Emerging Roles of Microglia in Blood-Brain Barrier Integrity in Aging and Neurodegeneration


Citar

Texto integral

Resumo

The blood-brain barrier (BBB) is a highly selective interface between the blood and the brain parenchyma. It plays an essential role in maintaining a specialized environment for central nervous system function and homeostasis. The BBB disrupts with age, which contributes to the development of many age-related disorders due to central and peripheral toxic factors or BBB dysfunction. Microglia, the resident innate immune cells of the brain, have recently been explored for their ability to directly and indirectly regulate the integrity of the BBB. This review will focus on the current understanding of the molecular mechanisms utilized by microglia to regulate BBB integrity and how this becomes disrupted in aging and age-associated diseases. We will also discuss the rationale for considering microglia as a therapeutic target to prevent or slow down neurodegeneration.

Sobre autores

Simeng Zhang

Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology

Email: info@benthamscience.net

Rui Meng

Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology

Email: info@benthamscience.net

Muzhou Jiang

Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology

Autor responsável pela correspondência
Email: info@benthamscience.net

Hong Qing

Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology

Autor responsável pela correspondência
Email: info@benthamscience.net

Junjun Ni

Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Banks, W.A.; Reed, M.J.; Logsdon, A.F.; Rhea, E.M.; Erickson, M.A. Healthy aging and the blood–brain barrier. Nature Aging, 2021, 1(3), 243-254. doi: 10.1038/s43587-021-00043-5 PMID: 34368785
  2. Senatorov, V.V., Jr; Friedman, A.R.; Milikovsky, D.Z.; Ofer, J.; Saar-Ashkenazy, R.; Charbash, A.; Jahan, N.; Chin, G.; Mihaly, E.; Lin, J.M.; Ramsay, H.J.; Moghbel, A.; Preininger, M.K.; Eddings, C.R.; Harrison, H.V.; Patel, R.; Shen, Y.; Ghanim, H.; Sheng, H.; Veksler, R.; Sudmant, P.H.; Becker, A.; Hart, B.; Rogawski, M.A.; Dillin, A.; Friedman, A.; Kaufer, D. Blood-brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci. Transl. Med., 2019, 11(521), eaaw8283. doi: 10.1126/scitranslmed.aaw8283 PMID: 31801886
  3. Bell, R.D.; Zlokovic, B.V. Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol., 2009, 118(1), 103-113. doi: 10.1007/s00401-009-0522-3 PMID: 19319544
  4. Sagare, A.P.; Bell, R.D.; Zlokovic, B.V. Neurovascular dysfunction and faulty amyloid β-peptide clearance in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(10), a011452. doi: 10.1101/cshperspect.a011452 PMID: 23028132
  5. Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol., 2018, 14(3), 133-150. doi: 10.1038/nrneurol.2017.188 PMID: 29377008
  6. Nation, D.A.; Sweeney, M.D.; Montagne, A.; Sagare, A.P.; D’Orazio, L.M.; Pachicano, M.; Sepehrband, F.; Nelson, A.R.; Buennagel, D.P.; Harrington, M.G.; Benzinger, T.L.S.; Fagan, A.M.; Ringman, J.M.; Schneider, L.S.; Morris, J.C.; Chui, H.C.; Law, M.; Toga, A.W.; Zlokovic, B.V. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med., 2019, 25(2), 270-276. doi: 10.1038/s41591-018-0297-y PMID: 30643288
  7. Prinz, M.; Priller, J. Microglia and brain macrophages in the molecular age: From origin to neuropsychiatric disease. Nat. Rev. Neurosci., 2014, 15(5), 300-312. doi: 10.1038/nrn3722 PMID: 24713688
  8. Butler, C.A.; Popescu, A.S.; Kitchener, E.J.A.; Allendorf, D.H.; Puigdellívol, M.; Brown, G.C. Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J. Neurochem., 2021, 158(3), 621-639. doi: 10.1111/jnc.15327 PMID: 33608912
  9. Krasemann, S.; Madore, C.; Cialic, R.; Baufeld, C.; Calcagno, N.; El Fatimy, R.; Beckers, L.; O’Loughlin, E.; Xu, Y.; Fanek, Z.; Greco, D.J.; Smith, S.T.; Tweet, G.; Humulock, Z.; Zrzavy, T.; Conde-Sanroman, P.; Gacias, M.; Weng, Z.; Chen, H.; Tjon, E.; Mazaheri, F.; Hartmann, K.; Madi, A.; Ulrich, J.D.; Glatzel, M.; Worthmann, A.; Heeren, J.; Budnik, B.; Lemere, C.; Ikezu, T.; Heppner, F.L.; Litvak, V.; Holtzman, D.M.; Lassmann, H.; Weiner, H.L.; Ochando, J.; Haass, C.; Butovsky, O. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity, 2017, 47(3), 566-581.e9. doi: 10.1016/j.immuni.2017.08.008 PMID: 28930663
  10. Jha, M.K.; Jo, M.; Kim, J.H.; Suk, K. Microglia-astrocyte crosstalk: An intimate molecular conversation. Neuroscientist, 2019, 25(3), 227-240. doi: 10.1177/1073858418783959 PMID: 29931997
  11. Peferoen, L.; Kipp, M.; van der Valk, P.; van Noort, J.M.; Amor, S. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology, 2014, 141(3), 302-313. doi: 10.1111/imm.12163 PMID: 23981039
  12. Xie, Z.; Meng, J.; Wu, Z.; Nakanishi, H.; Hayashi, Y.; Kong, W.; Lan, F. Narengaowa; Yang, Q.; Qing, H.; Ni, J. The dual nature of microglia in Alzheimer’s disease: A microglia-neuron crosstalk perspective. Neuroscientist, 2022, 10738584211070273. doi: 10.1177/10738584211070273 PMID: 35348415
  13. Ehrlich, P. The body’s need for oxygen.In: A color analytical study; Hirschwald, Berlin; , 1885.
  14. Liebner, S.; Dijkhuizen, R.M.; Reiss, Y.; Plate, K.H.; Agalliu, D.; Constantin, G. Functional morphology of the blood–brain barrier in health and disease. Acta Neuropathol., 2018, 135(3), 311-336. doi: 10.1007/s00401-018-1815-1 PMID: 29411111
  15. Wosik, K.; Cayrol, R.; Dodelet-Devillers, A.; Berthelet, F.; Bernard, M.; Moumdjian, R.; Bouthillier, A.; Reudelhuber, T.L.; Prat, A. Angiotensin II controls occludin function and is required for blood brain barrier maintenance: relevance to multiple sclerosis. J. Neurosci., 2007, 27(34), 9032-9042. doi: 10.1523/JNEUROSCI.2088-07.2007 PMID: 17715340
  16. Dong, X. Current strategies for brain drug delivery. Theranostics, 2018, 8(6), 1481-1493. doi: 10.7150/thno.21254 PMID: 29556336
  17. Gonzales, M.M.; Garbarino, V.R.; Pollet, E.; Palavicini, J.P.; Kellogg, D.L., Jr; Kraig, E.; Orr, M.E. Biological aging processes underlying cognitive decline and neurodegenerative disease. J. Clin. Invest., 2022, 132(10), e158453. doi: 10.1172/JCI158453 PMID: 35575089
  18. Verheggen, I.C.M.; de Jong, J.J.A.; van Boxtel, M.P.J.; Postma, A.A.; Jansen, J.F.A.; Verhey, F.R.J.; Backes, W.H. Imaging the role of blood–brain barrier disruption in normal cognitive ageing. Geroscience, 2020, 42(6), 1751-1764. doi: 10.1007/s11357-020-00282-1 PMID: 33025410
  19. Rubin, L.L.; Staddon, J.M. The cell biology of the blood-brain barrier. Annu. Rev. Neurosci., 1999, 22(1), 11-28. doi: 10.1146/annurev.neuro.22.1.11 PMID: 10202530
  20. Runkle, E.A.; Mu, D. Tight junction proteins: From barrier to tumorigenesis. Cancer Lett., 2013, 337(1), 41-48. doi: 10.1016/j.canlet.2013.05.038 PMID: 23743355
  21. Thurgur, H.; Pinteaux, E. Microglia in the neurovascular unit: Blood–brain barrier–microglia interactions after central nervous system disorders. Neuroscience, 2019, 405, 55-67. doi: 10.1016/j.neuroscience.2018.06.046 PMID: 31007172
  22. Balda, M.S.; Whitney, J.A.; Flores, C.; González, S.; Cereijido, M.; Matter, K. Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J. Cell Biol., 1996, 134(4), 1031-1049. doi: 10.1083/jcb.134.4.1031 PMID: 8769425
  23. Yamamoto, M.; Ramirez, S.H.; Sato, S.; Kiyota, T.; Cerny, R.L.; Kaibuchi, K.; Persidsky, Y.; Ikezu, T. Phosphorylation of claudin-5 and occludin by rho kinase in brain endothelial cells. Am. J. Pathol., 2008, 172(2), 521-533. doi: 10.2353/ajpath.2008.070076 PMID: 18187566
  24. Engelhardt, B.; Liebner, S. Novel insights into the development and maintenance of the blood–brain barrier. Cell Tissue Res., 2014, 355(3), 687-699. doi: 10.1007/s00441-014-1811-2 PMID: 24590145
  25. Rossa, J.; Ploeger, C.; Vorreiter, F.; Saleh, T.; Protze, J.; Günzel, D.; Wolburg, H.; Krause, G.; Piontek, J. Claudin-3 and claudin-5 protein folding and assembly into the tight junction are controlled by non-conserved residues in the transmembrane 3 (TM3) and extracellular loop 2 (ECL2) segments. J. Biol. Chem., 2014, 289(11), 7641-7653. doi: 10.1074/jbc.M113.531012 PMID: 24478310
  26. Harris, T.J.C.; Tepass, U. Adherens junctions: From molecules to morphogenesis. Nat. Rev. Mol. Cell Biol., 2010, 11(7), 502-514. doi: 10.1038/nrm2927 PMID: 20571587
  27. Zhao, F.; Zhong, L.; Luo, Y. Endothelial glycocalyx as an important factor in composition of blood-brain barrier. CNS Neurosci. Ther., 2021, 27(1), 26-35. doi: 10.1111/cns.13560 PMID: 33377610
  28. Henry, C.B.S.; Duling, B.R. TNF-α increases entry of macromolecules into luminal endothelial cell glycocalyx. Am. J. Physiol. Heart Circ. Physiol., 2000, 279(6), H2815-H2823. doi: 10.1152/ajpheart.2000.279.6.H2815 PMID: 11087236
  29. Sofroniew, M.V.; Vinters, H.V. Astrocytes: Biology and pathology. Acta Neuropathol., 2010, 119(1), 7-35. doi: 10.1007/s00401-009-0619-8 PMID: 20012068
  30. Steliga, A. Kowiański, P.; Czuba, E.; Waśkow, M.; Moryś J.; Lietzau, G. Neurovascular unit as a source of ischemic stroke biomarkers—limitations of experimental studies and perspectives for clinical application. Transl. Stroke Res., 2020, 11(4), 553-579. doi: 10.1007/s12975-019-00744-5 PMID: 31701356
  31. Winkler, A.; Wrzos, C.; Haberl, M.; Weil, M.T.; Gao, M.; Möbius, W.; Odoardi, F.; Thal, D.R.; Chang, M.; Opdenakker, G.; Bennett, J.L.; Nessler, S.; Stadelmann, C. Blood-brain barrier resealing in neuromyelitis optica occurs independently of astrocyte regeneration. J. Clin. Invest., 2021, 131(5), e141694. doi: 10.1172/JCI141694 PMID: 33645550
  32. Rothhammer, V.; Quintana, F.J. Control of autoimmune CNS inflammation by astrocytes. Semin. Immunopathol., 2015, 37(6), 625-638. doi: 10.1007/s00281-015-0515-3 PMID: 26223505
  33. Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487. doi: 10.1038/nature21029 PMID: 28099414
  34. Pan, J.; Ma, N.; Zhong, J.; Yu, B.; Wan, J.; Zhang, W. Age-associated changes in microglia and astrocytes ameliorate blood-brain barrier dysfunction. Mol. Ther. Nucleic Acids, 2021, 26, 970-986. doi: 10.1016/j.omtn.2021.08.030 PMID: 34760339
  35. Sweeney, M.D.; Ayyadurai, S.; Zlokovic, B.V. Pericytes of the neurovascular unit: Key functions and signaling pathways. Nat. Neurosci., 2016, 19(6), 771-783. doi: 10.1038/nn.4288 PMID: 27227366
  36. Bhowmick, S.; D’Mello, V.; Caruso, D.; Wallerstein, A.; Abdul-Muneer, P.M. Impairment of pericyte-endothelium crosstalk leads to blood-brain barrier dysfunction following traumatic brain injury. Exp. Neurol., 2019, 317, 260-270. doi: 10.1016/j.expneurol.2019.03.014 PMID: 30926390
  37. Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol., 2015, 7(1), a020412. doi: 10.1101/cshperspect.a020412 PMID: 25561720
  38. Stratman, A.N.; Malotte, K.M.; Mahan, R.D.; Davis, M.J.; Davis, G.E. Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood, 2009, 114(24), 5091-5101. doi: 10.1182/blood-2009-05-222364 PMID: 19822899
  39. Winkler, E.A.; Bell, R.D.; Zlokovic, B.V. Central nervous system pericytes in health and disease. Nat. Neurosci., 2011, 14(11), 1398-1405. doi: 10.1038/nn.2946 PMID: 22030551
  40. Harris, A.L. Connexin channel permeability to cytoplasmic molecules. Prog. Biophys. Mol. Biol., 2007, 94(1-2), 120-143. doi: 10.1016/j.pbiomolbio.2007.03.011 PMID: 17470375
  41. Yeh, H.; Ikezu, T. Transcriptional and epigenetic regulation of microglia in health and disease. Trends Mol. Med., 2019, 25(2), 96-111. doi: 10.1016/j.molmed.2018.11.004 PMID: 30578089
  42. Nayak, D.; Roth, T.L.; McGavern, D.B. Microglia development and function. Annu. Rev. Immunol., 2014, 32(1), 367-402. doi: 10.1146/annurev-immunol-032713-120240 PMID: 24471431
  43. Ginhoux, F.; Prinz, M. Origin of microglia: Current concepts and past controversies. Cold Spring Harb. Perspect. Biol., 2015, 7(8), a020537. doi: 10.1101/cshperspect.a020537 PMID: 26134003
  44. Dai, X.M.; Ryan, G.R.; Hapel, A.J.; Dominguez, M.G.; Russell, R.G.; Kapp, S.; Sylvestre, V.; Stanley, E.R. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood, 2002, 99(1), 111-120. doi: 10.1182/blood.V99.1.111 PMID: 11756160
  45. Sosna, J.; Philipp, S.; Albay, R., III; Reyes-Ruiz, J.M.; Baglietto-Vargas, D.; LaFerla, F.M.; Glabe, C.G. Early long-term administration of the CSF1R inhibitor PLX3397 ablates microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimer’s disease. Mol. Neurodegener., 2018, 13(1), 11. doi: 10.1186/s13024-018-0244-x PMID: 29490706
  46. Satoh, J.; Kino, Y.; Asahina, N.; Takitani, M.; Miyoshi, J.; Ishida, T.; Saito, Y. TMEM119 marks a subset of microglia in the human brain. Neuropathology, 2016, 36(1), 39-49. doi: 10.1111/neup.12235 PMID: 26250788
  47. Block, M.L.; Zecca, L.; Hong, J.S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci., 2007, 8(1), 57-69. doi: 10.1038/nrn2038 PMID: 17180163
  48. Gao, H.M.; Liu, B.; Zhang, W.; Hong, J.S. Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB J., 2003, 17(13), 1-22. doi: 10.1096/fj.03-0109fje PMID: 12897068
  49. West, P.K.; McCorkindale, A.N.; Guennewig, B.; Ashhurst, T.M.; Viengkhou, B.; Hayashida, E.; Jung, S.R.; Butovsky, O.; Campbell, I.L.; Hofer, M.J. The cytokines interleukin-6 and interferon-α induce distinct microglia phenotypes. J. Neuroinflammation, 2022, 19(1), 96. doi: 10.1186/s12974-022-02441-x PMID: 35429976
  50. Ye, L.; Huang, Y.; Zhao, L.; Li, Y.; Sun, L.; Zhou, Y.; Qian, G.; Zheng, J.C. IL-1β and TNF-α induce neurotoxicity through glutamate production: A potential role for neuronal glutaminase. J. Neurochem., 2013, 125(6), 897-908. doi: 10.1111/jnc.12263 PMID: 23578284
  51. Bernardino, L.; Xapelli, S.; Silva, A.P.; Jakobsen, B.; Poulsen, F.R.; Oliveira, C.R.; Vezzani, A.; Malva, J.O.; Zimmer, J. Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures. J. Neurosci., 2005, 25(29), 6734-6744. doi: 10.1523/JNEUROSCI.1510-05.2005 PMID: 16033883
  52. Masuch, A.; Shieh, C.H.; van Rooijen, N.; van Calker, D.; Biber, K. Mechanism of microglia neuroprotection: Involvement of P2X7, TNFα and valproic acid. Glia, 2016, 64(1), 76-89. doi: 10.1002/glia.22904 PMID: 26295445
  53. Norden, D.M.; Fenn, A.M.; Dugan, A.; Godbout, J.P. TGFβ produced by IL-10 redirected astrocytes attenuates microglial activation. Glia, 2014, 62(6), 881-895. doi: 10.1002/glia.22647 PMID: 24616125
  54. He, Y.; Gao, Y.; Zhang, Q.; Zhou, G.; Cao, F.; Yao, S. IL-4 switches microglia/macrophage M1/M2 polarization and alleviates neurological damage by modulating the JAK1/STAT6 pathway following ICH. Neuroscience, 2020, 437, 161-171. doi: 10.1016/j.neuroscience.2020.03.008 PMID: 32224230
  55. Gordon, S.; Martinez, F.O. Alternative activation of macrophages: Mechanism and functions. Immunity, 2010, 32(5), 593-604. doi: 10.1016/j.immuni.2010.05.007 PMID: 20510870
  56. Kobayashi, K.; Imagama, S.; Ohgomori, T.; Hirano, K.; Uchimura, K.; Sakamoto, K.; Hirakawa, A.; Takeuchi, H.; Suzumura, A.; Ishiguro, N.; Kadomatsu, K. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis., 2013, 4(3), e525. doi: 10.1038/cddis.2013.54 PMID: 23470532
  57. Sato, T.; Morita, I.; Sakaguchi, K.; Nakahama, K.I.; Smith, W.L.; Dewitt, D.L.; Murota, S.I. Involvement of prostaglandin endoperoxide H synthase-2 in osteoclast-like cell formation induced by interleukin-1β. J. Bone Miner. Res., 1996, 11(3), 392-400. doi: 10.1002/jbmr.5650110313 PMID: 8852950
  58. Zhang, Y.; Feng, S.; Nie, K.; Li, Y.; Gao, Y.; Gan, R.; Wang, L.; Li, B.; Sun, X.; Wang, L.; Zhang, Y. TREM2 modulates microglia phenotypes in the neuroinflammation of Parkinson’s disease. Biochem. Biophys. Res. Commun., 2018, 499(4), 797-802. doi: 10.1016/j.bbrc.2018.03.226 PMID: 29621548
  59. Edwards, D.N.; Bix, G.J. Roles of blood-brain barrier integrins and extracellular matrix in stroke. Am. J. Physiol. Cell Physiol., 2019, 316(2), C252-C263. doi: 10.1152/ajpcell.00151.2018 PMID: 30462535
  60. Di Girolamo, N.; Indoh, I.; Jackson, N.; Wakefield, D.; McNeil, H.P.; Yan, W.; Geczy, C.; Arm, J.P.; Tedla, N. Human mast cell-derived gelatinase B (matrix metalloproteinase-9) is regulated by inflammatory cytokines: Role in cell migration. J. Immunol., 2006, 177(4), 2638-2650. doi: 10.4049/jimmunol.177.4.2638 PMID: 16888026
  61. Li, S.Y.; Zhou, Y.L.; He, D.H.; Liu, W.; Fan, X.Z.; Wang, Q.; Pan, H.F.; Cheng, Y.X.; Liu, Y.Q. Centipeda minima extract exerts antineuroinflammatory effects via the inhibition of NF-κB signaling pathway. Phytomedicine, 2020, 67, 153164. doi: 10.1016/j.phymed.2019.153164 PMID: 31954258
  62. Haruwaka, K.; Ikegami, A.; Tachibana, Y.; Ohno, N.; Konishi, H.; Hashimoto, A.; Matsumoto, M.; Kato, D.; Ono, R.; Kiyama, H.; Moorhouse, A.J.; Nabekura, J.; Wake, H. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat. Commun., 2019, 10(1), 5816. doi: 10.1038/s41467-019-13812-z PMID: 31862977
  63. Sarlus, H.; Heneka, M.T. Microglia in Alzheimer’s disease. J. Clin. Invest., 2017, 127(9), 3240-3249. doi: 10.1172/JCI90606 PMID: 28862638
  64. Shaftel, S.S.; Kyrkanides, S.; Olschowka, J.A.; Miller, J.H.; Johnson, R.E.; O’Banion, M.K. Sustained hippocampal IL-1β overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J. Clin. Invest., 2007, 117(6), 1595-1604. doi: 10.1172/JCI31450 PMID: 17549256
  65. Xiang, X.; Werner, G.; Bohrmann, B.; Liesz, A.; Mazaheri, F.; Capell, A.; Feederle, R.; Knuesel, I.; Kleinberger, G.; Haass, C. TREM2 deficiency reduces the efficacy of immunotherapeutic amyloid clearance. EMBO Mol. Med., 2016, 8(9), 992-1004. doi: 10.15252/emmm.201606370 PMID: 27402340
  66. Martin, E.; Boucher, C.; Fontaine, B.; Delarasse, C. Distinct inflammatory phenotypes of microglia and monocyte-derived macrophages in Alzheimer’s disease models: effects of aging and amyloid pathology. Aging Cell, 2017, 16(1), 27-38. doi: 10.1111/acel.12522 PMID: 27723233
  67. Jolivel, V.; Bicker, F.; Binamé, F.; Ploen, R.; Keller, S.; Gollan, R.; Jurek, B.; Birkenstock, J.; Poisa-Beiro, L.; Bruttger, J.; Opitz, V.; Thal, S.C.; Waisman, A.; Bäuerle, T.; Schäfer, M.K.; Zipp, F.; Schmidt, M.H.H. Perivascular microglia promote blood vessel disintegration in the ischemic penumbra. Acta Neuropathol., 2015, 129(2), 279-295. doi: 10.1007/s00401-014-1372-1 PMID: 25500713
  68. Hong, S.; Beja-Glasser, V.F.; Nfonoyim, B.M.; Frouin, A.; Li, S.; Ramakrishnan, S.; Merry, K.M.; Shi, Q.; Rosenthal, A.; Barres, B.A.; Lemere, C.A.; Selkoe, D.J.; Stevens, B. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 2016, 352(6286), 712-716. doi: 10.1126/science.aad8373 PMID: 27033548
  69. Wang, D.; Chen, F.; Han, Z.; Yin, Z.; Ge, X.; Lei, P. Relationship between amyloid-β deposition and blood–brain barrier dysfunction in Alzheimer’s Disease. Front. Cell. Neurosci., 2021, 15, 695479. doi: 10.3389/fncel.2021.695479 PMID: 34349624
  70. Venegas, C.; Kumar, S.; Franklin, B.S.; Dierkes, T.; Brinkschulte, R.; Tejera, D.; Vieira-Saecker, A.; Schwartz, S.; Santarelli, F.; Kummer, M.P.; Griep, A.; Gelpi, E.; Beilharz, M.; Riedel, D.; Golenbock, D.T.; Geyer, M.; Walter, J.; Latz, E.; Heneka, M.T. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature, 2017, 552(7685), 355-361. doi: 10.1038/nature25158 PMID: 29293211
  71. Chen, A.Q.; Fang, Z.; Chen, X.L.; Yang, S.; Zhou, Y.F.; Mao, L.; Xia, Y.P.; Jin, H.J.; Li, Y.N.; You, M.F.; Wang, X.X.; Lei, H.; He, Q.W.; Hu, B. Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain–barrier disruption after ischemic stroke. Cell Death Dis., 2019, 10(7), 487. doi: 10.1038/s41419-019-1716-9 PMID: 31221990
  72. Wong, D.; Dorovini-Zis, K.; Vincent, S.R. Cytokines, nitric oxide, and cGMP modulate the permeability of an in vitro model of the human blood–brain barrier. Exp. Neurol., 2004, 190(2), 446-455. doi: 10.1016/j.expneurol.2004.08.008 PMID: 15530883
  73. Ruan, Z.; Zhang, D.; Huang, R.; Sun, W.; Hou, L.; Zhao, J.; Wang, Q. Microglial activation damages dopaminergic neurons through MMP-2/-9-mediated increase of blood-brain barrier permeability in a Parkinson’s Disease mouse model. Int. J. Mol. Sci., 2022, 23(5), 2793. doi: 10.3390/ijms23052793 PMID: 35269933
  74. Haeren, R.H.L.; Rijkers, K.; Schijns, O.E.M.G.; Dings, J.; Hoogland, G.; van Zandvoort, M.A.M.J.; Vink, H.; van Overbeeke, J.J. In vivo assessment of the human cerebral microcirculation and its glycocalyx: A technical report. J. Neurosci. Methods, 2018, 303, 114-125. doi: 10.1016/j.jneumeth.2018.03.009 PMID: 29578039
  75. Mulivor, A.W.; Lipowsky, H.H. Inflammation- and ischemia-induced shedding of venular glycocalyx. Am. J. Physiol. Heart Circ. Physiol., 2004, 286(5), H1672-H1680. doi: 10.1152/ajpheart.00832.2003 PMID: 14704229
  76. Cancel, L.M.; Ebong, E.E.; Mensah, S.; Hirschberg, C.; Tarbell, J.M. Endothelial glycocalyx, apoptosis and inflammation in an atherosclerotic mouse model. Atherosclerosis, 2016, 252, 136-146. doi: 10.1016/j.atherosclerosis.2016.07.930 PMID: 27529818
  77. Reinhold, A.K.; Rittner, H.L. Barrier function in the peripheral and central nervous system—a review. Pflugers Arch., 2017, 469(1), 123-134. doi: 10.1007/s00424-016-1920-8 PMID: 27957611
  78. Zhang, J.; He, H.; Qiao, Y.; Zhou, T.; He, H.; Yi, S.; Zhang, L.; Mo, L.; Li, Y.; Jiang, W.; You, Z. Priming of microglia with IFN -γ impairs adult hippocampal neurogenesis and leads to depression-like behaviors and cognitive defects. Glia, 2020, 68(12), 2674-2692. doi: 10.1002/glia.23878 PMID: 32652855
  79. Kawanokuchi, J.; Mizuno, T.; Takeuchi, H.; Kato, H.; Wang, J.; Mitsuma, N.; Suzumura, A. Production of interferon-γ by microglia. Mult. Scler., 2006, 12(5), 558-564. doi: 10.1177/1352458506070763 PMID: 17086900
  80. Harcourt, B.H.; Sanchez, A.; Offermann, M.K. Ebola virus selectively inhibits responses to interferons, but not to interleukin-1beta, in endothelial cells. J. Virol., 1999, 73(4), 3491-3496. doi: 10.1128/JVI.73.4.3491-3496.1999 PMID: 10074208
  81. Dietrich, J.B. The adhesion molecule ICAM-1 and its regulation in relation with the blood–brain barrier. J. Neuroimmunol., 2002, 128(1-2), 58-68. doi: 10.1016/S0165-5728(02)00114-5 PMID: 12098511
  82. Miklossy, J.; Doudet, D.D.; Schwab, C.; Yu, S.; McGeer, E.G.; McGeer, P.L. Role of ICAM-1 in persisting inflammation in Parkinson disease and MPTP monkeys. Exp. Neurol., 2006, 197(2), 275-283. doi: 10.1016/j.expneurol.2005.10.034 PMID: 16336966
  83. Werner, A.; Kloss, C.U.A.; Walter, J.; Kreutzberg, G.W.; Raivich, G. Intercellular adhesion molecule-1 (ICAM-1) in the mouse facial motor nucleus after axonal injury and during regeneration. J. Neurocytol., 1998, 27(4), 219-232. doi: 10.1023/A:1006928830251 PMID: 10640181
  84. Kim, J.H.; Na, H.J.; Kim, C.K.; Kim, J.Y.; Ha, K.S.; Lee, H.; Chung, H.T.; Kwon, H.J.; Kwon, Y.G.; Kim, Y.M. The non-provitamin A carotenoid, lutein, inhibits NF-κB-dependent gene expression through redox-based regulation of the phosphatidylinositol 3-kinase/PTEN/Akt and NF-κB-inducing kinase pathways: Role of H2O2 in NF-κB activation. Free Radic. Biol. Med., 2008, 45(6), 885-896. doi: 10.1016/j.freeradbiomed.2008.06.019 PMID: 18620044
  85. Schreibelt, G.; Kooij, G.; Reijerkerk, A.; Doorn, R.; Gringhuis, S.I.; Pol, S.; Weksler, B.B.; Romero, I.A.; Couraud, P.O.; Piontek, J.; Blasig, I.E.; Dijkstra, C.D.; Ronken, E.; Vries, H.E. Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J., 2007, 21(13), 3666-3676. doi: 10.1096/fj.07-8329com PMID: 17586731
  86. Schreibelt, G.; Musters, R.J.P.; Reijerkerk, A.; de Groot, L.R.; van der Pol, S.M.A.; Hendrikx, E.M.L.; Döpp, E.D.; Dijkstra, C.D.; Drukarch, B.; de Vries, H.E. Lipoic acid affects cellular migration into the central nervous system and stabilizes blood-brain barrier integrity. J. Immunol., 2006, 177(4), 2630-2637. doi: 10.4049/jimmunol.177.4.2630 PMID: 16888025
  87. Kahles, T.; Luedike, P.; Endres, M.; Galla, H.J.; Steinmetz, H.; Busse, R.; Neumann-Haefelin, T.; Brandes, R.P. NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke, 2007, 38(11), 3000-3006. doi: 10.1161/STROKEAHA.107.489765 PMID: 17916764
  88. Galasso, J.M.; Miller, M.J.; Cowell, R.M.; Harrison, J.K.; Warren, J.S.; Silverstein, F.S. Acute excitotoxic injury induces expression of monocyte chemoattractant protein-1 and its receptor, CCR2, in neonatal rat brain. Exp. Neurol., 2000, 165(2), 295-305. doi: 10.1006/exnr.2000.7466 PMID: 10993690
  89. Wang, X.; Yue, T.L.; Barone, F.C.; Feuerstein, G.Z. Monocyte chemoattractant protein-1 messenger RNA expression in rat ischemic cortex. Stroke, 1995, 26(4), 661-666. doi: 10.1161/01.STR.26.4.661 PMID: 7709415
  90. Ishizuka, K.; Kimura, T.; Igata-Yi, R.; Katsuragi, S.; Takamatsu, J.; Miyakawa, T. Identification of monocyte chemoattractant protein-1 in senile plaques and reactive microglia of Alzheimer’s disease. Psychiatry Clin. Neurosci., 1997, 51(3), 135-138. doi: 10.1111/j.1440-1819.1997.tb02375.x PMID: 9225377
  91. Jiang, Y.; Beller, D.I.; Frendl, G.; Graves, D.T. Monocyte chemoattractant protein-1 regulates adhesion molecule expression and cytokine production in human monocytes. J. Immunol., 1992, 148(8), 2423-2428. doi: 10.4049/jimmunol.148.8.2423 PMID: 1348518
  92. Stamatovic, S.M.; Shakui, P.; Keep, R.F.; Moore, B.B.; Kunkel, S.L.; Van Rooijen, N.; Andjelkovic, A.V. Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J. Cereb. Blood Flow Metab., 2005, 25(5), 593-606. doi: 10.1038/sj.jcbfm.9600055 PMID: 15689955
  93. Dimitrijevic, O.B.; Stamatovic, S.M.; Keep, R.F.; Andjelkovic, A.V. Effects of the chemokine CCL2 on blood-brain barrier permeability during ischemia-reperfusion injury. J. Cereb. Blood Flow Metab., 2006, 26(6), 797-810. doi: 10.1038/sj.jcbfm.9600229 PMID: 16192992
  94. Buffo, A.; Rolando, C.; Ceruti, S. Astrocytes in the damaged brain: Molecular and cellular insights into their reactive response and healing potential. Biochem. Pharmacol., 2010, 79(2), 77-89. doi: 10.1016/j.bcp.2009.09.014 PMID: 19765548
  95. Lambertsen, K.L.; Meldgaard, M.; Ladeby, R.; Finsen, B. A quantitative study of microglial-macrophage synthesis of tumor necrosis factor during acute and late focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab., 2005, 25(1), 119-135. doi: 10.1038/sj.jcbfm.9600014 PMID: 15678118
  96. Holm, T.H.; Draeby, D.; Owens, T. Microglia are required for astroglial toll-like receptor 4 response and for optimal TLR2 and TLR3 response. Glia, 2012, 60(4), 630-638. doi: 10.1002/glia.22296 PMID: 22271465
  97. Kirkley, K.S.; Popichak, K.A.; Afzali, M.F.; Legare, M.E.; Tjalkens, R.B. Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J. Neuroinflammation, 2017, 14(1), 99. doi: 10.1186/s12974-017-0871-0 PMID: 28476157
  98. Ni, J.; Zhao, J.; Zhang, X.; Reinheckel, T.; Turk, V.; Nakanishi, H. Cathepsin H deficiency decreases hypoxia-ischemia-induced hippocampal atrophy in neonatal mice through attenuated TLR3/IFN-β signaling. J. Neuroinflammation, 2021, 18(1), 176. doi: 10.1186/s12974-021-02227-7 PMID: 34376208
  99. VanRyzin, J.W.; Marquardt, A.E.; Argue, K.J.; Vecchiarelli, H.A.; Ashton, S.E.; Arambula, S.E.; Hill, M.N.; McCarthy, M.M. Microglial phagocytosis of newborn cells is induced by endocannabinoids and sculpts sex differences in juvenile rat social play. Neuron, 2019, 102(2), 435-449.e6. doi: 10.1016/j.neuron.2019.02.006 PMID: 30827729
  100. Michinaga, S.; Koyama, Y. Dual roles of astrocyte-derived factors in regulation of blood-brain barrier function after brain damage. Int. J. Mol. Sci., 2019, 20(3), 571. doi: 10.3390/ijms20030571 PMID: 30699952
  101. Jo, M.; Kim, J.H.; Song, G.J.; Seo, M.; Hwang, E.M.; Suk, K. Astrocytic Orosomucoid-2 modulates microglial activation and neuroinflammation. J. Neurosci., 2017, 37(11), 2878-2894. doi: 10.1523/JNEUROSCI.2534-16.2017 PMID: 28193696
  102. Jang, E.; Lee, S.; Kim, J.H.; Kim, J.H.; Seo, J.W.; Lee, W.H.; Mori, K.; Nakao, K.; Suk, K. Secreted protein lipocalin-2 promotes microglial M1 polarization. FASEB J., 2013, 27(3), 1176-1190. doi: 10.1096/fj.12-222257 PMID: 23207546
  103. Bi, F.; Huang, C.; Tong, J.; Qiu, G.; Huang, B.; Wu, Q.; Li, F.; Xu, Z.; Bowser, R.; Xia, X.G.; Zhou, H. Reactive astrocytes secrete lcn2 to promote neuron death. Proc. Natl. Acad. Sci. USA, 2013, 110(10), 4069-4074. doi: 10.1073/pnas.1218497110 PMID: 23431168
  104. Rocha, S.M.; Cristovão, A.C.; Campos, F.L.; Fonseca, C.P.; Baltazar, G. Astrocyte-derived GDNF is a potent inhibitor of microglial activation. Neurobiol. Dis., 2012, 47(3), 407-415. doi: 10.1016/j.nbd.2012.04.014 PMID: 22579772
  105. Tseng, K.Y.; Wu, J.S.; Chen, Y.H.; Airavaara, M.; Cheng, C.Y.; Ma, K.H. Modulating microglia/macrophage activation by CDNF promotes transplantation of fetal ventral mesencephalic graft survival and function in a hemiparkinsonian rat model. Biomedicines, 2022, 10(6), 1446. doi: 10.3390/biomedicines10061446 PMID: 35740467
  106. Ding, H.; Chen, J.; Su, M.; Lin, Z.; Zhan, H.; Yang, F.; Li, W.; Xie, J.; Huang, Y.; Liu, X.; Liu, B.; Zhou, X. BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J. Neuroinflammation, 2020, 17(1), 19. doi: 10.1186/s12974-020-1704-0 PMID: 31931832
  107. Tanuma, N.; Sakuma, H.; Sasaki, A.; Matsumoto, Y. Chemokine expression by astrocytes plays a role in microglia/macrophage activation and subsequent neurodegeneration in secondary progressive multiple sclerosis. Acta Neuropathol., 2006, 112(2), 195-204. doi: 10.1007/s00401-006-0083-7 PMID: 16733654
  108. Docagne, F.; Nicole, O.; Gabriel, C.; Fernández-Monreal, M.; Lesné, S.; Ali, C.; Plawinski, L.; Carmeliet, P.; MacKenzie, E.T.; Buisson, A.; Vivien, D. Smad3-dependent induction of plasminogen activator inhibitor-1 in astrocytes mediates neuroprotective activity of transforming growth factor-beta 1 against NMDA-induced necrosis. Mol. Cell. Neurosci., 2002, 21(4), 634-644. doi: 10.1006/mcne.2002.1206 PMID: 12504596
  109. Yang, L.; Niu, F.; Yao, H.; Liao, K.; Chen, X.; Kook, Y.; Ma, R.; Hu, G.; Buch, S. Exosomal miR-9 released from HIV Tat stimulated astrocytes mediates microglial migration. J. Neuroimmune Pharmacol., 2018, 13(3), 330-344. doi: 10.1007/s11481-018-9779-4 PMID: 29497921
  110. Litvinchuk, A.; Wan, Y.W.; Swartzlander, D.B.; Chen, F.; Cole, A.; Propson, N.E.; Wang, Q.; Zhang, B.; Liu, Z.; Zheng, H. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer’s Disease. Neuron, 2018, 100(6), 1337-1353.e5. doi: 10.1016/j.neuron.2018.10.031 PMID: 30415998
  111. Matsumoto, J.; Takata, F.; Machida, T.; Takahashi, H.; Soejima, Y.; Funakoshi, M.; Futagami, K.; Yamauchi, A.; Dohgu, S.; Kataoka, Y. Tumor necrosis factor-α-stimulated brain pericytes possess a unique cytokine and chemokine release profile and enhance microglial activation. Neurosci. Lett., 2014, 578, 133-138. doi: 10.1016/j.neulet.2014.06.052 PMID: 24993300
  112. Dohgu, S.; Takata, F.; Matsumoto, J.; Kimura, I.; Yamauchi, A.; Kataoka, Y. Monomeric α-synuclein induces blood–brain barrier dysfunction through activated brain pericytes releasing inflammatory mediators in vitro. Microvasc. Res., 2019, 124, 61-66. doi: 10.1016/j.mvr.2019.03.005 PMID: 30885616
  113. Matsumoto, J.; Dohgu, S.; Takata, F.; Machida, T. Bölükbaşi Hatip, F.F.; Hatip-Al-Khatib, I.; Yamauchi, A.; Kataoka, Y. TNF-α-sensitive brain pericytes activate microglia by releasing IL-6 through cooperation between IκB-NFκB and JAK-STAT3 pathways. Brain Res., 2018, 1692, 34-44. doi: 10.1016/j.brainres.2018.04.023 PMID: 29702085
  114. Rustenhoven, J.; Aalderink, M.; Scotter, E.L.; Oldfield, R.L.; Bergin, P.S.; Mee, E.W.; Graham, E.S.; Faull, R.L.M.; Curtis, M.A.; Park, T.I.H.; Dragunow, M. TGF-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function. J. Neuroinflammation, 2016, 13(1), 37. doi: 10.1186/s12974-016-0503-0 PMID: 26867675
  115. Perez, F.; Ruera, C.N.; Miculan, E.; Carasi, P.; Dubois-Camacho, K.; Garbi, L.; Guzman, L.; Hermoso, M.A.; Chirdo, F.G. IL-33 alarmin and its active proinflammatory fragments are released in small intestine in celiac disease. Front. Immunol., 2020, 11, 581445. doi: 10.3389/fimmu.2020.581445 PMID: 33133101
  116. Fu, A.K.Y.; Hung, K.W.; Yuen, M.Y.F.; Zhou, X.; Mak, D.S.Y.; Chan, I.C.W.; Cheung, T.H.; Zhang, B.; Fu, W.Y.; Liew, F.Y.; Ip, N.Y. IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline. Proc. Natl. Acad. Sci. USA, 2016, 113(19), E2705-E2713. doi: 10.1073/pnas.1604032113 PMID: 27091974
  117. Febinger, H.Y.; Thomasy, H.E.; Pavlova, M.N.; Ringgold, K.M.; Barf, P.R.; George, A.M.; Grillo, J.N.; Bachstetter, A.D.; Garcia, J.A.; Cardona, A.E.; Opp, M.R.; Gemma, C. Time-dependent effects of CX3CR1 in a mouse model of mild traumatic brain injury. J. Neuroinflammation, 2015, 12(1), 154. doi: 10.1186/s12974-015-0386-5 PMID: 26329692
  118. Lee, C.Y.D.; Landreth, G.E. The role of microglia in amyloid clearance from the AD brain. J. Neural Transm. (Vienna), 2010, 117(8), 949-960. doi: 10.1007/s00702-010-0433-4 PMID: 20552234
  119. Prinz, M.; Priller, J. Tickets to the brain: Role of CCR2 and CX3CR1 in myeloid cell entry in the CNS. J. Neuroimmunol., 2010, 224(1-2), 80-84. doi: 10.1016/j.jneuroim.2010.05.015 PMID: 20554025
  120. Lauro, C.; Catalano, M.; Trettel, F.; Limatola, C. Fractalkine in the nervous system: Neuroprotective or neurotoxic molecule? Ann. N. Y. Acad. Sci., 2015, 1351(1), 141-148. doi: 10.1111/nyas.12805 PMID: 26084002
  121. Tai, Y.F.; Pavese, N.; Gerhard, A.; Tabrizi, S.J.; Barker, R.A.; Brooks, D.J.; Piccini, P. Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain, 2007, 130(7), 1759-1766. doi: 10.1093/brain/awm044 PMID: 17400599
  122. Miller, J.P.; Holcomb, J.; Al-Ramahi, I.; de Haro, M.; Gafni, J.; Zhang, N.; Kim, E.; Sanhueza, M.; Torcassi, C.; Kwak, S.; Botas, J.; Hughes, R.E.; Ellerby, L.M. Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington’s disease. Neuron, 2010, 67(2), 199-212. doi: 10.1016/j.neuron.2010.06.021 PMID: 20670829
  123. Kim, Y.S.; Kim, S.S.; Cho, J.J.; Choi, D.H.; Hwang, O.; Shin, D.H.; Chun, H.S.; Beal, M.F.; Joh, T.H. Matrix metalloproteinase-3: A novel signaling proteinase from apoptotic neuronal cells that activates microglia. J. Neurosci., 2005, 25(14), 3701-3711. doi: 10.1523/JNEUROSCI.4346-04.2005 PMID: 15814801
  124. Ryu, J.K.; Cho, T.; Choi, H.B.; Wang, Y.T.; McLarnon, J.G. Microglial VEGF receptor response is an integral chemotactic component in Alzheimer’s disease pathology. J. Neurosci., 2009, 29(1), 3-13. doi: 10.1523/JNEUROSCI.2888-08.2009 PMID: 19129379
  125. Issa, R.; Krupinski, J.; Bujny, T.; Kumar, S.; Kaluza, J.; Kumar, P. Vascular endothelial growth factor and its receptor, KDR, in human brain tissue after ischemic stroke. Lab. Invest., 1999, 79(4), 417-425. PMID: 10211994
  126. Schoknecht, K.; Shalev, H. Blood-brain barrier dysfunction in brain diseases: Clinical experience. Epilepsia, 2012, 53(Suppl. 6), 7-13. doi: 10.1111/j.1528-1167.2012.03697.x PMID: 23134490
  127. Xu, Z.; Han, K.; Chen, J.; Wang, C.; Dong, Y.; Yu, M.; Bai, R.; Huang, C.; Hou, L. Vascular endothelial growth factor is neuroprotective against ischemic brain injury by inhibiting scavenger receptor A expression on microglia. J. Neurochem., 2017, 142(5), 700-709. doi: 10.1111/jnc.14108 PMID: 28632969
  128. Xu, L.; He, D.; Bai, Y. Microglia-mediated inflammation and neurodegenerative disease. Mol. Neurobiol., 2016, 53(10), 6709-6715. doi: 10.1007/s12035-015-9593-4 PMID: 26659872

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024