Antioxidants, Hormetic Nutrition, and Autism


Cite item

Full Text

Abstract

Autism spectrum disorder (ASD) includes a heterogeneous group of complex neurodevelopmental disorders characterized by atypical behaviors with two core pathological manifestations: deficits in social interaction/communication and repetitive behaviors, which are associated with disturbed redox homeostasis. Modulation of cellular resilience mechanisms induced by low levels of stressors represents a novel approach for the development of therapeutic strategies, and in this context, neuroprotective effects of a wide range of polyphenol compounds have been demonstrated in several in vitro and in vivo studies and thoroughly reviewed. Mushrooms have been used in traditional medicine for many years and have been associated with a long list of therapeutic properties, including antitumor, immunomodulatory, antioxidant, antiviral, antibacterial, and hepatoprotective effects. Our recent studies have strikingly indicated the presence of polyphenols in nutritional mushrooms and demonstrated their protective effects in different models of neurodegenerative disorders in humans and rats. Although their therapeutic effects are exerted through multiple mechanisms, increasing attention is focusing on their capacity to induce endogenous defense systems by modulating cellular signaling processes such as nuclear factor erythroid 2 related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB) pathways. Here we discuss the protective role of hormesis and its modulation by hormetic nutrients in ASD.

About the authors

Sergio Modafferi

Department of Biomedical and Biotechnological Sciences, University of Catania

Author for correspondence.
Email: info@benthamscience.net

Gabriella Lupo

Department of Biomedical and Biotechnological Sciences, University of Catania

Author for correspondence.
Email: info@benthamscience.net

Mario Tomasello

Department of Biomedical and Biotechnological Sciences, University of Catania

Email: info@benthamscience.net

Francesco Rampulla

Department of Biomedical and Biotechnological Sciences, University of Catania

Email: info@benthamscience.net

Marialaura Ontario

Department of Biomedical and Biotechnological Sciences, University of Catania

Email: info@benthamscience.net

Maria Scuto

Department of Biomedical and Biotechnological Sciences, University of Catania

Email: info@benthamscience.net

Angela Salinaro

Department of Biomedical and Biotechnological Sciences, University of Catania

Email: info@benthamscience.net

Antonio Arcidiacono

Department of Biomedical and Biotechnological Sciences, University of Catania

Author for correspondence.
Email: info@benthamscience.net

Carmelina Anfuso

Department of Biomedical and Biotechnological Sciences, University of Catania

Email: info@benthamscience.net

Maria Legmouz

Department of Biologie, Laboratory of Biologie and Health, Faculty of Science, Ibn Tofail University

Email: info@benthamscience.net

Fatima-Zahra Azzaoui

Department of Biologie, Laboratory of Biologie and Health, Faculty of Science, Ibn Tofail University

Email: info@benthamscience.net

Agostino Palmeri

Department of Biomedical and Biotechnological Sciences, University of Catania

Email: info@benthamscience.net

Sestina Spano

Department of Biomedical and Biotechnological Sciences, University of Catania

Email: info@benthamscience.net

Francesca Biamonte

Department of Biomedical and Biotechnological Sciences, University of Catania

Email: info@benthamscience.net

Gaetano Cammilleri

Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi

Email: info@benthamscience.net

Tilman Fritsch

, NAM-Institute

Email: info@benthamscience.net

Alena Sidenkova

Department of Psychiatry, Ural State Medical University

Email: info@benthamscience.net

Edward Calabrese

Department of Environmental Health Sciences, University of Massachusetts

Email: info@benthamscience.net

Uwe Wenzel

Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen

Email: info@benthamscience.net

Vittorio Calabrese

Department of Biomedical and Biotechnological Sciences, University of Catania

Email: info@benthamscience.net

References

  1. Bonomini, F.; Siniscalco, D.; Schultz, S.; Carnovale, C.; Barthélémy, C.; Fazzi, E.M. Editorial: Antioxidants in autism spectrum disorders. Front. Psychiatry, 2022, 13(13), 889865. doi: 10.3389/fpsyt.2022.889865 PMID: 35463522
  2. Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. J. AOAC Int., 2019, 102(5), 1397-1400. doi: 10.5740/jaoacint.19-0133 PMID: 31200785
  3. Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary polyphenols and their role in oxidative stress-induced human diseases: insights into protective effects, antioxidant potentials and mechanism(s) of action. Front. Pharmacol., 2022, 13(13), 806470. doi: 10.3389/fphar.2022.806470 PMID: 35237163
  4. Chugh, R.M.; Mittal, P.; Mp, N.; Arora, T.; Bhattacharya, T.; Chopra, H.; Cavalu, S.; Gautam, R.K. Fungal mushrooms: A natural compound with therapeutic applications. Front. Pharmacol., 2022, 13(13), 925387. doi: 10.3389/fphar.2022.925387 PMID: 35910346
  5. D’Amico, R.; Salinaro, A.T.; Fusco, R.; Cordaro, M.; Impellizzeri, D.; Scuto, M.; Ontario, M.L.; Lo Dico, G.; Cuzzocrea, S.; Di Paola, R.; Siracusa, R.; Calabrese, V. Hericium erinaceus and Coriolus versicolor modulate molecular and biochemical changes after traumatic brain injury. Antioxidants, 2021, 10(6), 898. doi: 10.3390/antiox10060898 PMID: 34199629
  6. Scuto, M.; Di Mauro, P.; Ontario, M.L.; Amato, C.; Modafferi, S.; Ciavardelli, D.; Salinaro, A.T.; Maiolino, L.; Calabrese, V. Nutritional mushroom treatment in Meniere’s disease with Coriolus versicolor: A rationale for therapeutic intervention in neuroinflammation and antineurodegeneration. Int. J. Mol. Sci., 2019, 21(1), 284. doi: 10.3390/ijms21010284 PMID: 31906226
  7. Rose, S.; Niyazov, D.M.; Rossignol, D.A.; Goldenthal, M.; Kahler, S.G.; Frye, R.E. Clinical and molecular characteristics of mitochondrial dysfunction in autism spectrum disorder. Mol. Diagn. Ther., 2018, 22(5), 571-593. doi: 10.1007/s40291-018-0352-x PMID: 30039193
  8. Nabi, S.U.; Rehman, M.U.; Arafah, A.; Taifa, S.; Khan, I.S.; Khan, A.; Rashid, S.; Jan, F.; Wani, H.A.; Ahmad, S.F. Treatment of autism spectrum disorders by mitochondrial-targeted drug: Future of neurological diseases therapeutics. Curr. Neuropharmacol., 2023, 21(5), 1042-1064. doi: 10.2174/1570159X21666221121095618 PMID: 36411568
  9. Friedman, S.D.; Shaw, D.W.; Artru, A.A.; Richards, T.L.; Gardner, J.; Dawson, G.; Posse, S.; Dager, S.R. Regional brain chemical alterations in young children with autism spectrum disorder. Neurology, 2003, 60(1), 100-107. doi: 10.1212/WNL.60.1.100 PMID: 12525726
  10. Naviaux, R.K. Antipurinergic therapy for autism—An in-depth review. Mitochondrion, 2018, 43, 1-15. doi: 10.1016/j.mito.2017.12.007 PMID: 29253638
  11. Minshew, N.J.; Goldstein, G.; Dombrowski, S.M.; Panchalingam, K.; Pettegrew, J.W. A preliminary 31P MRS study of autism: Evidence for undersynthesis and increased degradation of brain membranes. Biol. Psychiatry, 1993, 33(11-12), 762-773. doi: 10.1016/0006-3223(93)90017-8 PMID: 8373914
  12. Chugani, D.C.; Sundram, B.S.; Behen, M.; Lee, M.L.; Moore, G.J. Evidence of altered energy metabolism in autistic children. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1999, 23(4), 635-641. doi: 10.1016/S0278-5846(99)00022-6 PMID: 10390722
  13. Filipek, P.A.; Juranek, J.; Smith, M.; Mays, L.Z.; Ramos, E.R.; Bocian, M.; Masser-Frye, D.; Laulhere, T.M.; Modahl, C.; Spence, M.A.; Gargus, J.J. Mitochondrial dysfunction in autistic patients with 15q inverted duplication. Ann. Neurol., 2003, 53(6), 801-804. doi: 10.1002/ana.10596 PMID: 12783428
  14. Rossignol, D.A.; Frye, R.E. Mitochondrial dysfunction in autism spectrum disorders: A systematic review and meta-analysis. Mol. Psychiatry, 2012, 17(3), 290-314. doi: 10.1038/mp.2010.136 PMID: 21263444
  15. Chauhan, A.; Audhya, T.; Chauhan, V. Brain region-specific glutathione redox imbalance in autism. Neurochem. Res., 2012, 37(8), 1681-1689. doi: 10.1007/s11064-012-0775-4 PMID: 22528835
  16. Pacheva, I.; Ivanov, I. Targeted biomedical treatment for autism Spectrum disorders. Curr. Pharm. Des., 2020, 25(41), 4430-4453. doi: 10.2174/1381612825666191205091312 PMID: 31801452
  17. Napoli, E.; Song, G.; Panoutsopoulos, A.; Riyadh, M.A.; Kaushik, G.; Halmai, J.; Levenson, R.; Zarbalis, K.S.; Giulivi, C. Beyond autophagy: A novel role for autism-linked Wdfy3 in brain mitophagy. Sci. Rep., 2018, 8(1), 11348. doi: 10.1038/s41598-018-29421-7 PMID: 30054502
  18. Crespi, B.; Read, S.; Ly, A.; Hurd, P. AMBRA1, autophagy, and the extreme male brain theory of autism. Autism Res. Treat., 2019, 2019, 1-6. doi: 10.1155/2019/1968580 PMID: 31687209
  19. Vecchia, E.D.; Mortimer, N.; Palladino, V.S.; Kittel-Schneider, S.; Lesch, K.P.; Reif, A.; Schenck, A.; Norton, W.H.J. Cross-species models of attention-deficit/hyperactivity disorder and autism spectrum disorder. Psychiatr. Genet., 2019, 29(1), 1-17. doi: 10.1097/YPG.0000000000000211 PMID: 30376466
  20. Mitjans, M.; Begemann, M.; Ju, A.; Dere, E.; Wüstefeld, L.; Hofer, S.; Hassouna, I.; Balkenhol, J.; Oliveira, B.; van der Auwera, S.; Tammer, R.; Hammerschmidt, K.; Völzke, H.; Homuth, G.; Cecconi, F.; Chowdhury, K.; Grabe, H.; Frahm, J.; Boretius, S.; Dandekar, T.; Ehrenreich, H. Sexual dimorphism of AMBRA1-related autistic features in human and mouse. Transl. Psychiatry, 2017, 7(10), e1247. doi: 10.1038/tp.2017.213 PMID: 28994820
  21. Glessner, J.T.; Wang, K.; Cai, G.; Korvatska, O.; Kim, C.E.; Wood, S.; Zhang, H.; Estes, A.; Brune, C.W.; Bradfield, J.P.; Imielinski, M.; Frackelton, E.C.; Reichert, J.; Crawford, E.L.; Munson, J.; Sleiman, P.M.A.; Chiavacci, R.; Annaiah, K.; Thomas, K.; Hou, C.; Glaberson, W.; Flory, J.; Otieno, F.; Garris, M.; Soorya, L.; Klei, L.; Piven, J.; Meyer, K.J.; Anagnostou, E.; Sakurai, T.; Game, R.M.; Rudd, D.S.; Zurawiecki, D.; McDougle, C.J.; Davis, L.K.; Miller, J.; Posey, D.J.; Michaels, S.; Kolevzon, A.; Silverman, J.M.; Bernier, R.; Levy, S.E.; Schultz, R.T.; Dawson, G.; Owley, T.; McMahon, W.M.; Wassink, T.H.; Sweeney, J.A.; Nurnberger, J.I.; Coon, H.; Sutcliffe, J.S.; Minshew, N.J.; Grant, S.F.A.; Bucan, M.; Cook, E.H.; Buxbaum, J.D.; Devlin, B.; Schellenberg, G.D.; Hakonarson, H. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, 2009, 459(7246), 569-573. doi: 10.1038/nature07953 PMID: 19404257
  22. Ramoz, N.; Reichert, J.G.; Smith, C.J.; Silverman, J.M.; Bespalova, I.N.; Davis, K.L.; Buxbaum, J.D. Linkage and association of the mitochondrial aspartate/glutamate carrier SLC25A12 gene with autism. Am. J. Psychiatry, 2004, 161(4), 662-669. doi: 10.1176/appi.ajp.161.4.662 PMID: 15056512
  23. Koch, S.V.; Larsen, J.T.; Mouridsen, S.E.; Bentz, M.; Petersen, L.; Bulik, C.; Mortensen, P.B.; Plessen, K.J. Autism spectrum disorder in individuals with anorexia nervosa and in their first- and second-degree relatives: Danish nationwide register-based cohort-study. Br. J. Psychiatry, 2015, 206(5), 401-407. doi: 10.1192/bjp.bp.114.153221 PMID: 25657359
  24. Modabbernia, A.; Velthorst, E.; Reichenberg, A. Environmental risk factors for autism: An evidence-based review of systematic reviews and meta-analyses. Mol. Autism, 2017, 8(1), 13. doi: 10.1186/s13229-017-0121-4 PMID: 28331572
  25. Frye, R.E. Metabolic and mitochondrial disorders associated with epilepsy in children with autism spectrum disorder. Epilepsy Behav., 2015, 47, 147-157. doi: 10.1016/j.yebeh.2014.08.134 PMID: 25440829
  26. Guevara-Campos, J.; González-Guevara, L.; Cauli, O. Autism and intellectual disability associated with mitochondrial disease and hyperlactacidemia. Int. J. Mol. Sci., 2015, 16(2), 3870-3884. doi: 10.3390/ijms16023870 PMID: 25679448
  27. Koenig, M.K. Presentation and diagnosis of mitochondrial disorders in children. Pediatr. Neurol., 2008, 38(5), 305-313. doi: 10.1016/j.pediatrneurol.2007.12.001 PMID: 18410845
  28. Iossifov, I.; O’Roak, B.J.; Sanders, S.J.; Ronemus, M.; Krumm, N.; Levy, D.; Stessman, H.A.; Witherspoon, K.T.; Vives, L.; Patterson, K.E.; Smith, J.D.; Paeper, B.; Nickerson, D.A.; Dea, J.; Dong, S.; Gonzalez, L.E.; Mandell, J.D.; Mane, S.M.; Murtha, M.T.; Sullivan, C.A.; Walker, M.F.; Waqar, Z.; Wei, L.; Willsey, A.J.; Yamrom, B.; Lee, Y.; Grabowska, E.; Dalkic, E.; Wang, Z.; Marks, S.; Andrews, P.; Leotta, A.; Kendall, J.; Hakker, I.; Rosenbaum, J.; Ma, B.; Rodgers, L.; Troge, J.; Narzisi, G.; Yoon, S.; Schatz, M.C.; Ye, K.; McCombie, W.R.; Shendure, J.; Eichler, E.E.; State, M.W.; Wigler, M. The contribution of de novo coding mutations to autism spectrum disorder. Nature, 2014, 515(7526), 216-221. doi: 10.1038/nature13908 PMID: 25363768
  29. Anderson, M.P.; Hooker, B.S.; Herbert, M.R. Bridging from cells to cognition in autism pathophysiology: Biological pathways to defective brain function and plasticity. Am. J. Biochem. Biotechnol., 2008, 4(2), 167-176. doi: 10.3844/ajbbsp.2008.167.176
  30. Wallace, D.C. Mitochondrial diseases in man and mouse. Science, 1999, 283(5407), 1482-1488. doi: 10.1126/science.283.5407.1482 PMID: 10066162
  31. Adams, J.B.; Bhargava, A.; Coleman, D.M.; Frye, R.E.; Rossignol, D.A. Ratings of the effectiveness of nutraceuticals for autism spectrum disorders: Results of a national survey. J. Pers. Med., 2021, 11(9), 878. doi: 10.3390/jpm11090878 PMID: 34575655
  32. Mattson, M.P.; Liu, D. Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders. Neuromolecular Med., 2002, 2(2), 215-232. doi: 10.1385/NMM:2:2:215 PMID: 12428812
  33. Poling, J.S.; Frye, R.E.; Shoffner, J.; Zimmerman, A.W. Developmental regression and mitochondrial dysfunction in a child with autism. J. Child Neurol., 2006, 21(2), 170-172. doi: 10.1177/08830738060210021401 PMID: 16566887
  34. Cypser, J.R.; Johnson, T.E. Multiple stressors in Caenorhabditis elegans induce stress hormesis and extended longevity. J. Gerontol. A Biol. Sci. Med. Sci., 2002, 57(3), B109-B114. doi: 10.1093/gerona/57.3.B109 PMID: 11867647
  35. Krafczyk, N.; Klotz, L.O. FOXO transcription factors in antioxidant defense. IUBMB Life, 2022, 74(1), 53-61. doi: 10.1002/iub.2542 PMID: 34423888
  36. Hartwig, K.; Heidler, T.; Moch, J.; Daniel, H.; Wenzel, U. Feeding a ROS-generator to Caenorhabditis elegans leads to increased expression of small heat shock protein HSP-16.2 and hormesis. Genes Nutr., 2009, 4(1), 59-67. doi: 10.1007/s12263-009-0113-x PMID: 19252938
  37. Ristow, M.; Schmeisser, S. Extending life span by increasing oxidative stress. Free Radic. Biol. Med., 2011, 51(2), 327-336. doi: 10.1016/j.freeradbiomed.2011.05.010 PMID: 21619928
  38. Schulz, T.J.; Zarse, K.; Voigt, A.; Urban, N.; Birringer, M.; Ristow, M. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab., 2007, 6(4), 280-293. doi: 10.1016/j.cmet.2007.08.011 PMID: 17908557
  39. Lee, G.D.; Wilson, M.A.; Zhu, M.; Wolkow, C.A.; de Cabo, R.; Ingram, D.K.; Zou, S. Dietary deprivation extends lifespan in Caenorhabditis elegans. Aging Cell, 2006, 5(6), 515-524. doi: 10.1111/j.1474-9726.2006.00241.x PMID: 17096674
  40. Wang, Y.; Tissenbaum, H.A. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech. Ageing Dev., 2006, 127(1), 48-56. doi: 10.1016/j.mad.2005.09.005 PMID: 16280150
  41. Govindan, S.; Amirthalingam, M.; Duraisamy, K.; Govindhan, T.; Sundararaj, N.; Palanisamy, S. Phytochemicals-induced hormesis protects Caenorhabditis elegans against α-synuclein protein aggregation and stress through modulating HSF-1 and SKN-1/Nrf2 signaling pathways. Biomed. Pharmacother., 2018, 102, 812-822. doi: 10.1016/j.biopha.2018.03.128 PMID: 29605769
  42. Atkuri, K.R.; Cowan, T.M.; Kwan, T.; Ng, A.; Herzenberg, L.A.; Herzenberg, L.A.; Enns, G.M. Inherited disorders affecting mitochondrial function are associated with glutathione deficiency and hypocitrullinemia. Proc. Natl. Acad. Sci. USA, 2009, 106(10), 3941-3945. doi: 10.1073/pnas.0813409106 PMID: 19223582
  43. Refai, O.; Aggarwal, S.; Cheng, M.H.; Gichi, Z.; Salvino, J.M.; Bahar, I.; Blakely, R.D.; Mortensen, O.V. Allosteric modulator KM822 attenuates behavioral actions of amphetamine in Caenorhabditis elegans through Interactions with the Dopamine Transporter DAT-1. Mol. Pharmacol., 2022, 101(3), 123-131. doi: 10.1124/molpharm.121.000400 PMID: 34906999
  44. Rawsthorne, H.; Calahorro, F.; Holden-Dye, L.; O’ Connor, V.; Dillon, J. Investigating autism associated genes in C. elegans reveals candidates with a role in social behaviour. PLoS One, 2021, 16(5), e0243121. doi: 10.1371/journal.pone.0243121 PMID: 34043629
  45. Buddell, T.; Quinn, C.C. An autism-associated calcium channel variant causes defects in neuronal polarity in the ALM neuron of C. elegans. MicroPubl Biol.2021. doi: 10.17912/micropub.biology.000378
  46. Rawsthorne, H.; Calahorro, F.; Feist, E.; Holden-Dye, L.; O’Connor, V.; Dillon, J. Neuroligin dependence of social behaviour in Caenorhabditis elegans provides a model to investigate an autism-associated gene. Hum. Mol. Genet., 2021, 29(21), 3546-3553. doi: 10.1093/hmg/ddaa232 PMID: 33206170
  47. Aguirre-Chen, C.; Stec, N.; Ramos, O.M.; Kim, N.; Kramer, M.; McCarthy, S.; Gillis, J.; McCombie, W.R.; Hammell, C.M. A Caenorhabditis elegans model for integrating the functions of neuropsychiatric risk genes identifies components required for normal dendritic morphology. G3 (Bethesda), 2020, 10(5), 1617-1628. doi: 10.1534/g3.119.400925 PMID: 32132169
  48. McDiarmid, T.A.; Belmadani, M.; Liang, J.; Meili, F.; Mathews, E.A.; Mullen, G.P.; Hendi, A.; Wong, W.R.; Rand, J.B.; Mizumoto, K.; Haas, K.; Pavlidis, P.; Rankin, C.H. Systematic phenomics analysis of autism-associated genes reveals parallel networks underlying reversible impairments in habituation. Proc. Natl. Acad. Sci. USA, 2020, 117(1), 656-667. doi: 10.1073/pnas.1912049116 PMID: 31754030
  49. Hart, M.P. Stress-induced neuron remodeling reveals differential interplay between neurexin and environmental factors in Caenorhabditis elegans. Genetics, 2019, 213(4), 1415-1430. doi: 10.1534/genetics.119.302415 PMID: 31558583
  50. Wong, W.R.; Brugman, K.I.; Maher, S.; Oh, J.Y.; Howe, K.; Kato, M.; Sternberg, P.W. Autism-associated missense genetic variants impact locomotion and neurodevelopment in Caenorhabditis elegans. Hum. Mol. Genet., 2019, 28(13), 2271-2281. doi: 10.1093/hmg/ddz051 PMID: 31220273
  51. Tong, X.J.; López-Soto, E.J.; Li, L.; Liu, H.; Nedelcu, D.; Lipscombe, D.; Hu, Z.; Kaplan, J.M. Retrograde synaptic inhibition is mediated by α-Neurexin binding to the α2δ subunits of N-type calcium channels. Neuron, 2017, 95(2), 326-340.e5. doi: 10.1016/j.neuron.2017.06.018 PMID: 28669545
  52. Jia, F.; Cui, M.; Than, M.T.; Han, M. Developmental defects of Caenorhabditis elegans lacking branched-chain α-ketoacid dehydrogenase are mainly caused by monomethyl branched-chain fatty acid deficiency. J. Biol. Chem., 2016, 291(6), 2967-2973. doi: 10.1074/jbc.M115.676650 PMID: 26683372
  53. Gyurkó, M.; Steták, A. Sőti, C.; Csermely, P. Multitarget network strategies to influence memory and forgetting: The Ras/MAPK pathway as a novel option. Mini Rev. Med. Chem., 2015, 15(8), 696-704. doi: 10.2174/1389557515666150219144336 PMID: 25694072
  54. Opperman, K.; Moseley-Alldredge, M.; Yochem, J.; Bell, L.; Kanayinkal, T.; Chen, L. A novel nondevelopmental role of the sax-7/L1CAM cell adhesion molecule in synaptic regulation in Caenorhabditis elegans. Genetics, 2015, 199(2), 497-509. doi: 10.1534/genetics.114.169581 PMID: 25488979
  55. Calabrese, V.; Cornelius, C.; Stella, A.M.G.; Calabrese, E.J. Cellular stress responses, mitostress and carnitine insufficiencies as critical determinants in aging and neurodegenerative disorders: role of hormesis and vitagenes. Neurochem. Res., 2010, 35(12), 1880-1915. doi: 10.1007/s11064-010-0307-z PMID: 21080068
  56. Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J. Vitagenes, cellular stress response, and acetylcarnitine: Relevance to hormesis. Biofactors, 2009, 35(2), 146-160. doi: 10.1002/biof.22 PMID: 19449442
  57. Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811. doi: 10.1089/ars.2009.3074 PMID: 20446769
  58. Calabrese, V.; Cornelius, C.; Mancuso, C.; Pennisi, G.; Calafato, S.; Bellia, F.; Bates, T.E.; Giuffrida, S.A.M.; Schapira, T.; Dinkova Kostova, A.T.; Rizzarelli, E. Cellular stress response: A novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem. Res., 2008, 33(12), 2444-2471. doi: 10.1007/s11064-008-9775-9 PMID: 18629638
  59. Cornelius, C.; Perrotta, R.; Graziano, A.; Calabrese, E.J.; Calabrese, V. Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: Mitochondria as a "chi". Immun. Ageing, 2013, 10(1), 15. doi: 10.1186/1742-4933-10-15 PMID: 23618527
  60. Castejon, A.M.; Spaw, J.A.; Rozenfeld, I.; Sheinberg, N.; Kabot, S.; Shaw, A.; Hardigan, P.; Faillace, R.; Packer, E.E. Improving antioxidant capacity in children with autism: A randomized, double-blind controlled study with cysteine-rich whey protein. Front. Psychiatry, 2021, 12, 669089. doi: 10.3389/fpsyt.2021.669089 PMID: 34658941
  61. Erten, F. Lycopene ameliorates propionic acid-induced autism spectrum disorders by inhibiting inflammation and oxidative stress in rats. J. Food Biochem., 2021, 45(10), e13922. doi: 10.1111/jfbc.13922
  62. Bent, S.; Lawton, B.; Warren, T.; Widjaja, F.; Dang, K.; Fahey, J.; Cornblatt, B.; Kinchen, J.M.; Delucchi, K.; Hendren, R.L. Identification of urinary metabolites that correlate with clinical improvements in children with autism treated with sulforaphane from broccoli. Mol. Autism, 2018, 9, 35. doi: 10.1186/s13229-018-0218-4
  63. Salinaro, A.T.; Cornelius, C.; Koverech, G.; Koverech, A.; Scuto, M.; Lodato, F.; Fronte, V.; Muccilli, V.; Reibaldi, M.; Longo, A.; Uva, M.G.; Calabrese, V. Cellular stress response, redox status, and vitagenes in glaucoma: A systemic oxidant disorder linked to Alzheimer’s disease. Front. Pharmacol., 2014, 5, 129. doi: 10.3389/fphar.2014.00129 PMID: 24936186
  64. Yang, J.; Fu, X.; Liao, X.; Li, Y. Nrf2 activators as dietary phytochemicals against oxidative stress, inflammation, and mitochondrial dysfunction in autism spectrum disorders: A systematic review. Front. Psychiatry, 2020, 11, 561998. doi: 10.3389/fpsyt.2020.561998 PMID: 33329102
  65. Wardyn, J.D.; Ponsford, A.H.; Sanderson, C.M. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem. Soc. Trans., 2015, 43(4), 621-626. doi: 10.1042/BST20150014 PMID: 26551702
  66. Calabrese, V.; Giordano, J.; Ruggieri, M.; Berritta, D.; Trovato, A.; Ontario, M.L.; Bianchini, R.; Calabrese, E.J. Hormesis, cellular stress response, and redox homeostasis in autism spectrum disorders. J. Neurosci. Res., 2016, 94(12), 1488-1498. doi: 10.1002/jnr.23893 PMID: 27642708
  67. Cheffer, A.; Flitsch, L.J.; Krutenko, T. Human stem cell-based models for studying autism spectrum disorder-related neuronal dysfunction. Mol. Autism, 2020, 11(1), 99. doi: 10.1186/s13229-020-00383-w doi: 10.1186/s13229-020-00383-w
  68. Siracusa, R.; Scuto, M.; Fusco, R.; Trovato, A.; Ontario, M.L.; Crea, R.; Paola, R.D.; Cuzzocrea, S.; Calabrese, V. Anti-inflammatory and anti-oxidant activity of Hidrox® in rotenone-induced Parkinson’s disease in mice. Antioxidants (Basel), 2020, 9(9), 824. doi: 10.3390/antiox9090824 PMID: 32899274
  69. Elsayed, E.A.; El Enshasy, H.; Wadaan, M.A.M.; Aziz, R. Mushrooms: A potential natural source of anti-inflammatory compounds for medical applications. Mediators Inflamm., 2014, 2014, 1-15. doi: 10.1155/2014/805841 PMID: 25505823
  70. Martinez-Medina, G.A.; Chávez-González, M.L.; Verma, D.K.; Arely Prado-Barragán, L.; Martínez-Hernández, J.L.; Flores-Gallegos, A.C.; Thakur, M.; Prakash Srivastav, P.; Aguilar, C.N. Bio-funcional components in mushrooms, a health opportunity: Ergothionine and huitlacohe as recent trends. J. Functional Foods, 2021, 77, 104326. doi: 10.1016/j.jff.2020.104326
  71. Yildiz, O. Can, Z.; Laghari, A.Q.; Şahin, H.; Malkoç, M. Wild edible mushrooms as a natural source of phenolics and antioxidants. J. Food Biochem., 2015, 39(2), 148-154. doi: 10.1111/jfbc.12107
  72. Paterson, R.R.; Lima, N. Biomedical effects of mushrooms with emphasis on pure compounds. Biomed. J., 2014, 37(6), 357-368. doi: 10.4103/2319-4170.143502 PMID: 25355390
  73. Islam, T.; Ganesan, K.; Xu, B. New insight into mycochemical profiles and antioxidant potential of edible and medicinal mushrooms: A review. Int. J. Med. Mushrooms, 2019, 21(3), 237-251. doi: 10.1615/IntJMedMushrooms.2019030079 PMID: 31002608
  74. Friedman, M. Mushroom polysaccharides: Chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans. Foods, 2016, 5(4), 80. doi: 10.3390/foods5040080 PMID: 28231175
  75. Jang, J.H.; Aruoma, O.I.; Jen, L.S.; Chung, H.Y.; Surh, Y.J. Ergothioneine rescues PC12 cells from β-amyloid-induced apoptotic death. Free Radic. Biol. Med., 2004, 36(3), 288-299. doi: 10.1016/j.freeradbiomed.2003.11.005 PMID: 15036348
  76. Calabrese, V.; Pennisi, M.; Crupi, R.; Di Paola, R.; Alario, A.; Modafferi, S.; Di Rosa, G.; Fernandes, T.; Signorile, A.; Maiolino, L.; Cuzzocrea, S.; Calabrese, V. Neuroinflammation and mitochondrial dysfunction in the pathogenesis of Alzheimer’s disease: modulation by coriolus versicolor (Yun-Zhi) nutritional mushroom. J. Neurol. Neuromed, 2017, 2(1), 19-28. doi: 10.29245/2572.942X/2017/2.942X/2017/1.1088
  77. Friedman, M. Chemistry, nutrition, and health-promoting properties of Hericium erinaceus (Lion’s Mane) mushroom fruiting bodies and mycelia and their bioactive compounds. J. Agric. Food Chem., 2015, 63(32), 7108-7123. doi: 10.1021/acs.jafc.5b02914 PMID: 26244378
  78. Li, I.C.; Lee, L.Y.; Tzeng, T.T.; Chen, W.P.; Chen, Y.P.; Shiao, Y.J.; Chen, C.C. Neuro health properties of Hericium erinaceus mycelia enriched with erinacines. Behav. Neurol., 2018, 2018, 1-10. doi: 10.1155/2018/5802634 PMID: 29951133
  79. Tsai-Teng, T.; Chin-Chu, C.; Li-Ya, L.; Wan-Ping, C.; Chung-Kuang, L.; Chien-Chang, S.; Chi-Ying, H.F.; Chien-Chih, C.; Shiao, Y.J. Erinacine A-enriched Hericium erinaceus mycelium ameliorates Alzheimer’s disease-related pathologies in APPswe/PS1dE9 transgenic mice. J. Biomed. Sci., 2016, 23(1), 49. doi: 10.1186/s12929-016-0266-z PMID: 27350344
  80. Amara, I.; Scuto, M.; Zappalà, A.; Ontario, M.L.; Petralia, A.; Abid-Essefi, S.; Maiolino, L.; Signorile, A.; Trovato Salinaro, A.; Calabrese, V. Hericium Erinaceus prevents DEHP-induced mitochondrial dysfunction and apoptosis in PC12 cells. Int. J. Mol. Sci., 2020, 21(6), 2138. doi: 10.3390/ijms21062138 PMID: 32244920
  81. Li, T.J.; Lee, T.Y.; Lo, Y.; Lee, L.Y.; Li, I.C.; Chen, C.C.; Chang, F.C. Hericium erinaceus mycelium ameliorate anxiety induced by continuous sleep disturbance in vivo. BMC Complementary Medicine and Therapies, 2021, 21(1), 295. doi: 10.1186/s12906-021-03463-3 PMID: 34865649
  82. Chong, P.S.; Fung, M.L.; Wong, K.H.; Lim, L.W. Therapeutic potential of Hericium erinaceus for depressive disorder. Int. J. Mol. Sci., 2019, 21(1), 163. doi: 10.3390/ijms21010163 PMID: 31881712
  83. Chiu, C.H.; Chyau, C.C.; Chen, C.C.; Lee, L.Y.; Chen, W.P.; Liu, J.L.; Lin, W.H.; Mong, M.C. Erinacine A-enriched Hericium erinaceus mycelium produces antidepressant-like effects through modulating BDNF/PI3K/Akt/GSK-3β signaling in mice. Int. J. Mol. Sci., 2018, 19(2), 341. doi: 10.3390/ijms19020341 PMID: 29364170
  84. Ryu, S.; Kim, H.G.; Kim, J.Y.; Kim, S.Y.; Cho, K.O. Hericium erinaceus extract reduces anxiety and depressive behaviors by promoting hippocampal neurogenesis in the adult mouse brain. J. Med. Food, 2018, 21(2), 174-180. doi: 10.1089/jmf.2017.4006 PMID: 29091526
  85. Fritz, H.; Kennedy, D.A.; Ishii, M.; Fergusson, D.; Fernandes, R.; Cooley, K.; Seely, D. Polysaccharide K and Coriolus versicolor extracts for lung cancer: A systematic review. Integr. Cancer Ther., 2015, 14(3), 201-211. doi: 10.1177/1534735415572883 PMID: 25784670
  86. Matijašević D.; Pantić M.; Rašković B.; Pavlović V.; Duvnjak, D.; Sknepnek, A.; Nikšić M. The antibacterial activity of coriolus versicolor methanol extract and its effect on ultrastructural changes of Staphylococcus aureus and Salmonella enteritidis. Front. Microbiol., 2016, 7, 1226. doi: 10.3389/fmicb.2016.01226 PMID: 27540376
  87. Trovato, A.; Siracusa, R.; Di Paola, R.; Scuto, M.; Fronte, V.; Koverech, G.; Luca, M.; Serra, A.; Toscano, M.A.; Petralia, A.; Cuzzocrea, S.; Calabrese, V. Redox modulation of cellular stress response and lipoxin A4 expression by Coriolus versicolor in rat brain: Relevance to Alzheimer’s disease pathogenesis. Neurotoxicology, 2016, 53, 350-358. doi: 10.1016/j.neuro.2015.09.012 PMID: 26433056
  88. Fang, X.; Jiang, Y.; Ji, H.; Zhao, L.; Xiao, W.; Wang, Z.; Ding, G. The synergistic beneficial effects of ginkgo flavonoid and Coriolus versicolor polysaccharide for memory improvements in a mouse model of dementia. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-9. doi: 10.1155/2015/128394 PMID: 25821476
  89. Ishiyama, G.; Wester, J.; Lopez, I.A.; Beltran-Parrazal, L.; Ishiyama, A. Oxidative stress in the blood labyrinthine barrier in the macula utricle of meniere’s disease patients. Front. Physiol., 2018, 9, 1068. doi: 10.3389/fphys.2018.01068 PMID: 30233382
  90. Ferreiro, E.; Pita, I.R.; Mota, S.I.; Valero, J.; Ferreira, N.R.; Fernandes, T.; Calabrese, V.; Fontes-Ribeiro, C.A.; Pereira, F.C.; Rego, A.C. Coriolus versicolor biomass increases dendritic arborization of newly-generated neurons in mouse hippocampal dentate gyrus. Oncotarget, 2018, 9(68), 32929-32942. doi: 10.18632/oncotarget.25978 PMID: 30250640
  91. Caracci, M.O.; Avila, M.E.; Espinoza-Cavieres, F.A.; López, H.R.; Ugarte, G.D.; De Ferrari, G.V. Wnt/β-catenin-dependent transcription in autism spectrum disorders. Front. Mol. Neurosci., 2021, 14, 764756. doi: 10.3389/fnmol.2021.764756 PMID: 34858139
  92. Huang, H.T.; Ho, C.H.; Sung, H.Y.; Lee, L.Y.; Chen, W.P.; Chen, Y.W.; Chen, C.C.; Yang, C.S.; Tzeng, S.F. Hericium erinaceus mycelium and its small bioactive compounds promote oligodendrocyte maturation with an increase in myelin basic protein. Sci. Rep., 2021, 11(1), 6551. doi: 10.1038/s41598-021-85972-2 PMID: 33753806
  93. Galvez-Contreras, A.Y.; Zarate-Lopez, D.; Torres-Chavez, A.L.; Gonzalez-Perez, O. Role of oligodendrocytes and myelin in the pathophysiology of autism spectrum disorder. Brain Sci., 2020, 10(12), 951. doi: 10.3390/brainsci10120951 PMID: 33302549
  94. Graciarena, M.; Seiffe, A.; Nait-Oumesmar, B.; Depino, A.M. Hypomyelination and oligodendroglial alterations in a mouse model of autism spectrum disorder. Front. Cell. Neurosci., 2019, 12, 517. doi: 10.3389/fncel.2018.00517 PMID: 30687009
  95. Fijałkowska, A.; Jędrejko, K.; Sułkowska-Ziaja, K.; Ziaja, M.; Kała, K.; Muszyń;ska, B. Edible mushrooms as a potential component of dietary interventions for major depressive disorder. Foods, 2022, 11(10), 1489. doi: 10.3390/foods11101489 PMID: 35627059
  96. Huang, G.; Chen, S.; Chen, X.; Zheng, J.; Xu, Z.; Doostparast Torshizi, A.; Gong, S.; Chen, Q.; Ma, X.; Yu, J.; Zhou, L.; Qiu, S.; Wang, K.; Shi, L. Uncovering the functional link between SHANK3 deletions and deficiency in neurodevelopment using iPSC-derived human neurons. Front. Neuroanat., 2019, 13, 23. doi: 10.3389/fnana.2019.00023 PMID: 30918484
  97. Modafferi, S.; Zhong, X.; Kleensang, A.; Murata, Y.; Fagiani, F.; Pamies, D.; Hogberg, H.T.; Calabrese, V.; Lachman, H.; Hartung, T.; Smirnova, L. Gene-environment interactions in developmental neurotoxicity: A case study of synergy between chlorpyrifos and CHD8 knockout in human brain spheres. Environ. Health Perspect., 2021, 129(7), 077001. doi: 10.1289/EHP8580 PMID: 34259569
  98. Prem, S.; Millonig, J.H.; DiCicco-Bloom, E. Dysregulation of neurite outgrowth and cell migration in autism and other neurodevelopmental disorders. Adv. Neurobiol., 2020, 25, 109-153. doi: 10.1007/978-3-030-45493-7_5 PMID: 32578146
  99. Martínez-Cerdeño, V. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models. Dev. Neurobiol., 2017, 77(4), 393-404. doi: 10.1002/dneu.22417 PMID: 27390186
  100. Lo, L.H.Y.; Lai, K.O. Dysregulation of protein synthesis and dendritic spine morphogenesis in ASD: Studies in human pluripotent stem cells. Mol. Autism, 2020, 11(1), 40. doi: 10.1186/s13229-020-00349-y PMID: 32460854
  101. Perluigi, M.; Di Domenico, F.; Giorgi, A.; Schininà, M.E.; Coccia, R.; Cini, C.; Bellia, F.; Cambria, M.T.; Cornelius, C.; Butterfield, D.A.; Calabrese, V. Redox proteomics in aging rat brain: Involvement of mitochondrial reduced glutathione status and mitochondrial protein oxidation in the aging process. J. Neurosci. Res., 2010, 88(16), 3498-3507. doi: 10.1002/jnr.22500 PMID: 20936692
  102. Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the CNS: Neuroprotection versus Neurotoxicity. Nat. Neurosci., 2007, 8, 766-775. doi: 10.1038/nrn2214 PMID: 17882254
  103. Drake, J.; Sultana, R.; Aksenova, M.; Calabrese, V.; Butterfield, D.A. Elevation of mitochondrial glutathione by glutamylcysteine ethyl ester protects mitochondria against peroxynitrite-induced oxidative stress. J. Neurosci. Res., 2003, 74(6), 917-927. doi: 10.1002/jnr.10810 PMID: 14648597
  104. Culetto, E.; Sattelle, D.B. A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum. Mol. Genet., 2000, 9(6), 869-877. doi: 10.1093/hmg/9.6.869 PMID: 10767309
  105. Lai, C.H.; Chou, C.Y.; Ch’ang, L.Y.; Liu, C.S.; Lin, W. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res., 2000, 10(5), 703-713. doi: 10.1101/gr.10.5.703 PMID: 10810093
  106. Nigon, V.M.; Félix, M.A. History of research on C. elegans and other free-living nematodes as model organisms. WormBook, 2017, 2017, 1-84. doi: 10.1895/wormbook.1.181.1 PMID: 28326696
  107. Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669), 806-811. doi: 10.1038/35888 PMID: 9486653
  108. Dosanjh, L.E.; Brown, M.K.; Rao, G.; Link, C.D.; Luo, Y. Behavioral phenotyping of a transgenic Caenorhabditis elegans expressing neuronal amyloid-beta. J. Alzheimers Dis., 2010, 19(2), 681-690. doi: 10.3233/JAD-2010-1267 PMID: 20110612
  109. Wang, C.; Saar, V.; Leung, K.L.; Chen, L.; Wong, G. Human amyloid β peptide and tau co-expression impairs behavior and causes specific gene expression changes in Caenorhabditis elegans. Neurobiol. Dis., 2018, 109(Pt A), 88-101. doi: 10.1016/j.nbd.2017.10.003 PMID: 28982592
  110. Huang, X.; Wang, C.; Chen, L.; Zhang, T.; Leung, K.L.; Wong, G. Human amyloid beta and α-synuclein co-expression in neurons impair behavior and recapitulate features for Lewy body dementia in Caenorhabditis elegans. Biochim. Biophys. Acta Mol. Basis Dis., 2021, 1867(10), 166203. doi: 10.1016/j.bbadis.2021.166203 PMID: 34146705
  111. Nass, R.; Hall, D.H.; Miller, D.M., III; Blakely, R.D. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 3264-3269. doi: 10.1073/pnas.042497999 PMID: 11867711
  112. Lin, K.; Li, Y.; Toit, E.D.; Wendt, L.; Sun, J. Effects of polyphenol supplementations on improving depression, anxiety, and quality of life in patients with depression. Front. Psychiatry, 2021, 12, 765485. doi: 10.3389/fpsyt.2021.765485 PMID: 34819888
  113. Chiaradia, I.; Lancaster, M.A. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat. Neurosci., 2020, 23(12), 1496-1508. doi: 10.1038/s41593-020-00730-3 PMID: 33139941
  114. Qian, X.; Song, H.; Ming, G. Brain organoids: Advances, applications and challenges. Development, 2019, 146(8), dev166074. doi: 10.1242/dev.166074 PMID: 30992274
  115. Shen, M.D.; Piven, J. Brain and behavior development in autism from birth through infancy. Dialogues Clin. Neurosci., 2017, 19(4), 325-333. doi: 10.31887/DCNS.2017.19.4/mshen PMID: 29398928
  116. Ecker, C.; Schmeisser, M.J.; Loth, E.; Murphy, D.G. The neuroanatomy of autism spectrum disorder: An overview of structural neuroimaging findings and their translatability to the clinical setting. Autism, 2017, 21(1), 18-28. doi: 10.1177/1362361315627136 PMID: 26975670
  117. Lee, C.T.; Bendriem, R.M.; Wu, W.W.; Shen, R.F. 3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders. J. Biomed. Sci., 2017, 24(1), 59. doi: 10.1186/s12929-017-0362-8 PMID: 28822354
  118. Fernandes, S.; Klein, D.; Marchetto, M.C. Unraveling human brain development and evolution using organoid models. Front. Cell Dev. Biol., 2021, 9, 737429. doi: 10.3389/fcell.2021.737429 PMID: 34692694
  119. Lim, C.S.; Yang, J.; Lee, Y.K.; Lee, K.; Lee, J.A.; Kaang, B.K. Understanding the molecular basis of autism in a dish using hiPSCs-derived neurons from ASD patients. Mol. Brain, 2015, 8(1), 57. doi: 10.1186/s13041-015-0146-6 PMID: 26419846
  120. Bhattacharya, A.; Choi, W.W.Y.; Muffat, J.; Li, Y. Modeling developmental brain diseases using human pluripotent stem cells-derived brain organoids – progress and perspective. J. Mol. Biol., 2022, 434(3), 167386. doi: 10.1016/j.jmb.2021.167386 PMID: 34883115
  121. Mariani, J.; Coppola, G.; Zhang, P.; Abyzov, A.; Provini, L.; Tomasini, L.; Amenduni, M.; Szekely, A.; Palejev, D.; Wilson, M.; Gerstein, M.; Grigorenko, E.L.; Chawarska, K.; Pelphrey, K.A.; Howe, J.R.; Vaccarino, F.M. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell, 2015, 162(2), 375-390. doi: 10.1016/j.cell.2015.06.034 PMID: 26186191
  122. Avazzadeh, S.; McDonagh, K.; Reilly, J.; Wang, Y.; Boomkamp, S.D.; McInerney, V.; Krawczyk, J.; Fitzgerald, J.; Feerick, N.; O’Sullivan, M.; Jalali, A.; Forman, E.B.; Lynch, S.A.; Ennis, S.; Cosemans, N.; Peeters, H.; Dockery, P.; O’Brien, T.; Quinlan, L.R.; Gallagher, L.; Shen, S. Increased Ca2+ signaling in NRXN1α+/- neurons derived from ASD induced pluripotent stem cells. Mol. Autism, 2019, 10(1), 52. doi: 10.1186/s13229-019-0303-3 PMID: 31893021
  123. Jourdon, A.; Wu, F.; Mariani, J. ASD modelling in organoids reveals imbalance of excitatory cortical neuron subtypes during early neurogenesis. bioRxiv, 2022, 26(9), 1505-1515. doi: 10.1101/2022.03.19.484988
  124. Calabrese, V.; Guagliano, E.; Sapienza, M.; Mancuso, C.; Butterfield, D.A.; Stella, A.M. Redox regulation of cellular stress response in neurodegenerative disorders. Ital. J. Biochem., 2006, 55(3-4), 263-282. PMID: 17274531
  125. Siracusa, R.; Scuto, M.; Fusco, R.; Trovato, A.; Ontario, M.L.; Crea, R.; Di Paola, R.; Cuzzocrea, S.; Calabrese, V. Anti-inflammatory and anti-oxidant activity of Hidrox® in rotenone-induced Parkinson’s disease in mice. Antioxidants, 2020, 9(9), 824. doi: 10.3390/antiox9090824 PMID: 32899274

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers