Microneedles: A Versatile Drug Delivery Carrier for Phytobioactive Compounds as a Therapeutic Modulator for Targeting Mitochondrial Dysfunction in the Management of Neurodegenerative Diseases
- Авторы: Bandiwadekar A.1, Khot K.1, Gopan G.1, Jose J.1
-
Учреждения:
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed-to-be University)
- Выпуск: Том 22, № 6 (2024)
- Страницы: 1110-1128
- Раздел: Neurology
- URL: https://rjraap.com/1570-159X/article/view/644815
- DOI: https://doi.org/10.2174/1570159X20666221012142247
- ID: 644815
Цитировать
Полный текст
Аннотация
Neurodegenerative disease (ND) is the fourth leading cause of death worldwide, with limited symptomatic therapies. Mitochondrial dysfunction is a major risk factor in the progression of ND, and it-increases the generation of reactive oxygen species (ROS). Overexposure to these ROS induces apoptotic changes leading to neuronal cell death. Many studies have shown the prominent effect of phytobioactive compounds in managing mitochondrial dysfunctions associated with ND, mainly due to their antioxidant properties. The drug delivery to the brain is limited due to the presence of the blood-brain barrier (BBB), but effective drug concentration needs to reach the brain for the therapeutic action. Therefore, developing safe and effective strategies to enhance drug entry in the brain is required to establish ND's treatment. The microneedle-based drug delivery system is one of the effective non-invasive techniques for drug delivery through the transdermal route. Microneedles are micronsized drug delivery needles that are self-administrable. It can penetrate through the stratum corneum skin layer without hitting pain receptors, allowing the phytobioactive compounds to be released directly into systemic circulation in a controlled manner. With all of the principles mentioned above, this review discusses microneedles as a versatile drug delivery carrier for the phytoactive compounds as a therapeutic potentiating agent for targeting mitochondrial dysfunction for the management of ND.
Об авторах
Akshay Bandiwadekar
Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed-to-be University)
Email: info@benthamscience.net
Kartik Khot
Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed-to-be University)
Email: info@benthamscience.net
Gopika Gopan
Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed-to-be University)
Email: info@benthamscience.net
Jobin Jose
Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed-to-be University)
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Begley, D.J. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol. Ther., 2004, 104(1), 29-45. doi: 10.1016/j.pharmthera.2004.08.001 PMID: 15500907
- Hladky, S.B.; Barrand, M.A. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS, 2014, 11(1), 26. doi: 10.1186/2045-8118-11-26 PMID: 25678956
- Engelhardt, B.; Vajkoczy, P.; Weller, R.O. The movers and shapers in immune privilege of the CNS. Nat. Immunol., 2017, 18(2), 123-131. doi: 10.1038/ni.3666 PMID: 28092374
- Bélanger, M.; Allaman, I.; Magistretti, P.J. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab., 2011, 14(6), 724-738. doi: 10.1016/j.cmet.2011.08.016 PMID: 22152301
- Harris, J.J.; Jolivet, R.; Attwell, D. Synaptic energy use and supply. Neuron, 2012, 75(5), 762-777. doi: 10.1016/j.neuron.2012.08.019 PMID: 22958818
- Grimm, A.; Eckert, A. Brain aging and neurodegeneration: from a mitochondrial point of view. J. Neurochem., 2017, 143(4), 418-431. doi: 10.1111/jnc.14037 PMID: 28397282
- Chistiakov, D.A.; Sobenin, I.A.; Revin, V.V.; Orekhov, A.N.; Bobryshev, Y.V. Mitochondrial aging and age-related dysfunction of mitochondria. BioMed. Res. Int., 2014, 2014, 1-7. doi: 10.1155/2014/238463 PMID: 24818134
- Rahman, M.A.; Rahman, M.D.H.; Biswas, P.; Hossain, M.S.; Islam, R.; Hannan, M.A.; Uddin, M.J.; Rhim, H. Potential therapeutic role of phytochemicals to mitigate mitochondrial dysfunctions in Alzheimers disease. Antioxidants, 2020, 10(1), 23. doi: 10.3390/antiox10010023 PMID: 33379372
- Ortiz, G.G.; Pacheco-Moisés, F.P.; Macías-Islas, M.Á.; Flores-Alvarado, L.J.; Mireles-Ramírez, M.A.; González-Renovato, E.D.; Hernández-Navarro, V.E.; Sánchez-López, A.L.; Alatorre-Jiménez, M.A. Role of the blood-brain barrier in multiple sclerosis. Arch. Med. Res., 2014, 45(8), 687-697. doi: 10.1016/j.arcmed.2014.11.013 PMID: 25431839
- Kuo, Y.C.; Wang, C.C. Cationic solid lipid nanoparticles with cholesterol-mediated surface layer for transporting saquinavir to the brain. Biotechnol. Prog., 2014, 30(1), 198-206. doi: 10.1002/btpr.1834 PMID: 24167123
- van der Maaden, K.; Jiskoot, W.; Bouwstra, J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J. Control. Release, 2012, 161(2), 645-655. doi: 10.1016/j.jconrel.2012.01.042 PMID: 22342643
- Ye, Y.; Yu, J.; Wen, D.; Kahkoska, A.R.; Gu, Z. Polymeric microneedles for transdermal protein delivery. Adv. Drug Deliv. Rev., 2018, 127, 106-118. doi: 10.1016/j.addr.2018.01.015 PMID: 29408182
- Brodal, P. The central nervous system: structure and function, 3rd ed; Oxford University Press, 2004.
- Ghavami, S.; Shojaei, S.; Yeganeh, B.; Ande, S.R.; Jangamreddy, J.R.; Mehrpour, M.; Christoffersson, J.; Chaabane, W.; Moghadam, A.R.; Kashani, H.H.; Hashemi, M.; Owji, A.A.; Łos, M.J. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog. Neurobiol., 2014, 112, 24-49. doi: 10.1016/j.pneurobio.2013.10.004 PMID: 24211851
- Alzheimers-disease. https://www.hopkinsmedicine.org/health/conditions-and-diseases/alzheimers-disease/earlyonset-alzheimer-disease(Accessed September 19 2022).
- Liu, L.; Zhao, S.; Chen, H.; Wang, A. A new machine learning method for identifying Alzheimers disease. Simul. Model. Pract. Theory, 2020, 99, 102023. doi: 10.1016/j.simpat.2019.102023
- Tokuchi, R.; Hishikawa, N.; Sato, K.; Hatanaka, N.; Fukui, Y.; Takemoto, M.; Ohta, Y.; Yamashita, T.; Abe, K. Differences between the behavioral and psychological symptoms of Alzheimers disease and Parkinsons disease. J. Neurol. Sci., 2016, 369, 278-282. doi: 10.1016/j.jns.2016.08.053 PMID: 27653908
- Kumar, A.; Singh, A.; Ekavali, A review on Alzheimers disease pathophysiology and its management: an update. Pharmacol. Rep., 2015, 67(2), 195-203. doi: 10.1016/j.pharep.2014.09.004 PMID: 25712639
- Wang, J.; Chen, G.J. Mitochondria as a therapeutic target in Alzheimers disease. Genes Dis., 2016, 3(3), 220-227. doi: 10.1016/j.gendis.2016.05.001 PMID: 30258891
- Simon, D.K.; Tanner, C.M.; Brundin, P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin. Geriatr. Med., 2020, 36(1), 1-12. doi: 10.1016/j.cger.2019.08.002 PMID: 31733690
- Kumar, A.; Chaudhary, R.K.; Singh, R.; Singh, S.P.; Wang, S.Y.; Hoe, Z.Y.; Pan, C.T.; Shiue, Y.L.; Wei, D.Q.; Kaushik, A.C.; Dai, X. Nanotheranostic applications for detection and targeting neurodegenerative diseases. Front. Neurosci., 2020, 14, 305. doi: 10.3389/fnins.2020.00305 PMID: 32425743
- Singh, E.; Devasahayam, G. Neurodegeneration by oxidative stress: a review on prospective use of small molecules for neuroprotection. Mol. Biol. Rep., 2020, 47(4), 3133-3140. doi: 10.1007/s11033-020-05354-1 PMID: 32162127
- Prasuhn, J.; Davis, R.L.; Kumar, K.R. Targeting mitochondrial impairment in Parkinsons disease: Challenges and opportunities. Front. Cell Dev. Biol., 2021, 8, 615461. doi: 10.3389/fcell.2020.615461 PMID: 33469539
- Cai, M.; Yang, E.J. Complementary and alternative medicine for treating amyotrophic lateral sclerosis: a narrative review. Integr. Med. Res., 2019, 8(4), 234-239. doi: 10.1016/j.imr.2019.08.003 PMID: 31692669
- Bonafede, R.; Mariotti, R. ALS pathogenesis and therapeutic approaches: the role of mesenchymal stem cells and extracellular vesicles. Front. Cell. Neurosci., 2017, 11, 80. doi: 10.3389/fncel.2017.00080 PMID: 28377696
- Ralli, M.; Lambiase, A.; Artico, M.; de Vincentiis, M.; Greco, A. Amyotrophic lateral sclerosis: Autoimmune pathogenic mechanisms, clinical features, and therapeutic perspectives. Isr. Med. Assoc. J., 2019, 21(7), 438-443. PMID: 31507117
- Mehta, A.R.; Walters, R.; Waldron, F.M.; Pal, S.; Selvaraj, B.T.; Macleod, M.R.; Hardingham, G.E.; Chandran, S.; Gregory, J.M. Targeting mitochondrial dysfunction in amyotrophic lateral sclerosis: a systematic review and meta-analysis. Brain Commun., 2019, 1(1), fcz009. doi: 10.1093/braincomms/fcz009 PMID: 32133457
- Ochoa-Morales, A.; Hernández-Mojica, T.; Paz-Rodríguez, F.; Jara-Prado, A.; Trujillo-De Los Santos, Z.; Sánchez-Guzmán, M.A.; Guerrero-Camacho, J.L.; Corona-Vázquez, T.; Flores, J.; Camacho-Molina, A.; Rivas-Alonso, V.; Dávila-Ortiz de Montellano, D.J. Quality of life in patients with multiple sclerosis and its association with depressive symptoms and physical disability. Mult. Scler. Relat. Disord., 2019, 36, 101386. doi: 10.1016/j.msard.2019.101386 PMID: 31520986
- Ghasemi, N.; Razavi, S.; Nikzad, E. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J., 2017, 19(1), 1-10. PMID: 28367411
- Correale, J.; Gaitán, M.I.; Ysrraelit, M.C.; Fiol, M.P. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain, 2017, 140(3), 527-546. PMID: 27794524
- Barcelos, I.P.; Troxell, R.M.; Graves, J.S. Mitochondrial Dysfunction and Multiple Sclerosis. Biology (Basel), 2019, 8(2), 37. doi: 10.3390/biology8020037 PMID: 31083577
- Ellis, N.; Tee, A.; McAllister, B.; Massey, T.; McLauchlan, D.; Stone, T.; Correia, K.; Loupe, J.; Kim, K.H.; Barker, D.; Hong, E.P. Genetic risk underlying psychiatric and cognitive symptoms in Huntingtons Disease. Biol. Psychiatry, 2019, 14(2), 12-16. PMID: 32087949
- Jimenez-Sanchez, M.; Licitra, F.; Underwood, B.R.; Rubinsztein, D.C. Huntingtons disease: mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb. Perspect. Med., 2017, 7(7), a024240. doi: 10.1101/cshperspect.a024240 PMID: 27940602
- Illarioshkin, S.N.; Klyushnikov, S.A.; Vigont, V.A.; Seliverstov, Y.A.; Kaznacheyeva, E.V. Molecular pathogenesis in Huntingtons disease. Biochemistry (Mosc.), 2018, 83(9), 1030-1039. doi: 10.1134/S0006297918090043 PMID: 30472941
- Chaturvedi, R.K.; Beal, M.F. Mitochondria targeted therapeutic approaches in Parkinsons and Huntingtons diseases. Mol. Cell. Neurosci., 2013, 55, 101-114. doi: 10.1016/j.mcn.2012.11.011 PMID: 23220289
- Wenning, G.K.; Colosimo, C.; Geser, F.; Poewe, W. Multiple system atrophy. Lancet Neurol., 2004, 3(2), 93-103. doi: 10.1016/S1474-4422(03)00662-8 PMID: 14747001
- Meissner, W.G.; Fernagut, P.O.; Dehay, B.; Péran, P.; Traon, A.P.L.; Foubert-Samier, A.; Lopez Cuina, M.; Bezard, E.; Tison, F.; Rascol, O. Multiple system atrophy: recent developments and future perspectives. Mov. Disord., 2019, 34(11), 1629-1642. doi: 10.1002/mds.27894 PMID: 31692132
- Palma, J.A.; Kaufmann, H. Novel therapeutic approaches in multiple system atrophy. Clin. Auton. Res., 2015, 25(1), 37-45. doi: 10.1007/s10286-014-0249-7 PMID: 24928797
- Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Bloodbrain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol., 2018, 14(3), 133-150. doi: 10.1038/nrneurol.2017.188 PMID: 29377008
- Elfawy, H.A.; Das, B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci., 2019, 218, 165-184. doi: 10.1016/j.lfs.2018.12.029 PMID: 30578866
- Kumar, R.; Harilal, S.; Parambi, D.G.T.; Kanthlal, S.K.; Rahman, M.A.; Alexiou, A.; Batiha, G.E.S.; Mathew, B. The role of mitochondrial genes in neurodegenerative disorders. Curr. Neuropharmacol., 2022, 20(5), 824-835. doi: 10.2174/1570159X19666210908163839 PMID: 34503413
- Bhat, A.H.; Dar, K.B.; Anees, S.; Zargar, M.A.; Masood, A.; Sofi, M.A.; Ganie, S.A. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed. Pharmacother., 2015, 74, 101-110. doi: 10.1016/j.biopha.2015.07.025 PMID: 26349970
- Cha, M.Y.; Kim, D.K.; Mook-Jung, I. The role of mitochondrial DNA mutation on neurodegenerative diseases. Exp. Mol. Med., 2015, 47(3), e150. doi: 10.1038/emm.2014.122 PMID: 25766619
- Garrido, C.; Galluzzi, L.; Brunet, M.; Puig, P.E.; Didelot, C.; Kroemer, G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ., 2006, 13(9), 1423-1433. doi: 10.1038/sj.cdd.4401950 PMID: 16676004
- Picone, P.; Nuzzo, D.; Caruana, L.; Scafidi, V.; Di Carlo, M. Mitochondrial dysfunction: different routes to Alzheimers disease therapy. Oxid. Med. Cell. Longev., 2014, 2014, 1-11. doi: 10.1155/2014/780179 PMID: 25221640
- Harilal, S.; Jose, J.; Parambi, D.G.T.; Kumar, R.; Unnikrishnan, M.K.; Uddin, M.S.; Mathew, G.E.; Pratap, R.; Marathakam, A.; Mathew, B. Revisiting the blood-brain barrier: A hard nut to crack in the transportation of drug molecules. Brain Res. Bull., 2020, 160, 121-140. doi: 10.1016/j.brainresbull.2020.03.018 PMID: 32315731
- Smith, E.F.; Shaw, P.J.; De Vos, K.J. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci. Lett., 2019, 710, 132933. doi: 10.1016/j.neulet.2017.06.052 PMID: 28669745
- Orsini, M.; Oliveira, A.B.; Nascimento, O.J.M.; Reis, C.H.M.; Leite, M.A.A.; De Souza, J.A.; Pupe, C.; De Souza, O.G.; Bastos, V.H.; De Freitas, M.R.G.; Teixeira, S.; Bruno, C.; Davidovich, E.; Smidt, B. Amyotrophic lateral sclerosis: new perpectives and update. Neurol. Int., 2015, 7(2), 5885. doi: 10.4081/ni.2015.5885 PMID: 26487927
- Carrì, M.T.; DAmbrosi, N.; Cozzolino, M. Pathways to mitochondrial dysfunction in ALS pathogenesis. Biochem. Biophys. Res. Commun., 2017, 483(4), 1187-1193. doi: 10.1016/j.bbrc.2016.07.055 PMID: 27416757
- Su, K.; Bourdette, D.; Forte, M. Mitochondrial dysfunction and neurodegeneration in multiple sclerosis. Front. Physiol., 2013, 4, 169. doi: 10.3389/fphys.2013.00169 PMID: 23898299
- Patergnani, S.; Fossati, V.; Bonora, M.; Giorgi, C.; Marchi, S.; Missiroli, S.; Rusielewicz, T.; Wieckowski, M.R.; Pinton, P. Mitochondria in multiple sclerosis: Molecular mechanisms of pathogenesis. Int. Rev. Cell Mol. Biol., 2017, 328, 49-103. doi: 10.1016/bs.ircmb.2016.08.003 PMID: 28069137
- Sadeghian, M.; Mastrolia, V.; Rezaei Haddad, A.; Mosley, A.; Mullali, G.; Schiza, D.; Sajic, M.; Hargreaves, I.; Heales, S.; Duchen, M.R.; Smith, K.J. Mitochondrial dysfunction is an important cause of neurological deficits in an inflammatory model of multiple sclerosis. Sci. Rep., 2016, 6(1), 33249. doi: 10.1038/srep33249 PMID: 27624721
- Reddy, P.H.; Shirendeb, U.P. Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntingtons disease. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(2), 101-110. doi: 10.1016/j.bbadis.2011.10.016 PMID: 22080977
- Quintanilla, R.A.; Johnson, G.V.W. Role of mitochondrial dysfunction in the pathogenesis of Huntingtons disease. Brain Res. Bull., 2009, 80(4-5), 242-247. doi: 10.1016/j.brainresbull.2009.07.010 PMID: 19622387
- Gil-Mohapel, J.; Brocardo, P.; Christie, B. The role of oxidative stress in Huntingtons disease: are antioxidants good therapeutic candidates? Curr. Drug Targets, 2014, 15(4), 454-468. doi: 10.2174/1389450115666140115113734 PMID: 24428525
- Fukui, H.; Moraes, C.T. Extended polyglutamine repeats trigger a feedback loop involving the mitochondrial complex III, the proteasome and huntingtin aggregates. Hum. Mol. Genet., 2007, 16(7), 783-797. doi: 10.1093/hmg/ddm023 PMID: 17356014
- Browne, S.E.; Beal, M.F. The energetics of Huntingtons disease. Neurochem. Res., 2004, 29(3), 531-546. doi: 10.1023/B:NERE.0000014824.04728.dd PMID: 15038601
- Foti, S.C.; Hargreaves, I.; Carrington, S.; Kiely, A.P.; Houlden, H.; Holton, J.L. Cerebral mitochondrial electron transport chain dysfunction in multiple system atrophy and Parkinsons disease. Sci. Rep., 2019, 9(1), 6559. doi: 10.1038/s41598-019-42902-7 PMID: 31024027
- Bordoni, M.; Scarian, E.; Rey, F.; Gagliardi, S.; Carelli, S.; Pansarasa, O.; Cereda, C. Biomaterials in neurodegenerative disorders: A promising therapeutic approach. Int. J. Mol. Sci., 2020, 21(9), 3243. doi: 10.3390/ijms21093243 PMID: 32375302
- Durães, F.; Pinto, M.; Sousa, E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals (Basel), 2018, 11(2), 44. doi: 10.3390/ph11020044 PMID: 29751602
- Bandiwadekar, A.; Jose, J.; Khayatkashani, M.; Habtemariam, S.; Khayat Kashani, H.R.; Nabavi, S.M. Emerging novel approaches for the enhanced delivery of natural products for the management of neurodegenerative diseases. J. Mol. Neurosci., 2022, 72(3), 653-676. doi: 10.1007/s12031-021-01922-7 PMID: 34697770
- Mahajani, S.; Bähr, M.; Kügler, S. Patterning inconsistencies restrict the true potential of dopaminergic neurons derived from human induced pluripotent stem cells. Neural Regen. Res., 2021, 16(4), 692-693. doi: 10.4103/1673-5374.295316 PMID: 33063729
- Nikolenko, V.N.; Oganesyan, M.V.; Vovkogon, A.D.; Nikitina, A.T.; Sozonova, E.A.; Kudryashova, V.A.; Rizaeva, N.A.; Cabezas, R.; Avila-Rodriguez, M.; Neganova, M.E.; Mikhaleva, L.M.; Bachurin, S.O.; Somasundaram, S.G.; Kirkland, C.E.; Tarasov, V.V.; Aliev, G. Current understanding of central nervous system drainage systems: Implications in the context of neurodegenerative diseases. Curr. Neuropharmacol., 2020, 18(11), 1054-1063. doi: 10.2174/1570159X17666191113103850 PMID: 31729299
- Cecchelli, R.; Berezowski, V.; Lundquist, S.; Culot, M.; Renftel, M.; Dehouck, M.P.; Fenart, L. Modelling of the bloodbrain barrier in drug discovery and development. Nat. Rev. Drug Discov., 2007, 6(8), 650-661. doi: 10.1038/nrd2368 PMID: 17667956
- Newton, H.B. Advances in strategies to improve drug delivery to brain tumors. Expert Rev. Neurother., 2006, 6(10), 1495-1509. doi: 10.1586/14737175.6.10.1495 PMID: 17078789
- Hawkins, B.T.; Davis, T.P. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol. Rev., 2005, 57(2), 173-185. doi: 10.1124/pr.57.2.4 PMID: 15914466
- Tom, A.; Nair, K.S. Branched-chain amino acids: metabolism, physiological function, and application. Biomarkers, 2006, 1, 3.
- Begley, D.J.; Brightman, M.W. Structural and functional aspects of the blood-brain barrier. Prog Drug Res, 2003, 61, 39-78. doi: 10.1007/978-3-0348-8049-7_2 PMID: 14674608
- Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci, 2006, 7(1), 41-53. doi: 10.1038/nrn1824 PMID: 16371949
- Liu, X.; Testa, B.; Fahr, A. Lipophilicity and its relationship with passive drug permeation. Pharm. Res., 2011, 28(5), 962-977. doi: 10.1007/s11095-010-0303-7 PMID: 21052797
- Patel, M.; Souto, E.B.; Singh, K.K. Advances in brain drug targeting and delivery: limitations and challenges of solid lipid nanoparticles. Expert Opin. Drug Deliv., 2013, 10(7), 889-905. doi: 10.1517/17425247.2013.784742 PMID: 23550609
- Goldsmith, M.; Abramovitz, L.; Peer, D. Precision nanomedicine in neurodegenerative diseases. ACS Nano, 2014, 8(3), 1958-1965. doi: 10.1021/nn501292z PMID: 24660817
- Hersh, D.S.; Wadajkar, A.S.; Roberts, N.; Perez, J.G.; Connolly, N.P.; Frenkel, V.; Winkles, J.A.; Woodworth, G.F.; Kim, A.J. Evolving drug delivery strategies to overcome the blood brain barrier. Curr. Pharm. Des., 2016, 22(9), 1177-1193. doi: 10.2174/1381612822666151221150733 PMID: 26685681
- Groothuis, D.R. The blood-brain and blood-tumor barriers: A review of strategies for increasing drug delivery. Neuro-oncol., 2000, 2(1), 45-59. doi: 10.1093/neuonc/2.1.45 PMID: 11302254
- Lu, C.T.; Zhao, Y.Z.; Wong, H.L.; Cai, J.; Peng, L.; Tian, X.Q. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int. J. Nanomed., 2014, 9, 2241-2257. doi: 10.2147/IJN.S61288 PMID: 24872687
- Alyautdin, R.; Khalin, I.; Nafeeza, M.I.; Haron, M.H.; Kuznetsov, D. Nanoscale drug delivery systems and the blood-brain barrier. Int. J. Nanomed., 2014, 9, 795-811. PMID: 24550672
- Furukawa, S.; Hirano, S.; Yamamoto, T.; Asahina, M.; Uchiyama, T.; Yamanaka, Y.; Nakano, Y.; Ishikawa, A.; Kojima, K.; Abe, M.; Uji, Y.; Higuchi, Y.; Horikoshi, T.; Uno, T.; Kuwabara, S. Decline in drawing ability and cerebral perfusion in Parkinsons disease patients after subthalamic nucleus deep brain stimulation surgery. Parkinsonism Relat. Disord., 2020, 70, 60-66. doi: 10.1016/j.parkreldis.2019.12.002 PMID: 31865064
- Tomycz, N.D. The proposed use of cervical spinal cord stimulation for the treatment and prevention of cognitive decline in dementias and neurodegenerative disorders. Med. Hypotheses, 2016, 96, 83-86. doi: 10.1016/j.mehy.2016.10.005 PMID: 27959284
- Rautio, J.; Laine, K.; Gynther, M.; Savolainen, J. Prodrug approaches for CNS delivery. AAPS J., 2008, 10(1), 92-102. doi: 10.1208/s12248-008-9009-8 PMID: 18446509
- Zhong, J.; Guan, X.; Zhong, X.; Cao, F.; Gu, Q.; Guo, T.; Zhou, C.; Zeng, Q.; Wang, J.; Gao, T.; Zhang, M. Levodopa imparts a normalizing effect on default-mode network connectivity in non-demented Parkinsons disease. Neurosci. Lett., 2019, 705, 159-166. doi: 10.1016/j.neulet.2019.04.042 PMID: 31026534
- Misra, A.; Ganesh, S.; Shahiwala, A.; Shah, S.P. Drug delivery to the central nervous system: a review. J. Pharm. Pharm. Sci., 2003, 6(2), 252-273. PMID: 12935438
- Dong, X. Current strategies for brain drug delivery. Theranostics, 2018, 8(6), 1481-1493. doi: 10.7150/thno.21254 PMID: 29556336
- Noble, G.T.; Stefanick, J.F.; Ashley, J.D.; Kiziltepe, T.; Bilgicer, B. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol., 2014, 32(1), 32-45. doi: 10.1016/j.tibtech.2013.09.007 PMID: 24210498
- Donnelly, R.F.; Singh, T.R.R.; Woolfson, A.D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Deliv., 2010, 17(4), 187-207. doi: 10.3109/10717541003667798 PMID: 20297904
- Donnelly, R.F.; Singh, T.R.; Morrow, D.I.; Woolfson, A.D. Microneedle-mediated transdermal drug delivery; John Wiley & Sons,: Ltd: Hoboken,, 2012, 1295, pp. 71-79. doi: 10.1002/9781119959687
- Ma, G.; Wu, C. Microneedle, bio-microneedle and bio-inspired microneedle: A review. J. Control. Release, 2017, 251, 11-23. doi: 10.1016/j.jconrel.2017.02.011 PMID: 28215667
- Chen, X.; Wang, L.; Yu, H.; Li, C.; Feng, J.; Haq, F.; Khan, A.; Khan, R.U. Preparation, properties and challenges of the microneedles-based insulin delivery system. J. Control. Release, 2018, 288, 173-188. doi: 10.1016/j.jconrel.2018.08.042 PMID: 30189223
- Akhtar, N. Microneedles: An innovative approach to transdermal deliveryA review. Int. J. Pharm. Pharm. Sci., 2014, 6, 18-25.
- Williams, A.C.; Barry, B.W. Penetration enhancers. Adv. Drug Deliv. Rev., 2012, 64, 128-137. doi: 10.1016/j.addr.2012.09.032 PMID: 15019749
- Tucak, A.; Sirbubalo, M.; Hindija, L.; Rahić, O.; Hadiabdić, J.; Muhamedagić, K.; Čekić, A.; Vranić, E. Microneedles: Characteristics, materials, production methods and commercial development. Micromachines (Basel), 2020, 11(11), 961. doi: 10.3390/mi11110961 PMID: 33121041
- Yan, G.; Warner, K.S.; Zhang, J.; Sharma, S.; Gale, B.K. Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery. Int. J. Pharm., 2010, 391(1-2), 7-12. doi: 10.1016/j.ijpharm.2010.02.007 PMID: 20188808
- Aldawood, F.K.; Andar, A.; Desai, S. A comprehensive review of microneedles: types, materials, processes, characterizations and applications. Polymers (Basel), 2021, 13(16), 2815. doi: 10.3390/polym13162815 PMID: 34451353
- Verbaan, F.J.; Bal, S.M.; van den Berg, D.J.; Groenink, W.H.H.; Verpoorten, H.; Lüttge, R.; Bouwstra, J.A. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J. Control. Release, 2007, 117(2), 238-245. doi: 10.1016/j.jconrel.2006.11.009 PMID: 17196697
- Pignatello, R., Ed.; Biomaterials: Applications for Nanomedicine; BoDBooks on Demand,, 2011, 15(1), 123-124.
- Gittard, S.D.; Narayan, R.J.; Jin, C.; Ovsianikov, A.; Chichkov, B.N.; Monteiro-Riviere, N.A.; Stafslien, S.; Chisholm, B. Pulsed laser deposition of antimicrobial silver coating on Ormocer® microneedles. Biofabrication, 2009, 1(4), 041001. doi: 10.1088/1758-5082/1/4/041001 PMID: 20661316
- Waghule, T.; Singhvi, G.; Dubey, S.K.; Pandey, M.M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother., 2019, 109, 1249-1258. doi: 10.1016/j.biopha.2018.10.078 PMID: 30551375
- Martin, C.J.; Allender, C.J.; Brain, K.R.; Morrissey, A.; Birchall, J.C. Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. J. Control. Release, 2012, 158(1), 93-101. doi: 10.1016/j.jconrel.2011.10.024 PMID: 22063007
- Donnelly, R.F.; Majithiya, R.; Singh, T.R.R.; Morrow, D.I.J.; Garland, M.J.; Demir, Y.K.; Migalska, K.; Ryan, E.; Gillen, D.; Scott, C.J.; Woolfson, A.D. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm. Res., 2011, 28(1), 41-57. doi: 10.1007/s11095-010-0169-8 PMID: 20490627
- Huang, H.; Fu, C. Different fabrication methods of out-of-plane polymer hollow needle arrays and their variations. J. Micromech. Microeng., 2007, 17(2), 393-402. doi: 10.1088/0960-1317/17/2/027
- Indermun, S.; Luttge, R.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Modi, G.; Pillay, V. Current advances in the fabrication of microneedles for transdermal delivery. J. Control. Release, 2014, 185, 130-138. doi: 10.1016/j.jconrel.2014.04.052 PMID: 24806483
- Li, J.; Zeng, M.; Shan, H.; Tong, C. Microneedle patches as drug and vaccine delivery platform. Curr. Med. Chem., 2017, 24(22), 2413-2422. PMID: 28552053
- Pradeep Narayanan, S.; Raghavan, S. Solid silicon microneedles for drug delivery applications. Int. J. Adv. Manuf. Technol., 2017, 93(1-4), 407-422. doi: 10.1007/s00170-016-9698-6
- Pradeep Narayanan, S.; Raghavan, S. Fabrication and characterization of gold-coated solid silicon microneedles with improved biocompatibility. Int. J. Adv. Manuf. Technol., 2019, 104(9-12), 3327-3333. doi: 10.1007/s00170-018-2596-3
- Song, Y.; Herwadkar, A.; Patel, M.G.; Banga, A.K. Transdermal delivery of cimetidine across microneedle-treated skin: effect of extent of drug ionization on the permeation. J. Pharm. Sci., 2017, 106(5), 1285-1292. doi: 10.1016/j.xphs.2017.01.005 PMID: 28161442
- Ilić, T.; Savić, S.; Batinić, B.; Marković, B.; Schmidberger, M.; Lunter, D.; Savić, M.; Savić, S. Combined use of biocompatible nanoemulsions and solid microneedles to improve transport of a model NSAID across the skin: In vitro and in vivo studies. Eur. J. Pharm. Sci., 2018, 125, 110-119. doi: 10.1016/j.ejps.2018.09.023 PMID: 30287408
- Li, S.; Li, W.; Prausnitz, M. Individually coated microneedles for co-delivery of multiple compounds with different properties. Drug Deliv. Transl. Res., 2018, 8(5), 1043-1052. doi: 10.1007/s13346-018-0549-x PMID: 29948917
- Chen, Y.; Chen, B.Z.; Wang, Q.L.; Jin, X.; Guo, X.D. Fabrication of coated polymer microneedles for transdermal drug delivery. J. Control. Release, 2017, 265, 14-21. doi: 10.1016/j.jconrel.2017.03.383 PMID: 28344014
- Jain, A.K.; Lee, C.H.; Gill, H.S. 5-Aminolevulinic acid coated microneedles for photodynamic therapy of skin tumors. J. Control. Release, 2016, 239, 72-81. doi: 10.1016/j.jconrel.2016.08.015 PMID: 27543445
- Zhu, D.D.; Wang, Q.L.; Liu, X.B.; Guo, X.D. Rapidly separating microneedles for transdermal drug delivery. Acta Biomater., 2016, 41, 312-319. doi: 10.1016/j.actbio.2016.06.005 PMID: 27265152
- Wang, Q.L.; Zhu, D.D.; Liu, X.B.; Chen, B.Z.; Guo, X.D. Microneedles with controlled bubble sizes and drug distributions for efficient transdermal drug delivery. Sci. Rep., 2016, 6(1), 38755. doi: 10.1038/srep38755 PMID: 27929104
- Quinn, H.L.; Bonham, L.; Hughes, C.M.; Donnelly, R.F. Design of a dissolving microneedle platform for transdermal delivery of a fixed-dose combination of cardiovascular drugs. J. Pharm. Sci., 2015, 104(10), 3490-3500. doi: 10.1002/jps.24563 PMID: 26149914
- Yao, G.; Quan, G.; Lin, S.; Peng, T.; Wang, Q.; Ran, H.; Chen, H.; Zhang, Q.; Wang, L.; Pan, X.; Wu, C. Novel dissolving microneedles for enhanced transdermal delivery of levonorgestrel: In vitro and in vivo characterization. Int. J. Pharm., 2017, 534(1-2), 378-386. doi: 10.1016/j.ijpharm.2017.10.035 PMID: 29051119
- Mishra, R.; Maiti, T.K.; Bhattacharyya, T.K. Development of SU-8 hollow microneedles on a silicon substrate with microfluidic interconnects for transdermal drug delivery. J. Micromech. Microeng., 2018, 28(10), 105017. doi: 10.1088/1361-6439/aad301
- van der Maaden, K.; Heuts, J.; Camps, M.; Pontier, M.; Terwisscha van Scheltinga, A.; Jiskoot, W.; Ossendorp, F.; Bouwstra, J. Hollow microneedle-mediated micro-injections of a liposomal HPV E74363 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses. J. Control. Release, 2018, 269, 347-354. doi: 10.1016/j.jconrel.2017.11.035 PMID: 29174441
- Donnelly, R.F.; Singh, T.R.R.; Alkilani, A.Z.; McCrudden, M.T.C.; ONeill, S.; OMahony, C.; Armstrong, K.; McLoone, N.; Kole, P.; Woolfson, A.D. Hydrogel-forming microneedle arrays exhibit antimicrobial properties: Potential for enhanced patient safety. Int. J. Pharm., 2013, 451(1-2), 76-91. doi: 10.1016/j.ijpharm.2013.04.045 PMID: 23644043
- Kim, Y.C.; Park, J.H.; Prausnitz, M.R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev., 2012, 64(14), 1547-1568. doi: 10.1016/j.addr.2012.04.005 PMID: 22575858
- Migdadi, E.M.; Courtenay, A.J.; Tekko, I.A.; McCrudden, M.T.C.; Kearney, M.C.; McAlister, E.; McCarthy, H.O.; Donnelly, R.F. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J. Control. Release, 2018, 285, 142-151. doi: 10.1016/j.jconrel.2018.07.009 PMID: 29990526
- Larrañeta, E.; Lutton, R.E.M.; Woolfson, A.D.; Donnelly, R.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. Rep., 2016, 104, 1-32. doi: 10.1016/j.mser.2016.03.001
- Gill, H.S.; Denson, D.D.; Burris, B.A.; Prausnitz, M.R. Effect of microneedle design on pain in human volunteers. Clin. J. Pain, 2008, 24(7), 585-594. doi: 10.1097/AJP.0b013e31816778f9 PMID: 18716497
- Jose, J.; Netto, G. Role of solid lipid nanoparticles as photoprotective agents in cosmetics. J. Cosmet. Dermatol., 2019, 18(1), 315-321. doi: 10.1111/jocd.12504 PMID: 29441672
- Birchall, J.C.; Clemo, R.; Anstey, A.; John, D.N. Microneedles in clinical practice--an exploratory study into the opinions of healthcare professionals and the public. Pharm. Res., 2011, 28(1), 95-106. doi: 10.1007/s11095-010-0101-2 PMID: 20238152
- Arnou, R.; Frank, M.; Hagel, T.; Prébet, A. Willingness to vaccinate or get vaccinated with an intradermal seasonal influenza vaccine: a survey of general practitioners and the general public in France and Germany. Adv. Ther., 2011, 28(7), 555-565. doi: 10.1007/s12325-011-0035-z PMID: 21626269
- Harilal, S.; Jose, J.; Parambi, D.G.T.; Kumar, R.; Mathew, G.E.; Uddin, M.S.; Kim, H.; Mathew, B. Advancements in nanotherapeutics for Alzheimers disease: current perspectives. J. Pharm. Pharmacol., 2019, 71(9), 1370-1383. doi: 10.1111/jphp.13132 PMID: 31304982
- Duarah, S.; Sharma, M.; Wen, J. Recent advances in microneedle-based drug delivery: Special emphasis on its use in paediatric population. Eur. J. Pharm. Biopharm., 2019, 136, 48-69. doi: 10.1016/j.ejpb.2019.01.005 PMID: 30633972
- Kim, J.; Park, S.; Nam, G.; Choi, Y.; Woo, S.; Yoon, S.H. Bioinspired microneedle insertion for deep and precise skin penetration with low force: Why the application of mechanophysical stimuli should be considered. J. Mech. Behav. Biomed. Mater., 2018, 78, 480-490. doi: 10.1016/j.jmbbm.2017.12.006 PMID: 29248845
- Ye, Z.P.P.; Ai, X.L.; Faramand, A.M.; Fang, F. Macrophages as nanocarriers for drug delivery: Novel therapeutics for central nervous system diseases. J. Nanosci. Nanotechnol., 2018, 18(1), 471-485. doi: 10.1166/jnn.2018.15218 PMID: 29768873
- Lee, Y.H.; Wu, Z.Y. Enhancing macrophage drug delivery efficiency via co-localization of cells and drug-loaded microcarriers in 3D resonant ultrasound field. PLoS One, 2015, 10(8), e0135321. doi: 10.1371/journal.pone.0135321 PMID: 26267789
- Vora, L.K.; Moffatt, K.; Tekko, I.A.; Paredes, A.J.; Volpe-Zanutto, F.; Mishra, D.; Peng, K.; Raj, S.T.R.; Donnelly, R.F. Microneedle array systems for long-acting drug delivery. Eur. J. Pharm. Biopharm., 2021, 159, 44-76. doi: 10.1016/j.ejpb.2020.12.006 PMID: 33359666
- Kataoka, M.; Fukahori, M.; Ikemura, A.; Kubota, A.; Higashino, H.; Sakuma, S.; Yamashita, S. Effects of gastric pH on oral drug absorption: In vitro assessment using a dissolution/permeation system reflecting the gastric dissolution process. Eur. J. Pharm. Biopharm., 2016, 101, 103-111. doi: 10.1016/j.ejpb.2016.02.002 PMID: 26873006
- Liang, Z.; Currais, A.; Soriano-Castell, D.; Schubert, D.; Maher, P. Natural products targeting mitochondria: emerging therapeutics for age-associated neurological disorders. Pharmacol. Ther., 2021, 221, 107749. doi: 10.1016/j.pharmthera.2020.107749 PMID: 33227325
- Alikatte, K.; Palle, S.; Rajendra Kumar, J.; Pathakala, N. Fisetin improved rotenone-induced behavioral deficits, oxidative changes, and mitochondrial dysfunctions in rat model of Parkinsons disease. J. Diet. Suppl., 2021, 18(1), 57-71. doi: 10.1080/19390211.2019.1710646 PMID: 31992104
- Anis, E.; Zafeer, M.F.; Firdaus, F.; Islam, S.N.; Anees, K.A.; Ali, A.; Hossain, M.M. Ferulic acid reinstates mitochondrial dynamics through PGC1α expression modulation in 6-hydroxydopamine lesioned rats. Phytother. Res., 2020, 34(1), 214-226. doi: 10.1002/ptr.6523 PMID: 31657074
- Ansari Dezfouli, M.; Zahmatkesh, M.; Farahmandfar, M.; Khodagholi, F. Melatonin protective effect against amyloid β-induced neurotoxicity mediated by mitochondrial biogenesis; involvement of hippocampal Sirtuin-1 signaling pathway. Physiol. Behav., 2019, 204, 65-75. doi: 10.1016/j.physbeh.2019.02.016 PMID: 30769106
- Ay, M.; Luo, J.; Langley, M.; Jin, H.; Anantharam, V.; Kanthasamy, A.; Kanthasamy, A.G. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinsons Disease. J. Neurochem., 2017, 141(5), 766-782. doi: 10.1111/jnc.14033 PMID: 28376279
- Bak, D.H.; Kim, H.D.; Kim, Y.O.; Park, C.G.; Han, S.Y.; Kim, J.J. Neuroprotective effects of 20(S)-protopanaxadiol against glutamate-induced mitochondrial dysfunction in PC12 cells. Int. J. Mol. Med., 2016, 37(2), 378-386. doi: 10.3892/ijmm.2015.2440 PMID: 26709399
- Chen, Y.; Huang, L.; Zhang, H.; Diao, X.; Zhao, S.; Zhou, W. Reduction in autophagy by (-)-epigallocatechin-3-gallate (EGCG): A potential mechanism of prevention of mitochondrial dysfunction after subarachnoid hemorrhage. Mol. Neurobiol., 2017, 54(1), 392-405. doi: 10.1007/s12035-015-9629-9 PMID: 26742518
- Ding, Y. Kong, D.; Zhou, T.; Yang, N.; Xin, C.; Xu, J.; Wang, Q.; Zhang, H.; Wu, Q.; Lu, X.; Lim, K.; Ma, B.; Zhang, C.; Li, L.; Huang, W. α-Arbutin protects against Parkinsons disease-associated mitochondrial dysfunction in vitro and in vivo. Neuromolecular Med., 2020, 22(1), 56-67. doi: 10.1007/s12017-019-08562-6 PMID: 31401719
- Fu, J.; Jin, J.; Cichewicz, R.H.; Hageman, S.A.; Ellis, T.K.; Xiang, L.; Peng, Q.; Jiang, M.; Arbez, N.; Hotaling, K.; Ross, C.A.; Duan, W. trans-(-)-ε-Viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington Disease. J. Biol. Chem., 2012, 287(29), 24460-24472. doi: 10.1074/jbc.M112.382226 PMID: 22648412
- Jang, Y.; Choo, H.; Lee, M.J.; Han, J.; Kim, S.J.; Ju, X.; Cui, J.; Lee, Y.L.; Ryu, M.J.; Oh, E.S.; Choi, S.Y.; Chung, W.; Kweon, G.R.; Heo, J.Y. Auraptene Mitigates Parkinsons Disease-Like Behavior by Protecting Inhibition of Mitochondrial Respiration and Scavenging Reactive Oxygen Species. Int. J. Mol. Sci., 2019, 20(14), 3409. doi: 10.3390/ijms20143409 PMID: 31336718
- Kim, M.H.; Min, J.S.; Lee, J.Y.; Chae, U.; Yang, E.J.; Song, K.S.; Lee, H.S.; Lee, H.J.; Lee, S.R.; Lee, D.S. Oleuropein isolated from Fraxinus rhynchophylla inhibits glutamate-induced neuronal cell death by attenuating mitochondrial dysfunction. Nutr. Neurosci., 2018, 21(7), 520-528. doi: 10.1080/1028415X.2017.1317449 PMID: 28448247
- Lee, D.H.; Kim, C.S.; Lee, Y.J. Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem. Toxicol., 2011, 49(1), 271-280. doi: 10.1016/j.fct.2010.10.029 PMID: 21056612
- Lee, J.H.; Amarsanaa, K.; Wu, J.; Jeon, S.C.; Cui, Y.; Jung, S.C.; Park, D.B.; Kim, S.J.; Han, S.H.; Kim, H.W.; Rhyu, I.J.; Eun, S.Y. Nobiletin attenuates neurotoxic mitochondrial calcium overload through K + influx and ΔΨ m across mitochondrial inner membrane. Korean J. Physiol. Pharmacol., 2018, 22(3), 311-319. doi: 10.4196/kjpp.2018.22.3.311 PMID: 29719453
- Lv, C.; Liu, X.; Liu, H.; Chen, T.; Zhang, W. Geniposide attenuates mitochondrial dysfunction and memory deficits in APP/PS1 transgenic mice. Curr. Alzheimer Res., 2014, 11(6), 580-587. doi: 10.2174/1567205011666140618095925 PMID: 25034042
- Rashedinia, M.; Saberzadeh, J.; Khosravi Bakhtiari, T.; Hozhabri, S.; Arabsolghar, R. Glycyrrhizic acid ameliorates mitochondrial function and biogenesis against aluminum toxicity in PC12 cells. Neurotox. Res., 2019, 35(3), 584-593. doi: 10.1007/s12640-018-9967-2 PMID: 30317430
- Yang, L.; Ye, C.; Huang, X.; Tang, X.; Zhang, H. Decreased accumulation of subcellular amyloid-β with improved mitochondrial function mediates the neuroprotective effect of huperzine A. J. Alzheimers Dis., 2012, 31(1), 131-142. doi: 10.3233/JAD-2012-120274 PMID: 22531425
- Zafeer, M.F.; Firdaus, F.; Anis, E.; Mobarak, H.M. Prolong treatment with Trans-ferulic acid mitigates bioenergetics loss and restores mitochondrial dynamics in streptozotocin-induced sporadic dementia of Alzheimers type. Neurotoxicology, 2019, 73, 246-257. doi: 10.1016/j.neuro.2019.04.006 PMID: 31029786
- Zheng, A.; Li, H.; Xu, J.; Cao, K.; Li, H.; Pu, W.; Yang, Z.; Peng, Y.; Long, J.; Liu, J.; Feng, Z. Hydroxytyrosol improves mitochondrial function and reduces oxidative stress in the brain of db/db mice: role of AMP-activated protein kinase activation. Br. J. Nutr., 2015, 113(11), 1667-1676. doi: 10.1017/S0007114515000884 PMID: 25885653
- Tao, L.; Huang, X.; Chen, Y.; Tang, X.; Zhang, H. Acetylcholinesterase-independent protective effects of huperzine A against iron overload-induced oxidative damage and aberrant iron metabolism signaling in rat cortical neurons. Acta Pharmacol. Sin., 2016, 37(11), 1391-1400. doi: 10.1038/aps.2016.78 PMID: 27498774
- van der Merwe, C.; van Dyk, H.C.; Engelbrecht, L.; van der Westhuizen, F.H.; Kinnear, C.; Loos, B.; Bardien, S. Curcumin rescues a PINK1 knock down SH-SY5Y cellular model of Parkinsons disease from mitochondrial dysfunction and cell death. Mol. Neurobiol., 2017, 54(4), 2752-2762. doi: 10.1007/s12035-016-9843-0 PMID: 27003823
- Singh, M.; Murthy, V.; Ramassamy, C. Modulation of hydrogen peroxide and acrolein-induced oxidative stress, mitochondrial dysfunctions and redox regulated pathways by the Bacopa monniera extract: potential implication in Alzheimers disease. J. Alzheimers Dis., 2010, 21(1), 229-247. doi: 10.3233/JAD-2010-091729 PMID: 20421692
- Yan, Q.; Wang, W.; Weng, J.; Zhang, Z.; Yin, L.; Yang, Q.; Guo, F.; Wang, X.; Chen, F.; Yang, G. Dissolving microneedles for transdermal delivery of huperzine A for the treatment of Alzheimers disease. Drug Deliv., 2020, 27(1), 1147-1155. doi: 10.1080/10717544.2020.1797240 PMID: 32729341
- Prabhu, A.; Jose, J.; Kumar, L.; Salwa, S.; Vijay, K.M.; Nabavi, S.M. Transdermal delivery of curcumin-loaded solid lipid nanoparticles as microneedle patch: An in vitro and in vivo study. AAPS PharmSciTech, 2022, 23(1), 49. doi: 10.1208/s12249-021-02186-5 PMID: 34988698
- Joy, D.; Jose, J.; Bibi, S.; Bandiwadekar, A.; Gopan, G.; Mariana Gonçalves Lima, C.; Bin Emran, T.; A, Alhumaydhi. F.; Ashtekar, H.; D S, S.; Adam Conte-Junior, C. Development of microneedle patch loaded with Bacopa monnieri solid lipid nanoparticles for the effective management of Parkinsons disease. Bioinorg. Chem. Appl., 2022, 2022, 9150205. doi: 10.1155/2022/9150205 PMID: 35992047
- Zhou, X.; Li, B.; Guo, M.; Peng, W.; Wang, D.; Guo, Q.; Wang, S.; Ming, D.; Zheng, B. Microneedle patch based on molecular motor as a spatio-temporal controllable dosing strategy of L-DOPA for Parkinsons disease. Chem. Eng. J., 2022, 427, 131555. doi: 10.1016/j.cej.2021.131555
- Singh, N.D.; Banga, A.K. Controlled delivery of ropinirole hydrochloride through skin using modulated iontophoresis and microneedles. J. Drug Target., 2013, 21(4), 354-366. doi: 10.3109/1061186X.2012.757768 PMID: 23311703
- Matsuo, K.; Okamoto, H.; Kawai, Y.; Quan, Y.S.; Kamiyama, F.; Hirobe, S.; Okada, N.; Nakagawa, S. Vaccine efficacy of transcutaneous immunization with amyloid β using a dissolving microneedle array in a mouse model of Alzheimers disease. J. Neuroimmunol., 2014, 266(1-2), 1-11. doi: 10.1016/j.jneuroim.2013.11.002 PMID: 24315156
- Kearney, M.C.; Caffarel-Salvador, E.; Fallows, S.J.; McCarthy, H.O.; Donnelly, R.F. Microneedle-mediated delivery of donepezil: Potential for improved treatment options in Alzheimers disease. Eur. J. Pharm. Biopharm., 2016, 103, 43-50. doi: 10.1016/j.ejpb.2016.03.026 PMID: 27018330
- Kim, J.Y.; Han, M.R.; Kim, Y.H.; Shin, S.W.; Nam, S.Y.; Park, J.H. Tip-loaded dissolving microneedles for transdermal delivery of donepezil hydrochloride for treatment of Alzheimers disease. Eur. J. Pharm. Biopharm., 2016, 105, 148-155. doi: 10.1016/j.ejpb.2016.06.006 PMID: 27288938
- Hoang, M.; Ita, K.; Bair, D. Solid microneedles for transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride. Pharmaceutics, 2015, 7(4), 379-396. doi: 10.3390/pharmaceutics7040379 PMID: 26426039
- Jung, J.H.; Jin, S.G. Microneedle for transdermal drug delivery: current trends and fabrication. J. Pharm. Investig., 2021, 51(5), 503-517. doi: 10.1007/s40005-021-00512-4 PMID: 33686358
Дополнительные файлы
