00418.2015 PMID: 26732685
  123. Ishihara, Y.; Itoh, K.; Ishida, A.; Yamazaki, T. Selective estrogen-receptor modulators suppress microglial activation and neuronal cell death via an estrogen receptor-dependent pathway. J. Steroid Biochem. Mol. Biol., 2015, 145, 85-93. doi: 10.1016/j.jsbmb.2014.10.002 PMID: 25305410
  124. Liu, X.; Fan, X.L.; Zhao, Y.; Luo, G.R.; Li, X.P.; Li, R.; Le, W.D. Estrogen provides neuroprotection against activated microglia-induced dopaminergic neuronal injury through both estrogen receptor-α and estrogen receptor-β in microglia. J. Neurosci. Res., 2005, 81(5), 653-665. doi: 10.1002/jnr.20583 PMID: 16013043
  125. Bruce-Keller, A.J.; Keeling, J.L.; Keller, J.N.; Huang, F.F.; Camondola, S.; Mattson, M.P. Antiinflammatory effects of estrogen on microglial activation. Endocrinology, 2000, 141(10), 3646-3656. doi: 10.1210/endo.141.10.7693 PMID: 11014219
  126. Pawlak, J.; Karolczak, M.; Krust, A.; Chambon, P.; Beyer, C. Estrogen receptor-? is associated with the plasma membrane of astrocytes and coupled to the MAP/Src-kinase pathway. Glia, 2005, 50(3), 270-275. doi: 10.1002/glia.20162 PMID: 15712205
  127. Sierra, A.; Gottfried-Blackmore, A.; Milner, T.A.; McEwen, B.S.; Bulloch, K. Steroid hormone receptor expression and function in microglia. Glia, 2008, 56(6), 659-674. doi: 10.1002/glia.20644 PMID: 18286612
  128. Kuo, J.; Hamid, N.; Bondar, G.; Prossnitz, E.R.; Micevych, P. Membrane estrogen receptors stimulate intracellular calcium release and progesterone synthesis in hypothalamic astrocytes. J. Neurosci., 2010, 30(39), 12950-12957. doi: 10.1523/JNEUROSCI.1158-10.2010 PMID: 20881113
  129. Bali, N.; Arimoto, J.M.; Morgan, T.E.; Finch, C.E. Progesterone antagonism of neurite outgrowth depends on microglial activation via Pgrmc1/S2R. Endocrinology, 2013, 154(7), 2468-2480. doi: 10.1210/en.2012-2109 PMID: 23653459
  130. Meffre, D.; Labombarda, F.; Delespierre, B.; Chastre, A.; De Nicola, A.F.; Stein, D.G.; Schumacher, M.; Guennoun, R. Distribution of membrane progesterone receptor alpha in the male mouse and rat brain and its regulation after traumatic brain injury. Neuroscience, 2013, 231, 111-124. doi: 10.1016/j.neuroscience.2012.11.039 PMID: 23211561
  131. Roche, S.L.; Wyse-Jackson, A.C.; Gómez-Vicente, V.; Lax, P.; Ruiz-Lopez, A.M.; Byrne, A.M.; Cuenca, N.; Cotter, T.G. Progesterone attenuates microglial-driven retinal degeneration and stimulates protective fractalkine-CX3CR1 signaling. PLoS One, 2016, 11(11), e0165197. doi: 10.1371/journal.pone.0165197 PMID: 27814376
  132. Lee, M.; Schwab, C.; Mcgeer, P.L. Astrocytes are GABAergic cells that modulate microglial activity. Glia, 2011, 59(1), 152-165. doi: 10.1002/glia.21087 PMID: 21046567
  133. Lambert, J.J.; Belelli, D.; Peden, D.R.; Vardy, A.W.; Peters, J.A. Neurosteroid modulation of GABAA receptors. Prog. Neurobiol., 2003, 71(1), 67-80. doi: 10.1016/j.pneurobio.2003.09.001 PMID: 14611869
  134. Singh, M.; Su, C.; Ng, S. Non-genomic mechanisms of progesterone action in the brain. Front. Neurosci., 2013, 7, 159. doi: 10.3389/fnins.2013.00159 PMID: 24065876
  135. Pediaditakis, I.; Efstathopoulos, P.; Prousis, K.C.; Zervou, M.; Arévalo, J.C.; Alexaki, V.I.; Nikoletopoulou, V.; Karagianni, E.; Potamitis, C.; Tavernarakis, N.; Chavakis, T.; Margioris, A.N.; Venihaki, M.; Calogeropoulou, T.; Charalampopoulos, I.; Gravanis, A. Selective and differential interactions of BNN27, a novel C17-spiroepoxy steroid derivative, with TrkA receptors, regulating neuronal survival and differentiation. Neuropharmacology, 2016, 111, 266-282. doi: 10.1016/j.neuropharm.2016.09.007 PMID: 27618740
  136. Bonetto, G.; Charalampopoulos, I.; Gravanis, A.; Karagogeos, D. The novel synthetic microneurotrophin BNN27 protects mature oligodendrocytes against cuprizone-induced death, through the NGF receptor TrkA. Glia, 2017, 65(8), 1376-1394. doi: 10.1002/glia.23170 PMID: 28567989
  137. Botsakis, K.; Mourtzi, T.; Panagiotakopoulou, V.; Vreka, M.; Stathopoulos, G.T.; Pediaditakis, I.; Charalampopoulos, I.; Gravanis, A.; Delis, F.; Antoniou, K.; Zisimopoulos, D.; Georgiou, C.D.; Panagopoulos, N.T.; Matsokis, N.; Angelatou, F. BNN-20, a synthetic microneurotrophin, strongly protects dopaminergic neurons in the "weaver" mouse, a genetic model of dopamine-denervation, acting through the TrkB neurotrophin receptor. Neuropharmacology, 2017, 121, 140-157. doi: 10.1016/j.neuropharm.2017.04.043 PMID: 28461162
  138. Brown, C.M.; Mulcahey, T.A.; Filipek, N.C.; Wise, P.M. Production of proinflammatory cytokines and chemokines during neuroinflammation: Novel roles for estrogen receptors α and β. Endocrinology, 2010, 151(10), 4916-4925. doi: 10.1210/en.2010-0371 PMID: 20685874
  139. Smith, J.A.; Das, A.; Butler, J.T.; Ray, S.K.; Banik, N.L. Estrogen or estrogen receptor agonist inhibits lipopolysaccharide induced microglial activation and death. Neurochem. Res., 2011, 36(9), 1587-1593. doi: 10.1007/s11064-010-0336-7 PMID: 21127968
  140. Vegeto, E.; Belcredito, S.; Etteri, S.; Ghisletti, S.; Brusadelli, A.; Meda, C.; Krust, A.; Dupont, S.; Ciana, P.; Chambon, P.; Maggi, A. Estrogen receptor-α mediates the brain antiinflammatory activity of estradiol. Proc. Natl. Acad. Sci., 2003, 100(16), 9614-9619. doi: 10.1073/pnas.1531957100 PMID: 12878732
  141. Wu, W.; Tan, X.; Dai, Y.; Krishnan, V.; Warner, M.; Gustafsson, J.Å. Targeting estrogen receptor β in microglia and T cells to treat experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci., 2013, 110(9), 3543-3548. doi: 10.1073/pnas.1300313110 PMID: 23401502
  142. Bhat, R.; Axtell, R.; Mitra, A.; Miranda, M.; Lock, C.; Tsien, R.W.; Steinman, L. Inhibitory role for GABA in autoimmune inflammation. Proc. Natl. Acad. Sci., 2010, 107(6), 2580-2585. doi: 10.1073/pnas.0915139107 PMID: 20133656
  143. Kipp, M.; Karakaya, S.; Johann, S.; Kampmann, E.; Mey, J.; Beyer, C. Oestrogen and progesterone reduce lipopolysaccharide-induced expression of tumour necrosis factor-α and interleukin-18 in midbrain astrocytes. J. Neuroendocrinol., 2007, 19(10), 819-822. doi: 10.1111/j.1365-2826.2007.01588.x PMID: 17850464
  144. Calogeropoulou, T.; Avlonitis, N.; Minas, V.; Alexi, X.; Pantzou, A.; Charalampopoulos, I.; Zervou, M.; Vergou, V.; Katsanou, E.S.; Lazaridis, I.; Alexis, M.N.; Gravanis, A. Novel dehydroepiandrosterone derivatives with antiapoptotic, neuroprotective activity. J. Med. Chem., 2009, 52(21), 6569-6587. doi: 10.1021/jm900468p PMID: 19845386
  145. Gravanis, A.; Pediaditakis, I.; Charalampopoulos, I. Synthetic microneurotrophins in therapeutics of neurodegeneration. Oncotarget, 2017, 8(6), 9005-9006. doi: 10.18632/oncotarget.14667 PMID: 28099949
  146. Akhondzadeh, S.; Nejatisafa, A.A.; Amini, H.; Mohammadi, M.R.; Larijani, B.; Kashani, L.; Raisi, F.; Kamalipour, A. Adjunctive estrogen treatment in women with chronic schizophrenia: A double-blind, randomized, and placebo-controlled trial. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2003, 27(6), 1007-1012. doi: 10.1016/S0278-5846(03)00161-1 PMID: 14499318
  147. Ghafari, E.; Fararouie, M.; Shirazi, H.G.; Farhangfar, A.; Ghaderi, F.; Mohammadi, A. Combination of estrogen and antipsychotics in the treatment of women with chronic schizophrenia: A double-blind, randomized, placebo-controlled clinical trial. Clin. Schizophr. Relat. Psychoses, 2013, 6(4), 172-176. doi: 10.3371/CSRP.GHFA.01062013 PMID: 23302446
  148. Kianimehr, G.; Fatehi, F.; Hashempoor, S.; Khodaei-Ardakani, M.R.; Rezaei, F.; Nazari, A.; Kashani, L.; Akhondzadeh, S. Raloxifene adjunctive therapy for postmenopausal women suffering from chronic schizophrenia: A randomized double-blind and placebo controlled trial. Daru, 2014, 22(1), 55. doi: 10.1186/2008-2231-22-55 PMID: 25012765
  149. Kulkarni, J.; de Castella, A.; Fitzgerald, P.B.; Gurvich, C.T.; Bailey, M.; Bartholomeusz, C.; Burger, H. Estrogen in severe mental illness: A potential new treatment approach. Arch. Gen. Psychiatry, 2008, 65(8), 955-960. doi: 10.1001/archpsyc.65.8.955 PMID: 18678800
  150. Kulkarni, J.; de Castella, A.; Headey, B.; Marston, N.; Sinclair, K.; Lee, S.; Gurvich, C.; Fitzgerald, P.B.; Burger, H. Estrogens and men with schizophrenia: Is there a case for adjunctive therapy? Schizophr. Res., 2011, 125(2-3), 278-283. doi: 10.1016/j.schres.2010.10.009 PMID: 21062669
  151. Kulkarni, J.; Riedel, A.; de Castella, A.R.; Fitzgerald, P.B.; Rolfe, T.J.; Taffe, J.; Burger, H. Estrogen: A potential treatment for schizophrenia. Schizophr. Res., 2001, 48(1), 137-144. doi: 10.1016/S0920-9964(00)00088-8 PMID: 11278160
  152. Kulkarni, J.; Gavrilidis, E.; Gwini, S.M.; Worsley, R.; Grigg, J.; Warren, A.; Gurvich, C.; Gilbert, H.; Berk, M.; Davis, S.R. Effect of adjunctive raloxifene therapy on severity of refractory schizophrenia in women. JAMA Psychiatry, 2016, 73(9), 947-954. doi: 10.1001/jamapsychiatry.2016.1383 PMID: 27438995
  153. Louzã, M.R.; Marques, A.P.; Elkis, H.; Bassitt, D.; Diegoli, M.; Gattaz, W.F. Conjugated estrogens as adjuvant therapy in the treatment of acute schizophrenia: A double-blind study. Schizophr. Res., 2004, 66(2-3), 97-100. doi: 10.1016/S0920-9964(03)00082-3 PMID: 15061241
  154. Usall, J.; Huerta-Ramos, E.; Labad, J.; Cobo, J.; Núñez, C.; Creus, M.; Parés, G.G.; Cuadras, D.; Franco, J.; Miquel, E.; Reyes, J.C.; Roca, M. Raloxifene as an adjunctive treatment for postmenopausal women with schizophrenia: A 24-week double-blind, randomized, parallel, placebo-controlled trial. Schizophr. Bull., 2016, 42(2), 309-317. doi: 10.1093/schbul/sbv149 PMID: 26591005
  155. Weiser, M.; Levi, L.; Burshtein, S.; Hagin, M.; Matei, V.P.; Podea, D. Micluția, I.; Tiugan, A.; Păcală B.; Grecu, I.G.; Noy, A.; Zamora, D.; Davis, J.M. Raloxifene plus antipsychotics versus placebo plus antipsychotics in severely ill decompensated postmenopausal women with schizophrenia or schizoaffective disorder. J. Clin. Psychiatry, 2017, 78(7), e758-e765. doi: 10.4088/JCP.15m10498 PMID: 28541645
  156. Khodaie-Ardakani, M-R.; Khosravi, M.; Zarinfard, R.; Nejati, S.; Mohsenian, A.; Tabrizi, M.; Akhondzadeh, S. A Placebo-Controlled Study of Raloxifene Added to Risperidone in Men with Chronic Schizophrenia. Acta Med. Iran., 2015, 53(6), 337-345. PMID: 26069170
  157. Nasib, L.G.; Gangadin, S.S.; Rossum, I.W.; Boudewijns, Z.S.R.M.; de Witte, L.D.; Wilting, I.; Luykx, J.; Somers, M.; Veen, N.; van Baal, C.; Kahn, R.S.; Sommer, I.E. The effect of prednisolone on symptom severity in schizophrenia: A placebo-controlled, randomized controlled trial. Schizophr. Res., 2021, 230, 79-86. doi: 10.1016/j.schres.2021.01.024 PMID: 33711681
  158. Veenstra, D.L.; Best, J.H.; Hornberger, J.; Sullivan, S.D.; Hricik, D.E. Incidence and long-term cost of steroid-related side effects after renal transplantation. Am. J. Kidney Dis., 1999, 33(5), 829-839. doi: 10.1016/S0272-6386(99)70414-2 PMID: 10213637
  159. Çaldır, M.V.; Çelik, G.K.; Çiftçi, Ö.; Müderrisoğlu, İ.H. The effect of high-dose steroid treatment used for the treatment of acute demyelinating diseases on endothelial and cardiac functions. Anatol. J. Cardiol., 2017, 17(5), 392-397. doi: 10.14744/AnatolJCardiol.2016.7425 PMID: 27965510
  160. De Hert, M.; Correll, C.U.; Bobes, J.; Cetkovich-Bakmas, M.; Cohen, D.; Asai, I.; Detraux, J.; Gautam, S.; Möller, H.J.; Ndetei, D.M.; Newcomer, J.W.; Uwakwe, R.; Leucht, S. Physical illness in patients with severe mental disorders. I. Prevalence, impact of medications and disparities in health care. World Psychiatry, 2011, 10(1), 52-77. doi: 10.1002/j.2051-5545.2011.tb00014.x PMID: 21379357
  161. Galderisi, S.; De Hert, M.; Del Prato, S.; Fagiolini, A.; Gorwood, P.; Leucht, S.; Maggioni, A.P.; Mucci, A.; Arango, C. Identification and management of cardiometabolic risk in subjects with schizophrenia spectrum disorders: A Delphi expert consensus study. Eur. Psychiatry, 2021, 64(1), e7. doi: 10.1192/j.eurpsy.2020.115 PMID: 33413701
  162. Sommer, I.E.; de Witte, L.; Begemann, M.; Kahn, R.S. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J. Clin. Psychiatry, 2012, 73(4), 414-419. doi: 10.4088/JCP.10r06823 PMID: 22225599
  163. Hirst, W.D.; Young, K.A.; Newton, R.; Allport, V.C.; Marriott, D.R.; Wilkin, G.P. Expression of COX-2 by normal and reactive astrocytes in the adult rat central nervous system. Mol. Cell. Neurosci., 1999, 13(1), 57-68. doi: 10.1006/mcne.1998.0731 PMID: 10049531
  164. Minghetti, L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol., 2004, 63(9), 901-910. doi: 10.1093/jnen/63.9.901 PMID: 15453089
  165. Müller, N.; Riedel, M.; Scheppach, C.; Brandstätter, B.; Sokullu, S.; Krampe, K.; Ulmschneider, M.; Engel, R.R.; Möller, H.J.; Schwarz, M.J. Beneficial antipsychotic effects of celecoxib add-on therapy compared to risperidone alone in schizophrenia. Am. J. Psychiatry, 2002, 159(6), 1029-1034. doi: 10.1176/appi.ajp.159.6.1029 PMID: 12042193
  166. Müller, N; Riedel, M; Schwarz, MJ; Engel, RR 2004.
  167. Müller, N. COX-2 inhibitors as antidepressants and antipsychotics: Clinical evidence. Curr. Opin. Investig. Drugs, 2010, 11(1), 31-42. PMID: 20047157
  168. Laan, W.; Grobbee, D.E.; Selten, J.P.; Heijnen, C.J.; Kahn, R.S.; Burger, H. Adjuvant aspirin therapy reduces symptoms of schizophrenia spectrum disorders: Results from a randomized, double-blind, placebo-controlled trial. J. Clin. Psychiatry, 2010, 71(5), 520-527. doi: 10.4088/JCP.09m05117yel PMID: 20492850
  169. Nitta, M.; Kishimoto, T.; Müller, N.; Weiser, M.; Davidson, M.; Kane, J.M.; Correll, C.U. Adjunctive use of nonsteroidal anti-inflammatory drugs for schizophrenia: A meta-analytic investigation of randomized controlled trials. Schizophr. Bull., 2013, 39(6), 1230-1241. doi: 10.1093/schbul/sbt070 PMID: 23720576
  170. Vasović V.; Banić B.; Jakovljević V.; Tomic, Z.; Milic-Djordjevic, V. Effect of aminophylline on aspirin penetration into the central nervous system in rats. Eur. J. Drug Metab. Pharmacokinet., 2008, 33(1), 23-30. doi: 10.1007/BF03191015 PMID: 18543581
  171. Arvin, K.L.; Han, B.H.; Du, Y.; Lin, S.Z.; Paul, S.M.; Holtzman, D.M. Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury. Ann. Neurol., 2002, 52(1), 54-61. doi: 10.1002/ana.10242 PMID: 12112047
  172. Chen, M.; Ona, V.O.; Li, M.; Ferrante, R.J.; Fink, K.B.; Zhu, S.; Bian, J.; Guo, L.; Farrell, L.A.; Hersch, S.M.; Hobbs, W.; Vonsattel, J.P.; Cha, J.H.J.; Friedlander, R.M. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat. Med., 2000, 6(7), 797-801. doi: 10.1038/77528 PMID: 10888929
  173. Wu, D.C.; Jackson-Lewis, V.; Vila, M.; Tieu, K.; Teismann, P.; Vadseth, C.; Choi, D.K.; Ischiropoulos, H.; Przedborski, S. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J. Neurosci., 2002, 22(5), 1763-1771. doi: 10.1523/JNEUROSCI.22-05-01763.2002 PMID: 11880505
  174. Homsi, S.; Federico, F.; Croci, N.; Palmier, B.; Plotkine, M.; Marchand-Leroux, C.; Jafarian-Tehrani, M. Minocycline effects on cerebral edema: Relations with inflammatory and oxidative stress markers following traumatic brain injury in mice. Brain Res., 2009, 1291, 122-132. doi: 10.1016/j.brainres.2009.07.031 PMID: 19631631
  175. Yrjänheikki, J.; Tikka, T.; Keinänen, R.; Goldsteins, G.; Chan, P.H.; Koistinaho, J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc. Natl. Acad. Sci., 1999, 96(23), 13496-13500. doi: 10.1073/pnas.96.23.13496 PMID: 10557349
  176. Yrjänheikki, J.; Keinänen, R.; Pellikka, M.; Hökfelt, T.; Koistinaho, J. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc. Natl. Acad. Sci., 1998, 95(26), 15769-15774. doi: 10.1073/pnas.95.26.15769 PMID: 9861045
  177. Watabe, M.; Kato, T.A.; Monji, A.; Horikawa, H.; Kanba, S. Does minocycline, an antibiotic with inhibitory effects on microglial activation, sharpen a sense of trust in social interaction? Psychopharmacology, 2012, 220(3), 551-557. doi: 10.1007/s00213-011-2509-8 PMID: 21956241
  178. Dommergues, M.A.; Plaisant, F.; Verney, C.; Gressens, P. Early microglial activation following neonatal excitotoxic brain damage in mice: A potential target for neuroprotection. Neuroscience, 2003, 121(3), 619-628. doi: 10.1016/S0306-4522(03)00558-X PMID: 14568022
  179. Kobayashi, K.; Imagama, S.; Ohgomori, T.; Hirano, K.; Uchimura, K.; Sakamoto, K.; Hirakawa, A.; Takeuchi, H.; Suzumura, A.; Ishiguro, N.; Kadomatsu, K. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis., 2013, 4(3), e525-e525. doi: 10.1038/cddis.2013.54 PMID: 23470532
  180. Tikka, T.; Fiebich, B.L.; Goldsteins, G.; Keinänen, R.; Koistinaho, J. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J. Neurosci., 2001, 21(8), 2580-2588. doi: 10.1523/JNEUROSCI.21-08-02580.2001 PMID: 11306611
  181. Mizoguchi, H.; Takuma, K.; Fukakusa, A.; Ito, Y.; Nakatani, A.; Ibi, D.; Kim, H.C.; Yamada, K. Improvement by minocycline of methamphetamine-induced impairment of recognition memory in mice. Psychopharmacology, 2008, 196(2), 233-241. doi: 10.1007/s00213-007-0955-0 PMID: 17909751
  182. Kamei, H.; Nagai, T.; Nakano, H.; Togan, Y.; Takayanagi, M.; Takahashi, K.; Kobayashi, K.; Yoshida, S.; Maeda, K.; Takuma, K.; Nabeshima, T.; Yamada, K. Repeated methamphetamine treatment impairs recognition memory through a failure of novelty-induced ERK1/2 activation in the prefrontal cortex of mice. Biol. Psychiatry, 2006, 59(1), 75-84. doi: 10.1016/j.biopsych.2005.06.006 PMID: 16139811
  183. Levkovitz, Y.; Levi, U.; Braw, Y.; Cohen, H. Minocycline, a second-generation tetracycline, as a neuroprotective agent in an animal model of schizophrenia. Brain Res., 2007, 1154, 154-162. doi: 10.1016/j.brainres.2007.03.080 PMID: 17488642
  184. Fujita, Y.; Ishima, T.; Kunitachi, S.; Hagiwara, H.; Zhang, L.; Iyo, M.; Hashimoto, K. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the antibiotic drug minocycline. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32(2), 336-339. doi: 10.1016/j.pnpbp.2007.08.031 PMID: 17884273
  185. Tsuji, M.; Wilson, M.A.; Lange, M.S.; Johnston, M.V. Minocycline worsens hypoxic-ischemic brain injury in a neonatal mouse model. Exp. Neurol., 2004, 189(1), 58-65. doi: 10.1016/j.expneurol.2004.01.011 PMID: 15296836
  186. Arnoux, I.; Hoshiko, M.; Sanz Diez, A.; Audinat, E. Paradoxical effects of minocycline in the developing mouse somatosensory cortex. Glia, 2014, 62(3), 399-410. doi: 10.1002/glia.22612 PMID: 24357027
  187. Ueno, M.; Fujita, Y.; Tanaka, T.; Nakamura, Y.; Kikuta, J.; Ishii, M.; Yamashita, T. Layer V cortical neurons require microglial support for survival during postnatal development. Nat. Neurosci., 2013, 16(5), 543-551. doi: 10.1038/nn.3358 PMID: 23525041
  188. Inta, D.; Lang, U.E.; Borgwardt, S.; Meyer-Lindenberg, A.; Gass, P. Microglia activation and schizophrenia: Lessons from the effects of minocycline on postnatal neurogenesis, neuronal survival and synaptic pruning. Schizophr. Bull., 2017, 43(3), 493-496. PMID: 27352782
  189. Levkovitz, Y.; Mendlovich, S.; Riwkes, S.; Braw, Y.; Levkovitch-Verbin, H.; Gal, G.; Fennig, S.; Treves, I.; Kron, S. A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia. J. Clin. Psychiatry, 2010, 71(2), 138-149. doi: 10.4088/JCP.08m04666yel PMID: 19895780
  190. Chaudhry, I.B.; Hallak, J.; Husain, N.; Minhas, F.; Stirling, J.; Richardson, P.; Dursun, S.; Dunn, G.; Deakin, B. Minocycline benefits negative symptoms in early schizophrenia: a randomised double-blind placebo-controlled clinical trial in patients on standard treatment. J. Psychopharmacol., 2012, 26(9), 1185-1193. doi: 10.1177/0269881112444941 PMID: 22526685
  191. Jhamnani, K.; Shivakumar, V.; Kalmady, S.; Rao, N.P.; Venkatasubramanian, G. Successful use of add-on minocycline for treatment of persistent negative symptoms in schizophrenia. J. Neuropsychiatry Clin. Neurosci., 2013, 25(1), E06-E07. doi: 10.1176/appi.neuropsych.11120376 PMID: 23487204
  192. Kelly, D.L.; Vyas, G.; Richardson, C.M.; Koola, M.; McMahon, R.P.; Buchanan, R.W.; Wehring, H.J. Adjunct minocycline to clozapine treated patients with persistent schizophrenia symptoms. Schizophr. Res., 2011, 133(1-3), 257-258. doi: 10.1016/j.schres.2011.08.005 PMID: 21872445
  193. Miyaoka, T.; Yasukawa, R.; Yasuda, H.; Hayashida, M.; Inagaki, T.; Horiguchi, J. Minocycline as adjunctive therapy for schizophrenia: An open-label study. Clin. Neuropharmacol., 2008, 31(5), 287-292. doi: 10.1097/WNF.0b013e3181593d45 PMID: 18836347
  194. Ahuja, N.; Carroll, B.T. Possible anti-catatonic effects of minocycline in patients with schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007, 31(4), 968-969. doi: 10.1016/j.pnpbp.2007.01.018 PMID: 17320260
  195. Chaves, C.; de Marque, C.R.; Wichert-Ana, L.; Maia-de-Oliveira, J.P.; Itikawa, E.N.; Crippa, J.A.S.; Zuardi, A.W.; Todd, K.G.; Baker, G.B.; Dursun, S.M.; Hallak, J.E.C. Functional neuroimaging of minocycline’s effect in a patient with schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2010, 34(3), 550-552. doi: 10.1016/j.pnpbp.2010.01.020 PMID: 20138948
  196. Chen, X.; Xiong, Z.; Li, Z.; Yang, Y.; Zheng, Z.; Li, Y.; Xie, Y.; Li, Z. Minocycline as adjunct therapy for a male patient with deficit schizophrenia. Neuropsychiatr. Dis. Treat., 2018, 14, 2697-2701. doi: 10.2147/NDT.S179658 PMID: 30349268
  197. Solmi, M.; Veronese, N.; Thapa, N.; Facchini, S.; Stubbs, B.; Fornaro, M.; Carvalho, A.F.; Correll, C.U. Systematic review and meta-analysis of the efficacy and safety of minocycline in schizophrenia. CNS Spectr., 2017, 22(5), 415-426. doi: 10.1017/S1092852916000638 PMID: 28181901
  198. Deakin, B.; Suckling, J.; Barnes, T.R.E.; Byrne, K.; Chaudhry, I.B.; Dazzan, P.; Drake, R.J.; Giordano, A.; Husain, N.; Jones, P.B.; Joyce, E.; Knox, E.; Krynicki, C.; Lawrie, S.M.; Lewis, S.; Lisiecka-Ford, D.M.; Nikkheslat, N.; Pariante, C.M.; Smallman, R.; Watson, A.; Williams, S.C.R.; Upthegrove, R.; Dunn, G. The benefit of minocycline on negative symptoms of schizophrenia in patients with recent-onset psychosis (BeneMin): A randomised, double-blind, placebo-controlled trial. Lancet Psychiatry, 2018, 5(11), 885-894. doi: 10.1016/S2215-0366(18)30345-6 PMID: 30322824
  199. Solmi, M.; Correll, C.U. Adjunctive minocycline in schizophrenia: What one well-conducted study can tell us (and what it can’t). Evid. Based Ment. Health, 2019, 22(1), e3-e3. doi: 10.1136/ebmental-2018-300070 PMID: 30665992
  200. Kishimoto, T.; Horigome, T.; Takamiya, A. Minocycline as a treatment for schizophrenia: is the discussion truly finished? Lancet Psychiatry, 2018, 5(11), 856-857. doi: 10.1016/S2215-0366(18)30389-4 PMID: 30322823
  201. Jeppesen, R.; Christensen, R.H.B.; Pedersen, E.M.J.; Nordentoft, M.; Hjorthøj, C.; Köhler-Forsberg, O.; Benros, M.E. Efficacy and safety of anti-inflammatory agents in treatment of psychotic disorders: A comprehensive systematic review and meta-analysis. Brain Behav. Immun., 2020, 90, 364-380. doi: 10.1016/j.bbi.2020.08.028 PMID: 32890697
  202. Müller, N. COX-2 inhibitors, aspirin, and other potential anti-inflammatory treatments for psychiatric disorders. Front. Psychiatry, 2019, 10, 375. doi: 10.3389/fpsyt.2019.00375 PMID: 31214060
  203. Zhang, L.; Zheng, H.; Wu, R.; Zhu, F.; Kosten, T.R.; Zhang, X.Y.; Zhao, J. Minocycline adjunctive treatment to risperidone for negative symptoms in schizophrenia: Association with pro-inflammatory cytokine levels. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 85, 69-76. doi: 10.1016/j.pnpbp.2018.04.004 PMID: 29678772

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024