Sex Differences in Stress Response: Classical Mechanisms and Beyond


Cite item

Full Text

Abstract

Neuropsychiatric disorders, which are associated with stress hormone dysregulation, occur at different rates in men and women. Moreover, nowadays, preclinical and clinical evidence demonstrates that sex and gender can lead to differences in stress responses that predispose males and females to different expressions of similar pathologies. In this curated review, we focus on what is known about sex differences in classic mechanisms of stress response, such as glucocorticoid hormones and corticotrophin-releasing factor (CRF), which are components of the hypothalamicpituitary- adrenal (HPA) axis. Then, we present sex differences in neurotransmitter levels, such as serotonin, dopamine, glutamate and GABA, as well as indices of neurodegeneration, such as amyloid β and Tau. Gonadal hormone effects, such as estrogens and testosterone, are also discussed throughout the review. We also review in detail preclinical data investigating sex differences caused by recentlyrecognized regulators of stress and disease, such as the immune system, genetic and epigenetic mechanisms, as well neurosteroids. Finally, we discuss how understanding sex differences in stress responses, as well as in pharmacology, can be leveraged into novel, more efficacious therapeutics for all. Based on the supporting evidence, it is obvious that incorporating sex as a biological variable into preclinical research is imperative for the understanding and treatment of stress-related neuropsychiatric disorders, such as depression, anxiety and Alzheimer’s disease.

About the authors

Georgia Hodes

Virginia Tech, School of Neuroscience

Email: info@benthamscience.net

Debra Bangasser

Center for Behavioral Neuroscience, Georgia State University

Email: info@benthamscience.net

Ioannis Sotiropoulos

, Institute of Biosciences & Applications NCSR "Demokritos

Email: info@benthamscience.net

Nikolaos Kokras

Department of Pharmacology, Medical School,, National and Kapodistrian University of Athens

Email: info@benthamscience.net

Christina Dalla

Department of Pharmacology, Medical School, National and Kapodistrian University of Athens

Author for correspondence.
Email: info@benthamscience.net

References

  1. Munck, A.; Guyre, P.M.; Holbrook, N.J. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr. Rev., 1984, 5(1), 25-44. doi: 10.1210/edrv-5-1-25 PMID: 6368214
  2. McEwen, B.S.; Gianaros, P.J. Stress- and allostasis-induced brain plasticity. Annu. Rev. Med., 2011, 62(1), 431-445. doi: 10.1146/annurev-med-052209-100430 PMID: 20707675
  3. Lyons, D.M.; Parker, K.J.; Schatzberg, A.F. Animal models of early life stress: Implications for understanding resilience. Dev. Psychobiol., 2010, 52(7), 616-624. doi: 10.1002/dev.20500 PMID: 20957724
  4. Masten, A.S. Ordinary magic: Resilience processes in development. Am. Psychol., 2001, 56(3), 227-238. doi: 10.1037/0003-066X.56.3.227 PMID: 11315249
  5. De Berardis, D.; Fornaro, M.; Orsolini, L. Editorial: "No Words for Feelings, Yet!" exploring alexithymia, disorder of affect regulation, and the "Mind-Body" connection. Front. Psychiatry, 2020, 11, 593462. doi: 10.3389/fpsyt.2020.593462 PMID: 33061929
  6. Grandinetti, P.; Gooney, M.; Scheibein, F.; Testa, R.; Ruggieri, G.; Tondo, P.; Corona, A.; Boi, G.; Floris, L.; Profeta, V.F.; G. Wells, J.S.; De Berardis, D. Stress and maladaptive coping of italians health care professionals during the first wave of the pandemic. Brain Sci., 2021, 11(12), 1586. doi: 10.3390/brainsci11121586 PMID: 34942888
  7. Wilson, R.S.; Arnold, S.E.; Schneider, J.A.; Kelly, J.F.; Tang, Y.; Bennett, D.A. Chronic psychological distress and risk of Alzheimer’s disease in old age. Neuroepidemiology, 2006, 27(3), 143-153. doi: 10.1159/000095761 PMID: 16974109
  8. Riboni, F.V.; Belzung, C. Stress and psychiatric disorders: From categorical to dimensional approaches. Curr. Opin. Behav. Sci., 2017, 14, 72-77. doi: 10.1016/j.cobeha.2016.12.011
  9. Newman, S.C.; Bland, R.C. Life events and the 1-year prevalence of major depressive episode, generalized anxiety disorder, and panic disorder in a community sample. Compr. Psychiatry, 1994, 35(1), 76-82. doi: 10.1016/0010-440X(94)90173-2 PMID: 8149733
  10. Altemus, M.; Sarvaiya, N.; Epperson, N.C. Sex differences in anxiety and depression clinical perspectives. Front. Neuroendocrinol., 2014, 35(3), 320-330. doi: 10.1016/j.yfrne.2014.05.004 PMID: 24887405
  11. Kessler, R.C.; Petukhova, M.; Sampson, N.A.; Zaslavsky, A.M.; Wittchen, H.U. Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. Int. J. Methods Psychiatr. Res., 2012, 21(3), 169-184. doi: 10.1002/mpr.1359 PMID: 22865617
  12. Marcus, S.M.; Young, E.A.; Kerber, K.B.; Kornstein, S.; Farabaugh, A.H.; Mitchell, J.; Wisniewski, S.R.; Balasubramani, G.K.; Trivedi, M.H.; Rush, A.J. Gender differences in depression: Findings from the STAR*D study. J. Affect. Disord., 2005, 87(2-3), 141-150. doi: 10.1016/j.jad.2004.09.008 PMID: 15982748
  13. McLean, C.P.; Asnaani, A.; Litz, B.T.; Hofmann, S.G. Gender differences in anxiety disorders: Prevalence, course of illness, comorbidity and burden of illness. J. Psychiatr. Res., 2011, 45(8), 1027-1035. doi: 10.1016/j.jpsychires.2011.03.006 PMID: 21439576
  14. Kessler, R.C.; Aguilar-Gaxiola, S.; Alonso, J.; Chatterji, S.; Lee, S.; Ormel, J.; Üstün, T.B.; Wang, P.S. The global burden of mental disorders: An update from the WHO World Mental Health (WMH) Surveys. Epidemiol. Psichiatr. Soc., 2009, 18(1), 23-33. doi: 10.1017/S1121189X00001421 PMID: 19378696
  15. Tolin, D.F.; Foa, E.B. Sex differences in trauma and posttraumatic stress disorder: A quantitative review of 25 years of research. Psychol. Bull., 2006, 132(6), 959-992. doi: 10.1037/0033-2909.132.6.959 PMID: 17073529
  16. Lydiard, R.B. Irritable bowel syndrome, anxiety, and depression: what are the links? J. Clin. Psychiatry, 2001, 62(S8), 38-45. PMID: 12108820
  17. Beghi, E.; Allais, G.; Cortelli, P.; D’Amico, D.; De Simone, R.; d’Onofrio, F.; Genco, S.; Manzoni, G.C.; Moschiano, F.; Tonini, M.C.; Torelli, P.; Quartaroli, M.; Roncolato, M.; Salvi, S.; Bussone, G. Headache and anxiety-depressive disorder comorbidity: The HADAS study. Neurol. Sci., 2007, 28(S2), S217-S219. doi: 10.1007/s10072-007-0780-6 PMID: 17508174
  18. van Mill, J.G.; Hoogendijk, W.J.G.; Vogelzangs, N.; van Dyck, R.; Penninx, B.W.J.H. Insomnia and sleep duration in a large cohort of patients with major depressive disorder and anxiety disorders. J. Clin. Psychiatry, 2010, 71(3), 239-246. doi: 10.4088/JCP.09m05218gry PMID: 20331928
  19. Lipton, R.B.; Stewart, W.F.; Diamond, S.; Diamond, M.L.; Reed, M. Prevalence and burden of migraine in the United States: Data from the American Migraine Study II. Headache, 2001, 41(7), 646-657. doi: 10.1046/j.1526-4610.2001.041007646.x PMID: 11554952
  20. Singareddy, R.; Vgontzas, A.N.; Fernandez-Mendoza, J.; Liao, D.; Calhoun, S.; Shaffer, M.L.; Bixler, E.O. Risk factors for incident chronic insomnia: A general population prospective study. Sleep Med., 2012, 13(4), 346-353. doi: 10.1016/j.sleep.2011.10.033 PMID: 22425576
  21. Drossman, D.A.; Thompson, W.G.; Talley, N.J.; Funch-Jensen, P.; Janssens, J.; Whitehead, W.E. Identification of sub-groups of functional gastrointestinal disorders. Gastroenterol. Intl., 1990, 3(4), 159-172.
  22. Gao, S.; Hendrie, H.C.; Hall, K.S.; Hui, S. The relationships between age, sex, and the incidence of dementia and Alzheimer disease: A meta-analysis. Arch. Gen. Psychiatry, 1998, 55(9), 809-815. doi: 10.1001/archpsyc.55.9.809 PMID: 9736007
  23. Medeiros, A.M.; Silva, R.H. Sex differences in Alzheimer’s Disease: Where do we stand? J. Alzheimers Dis., 2019, 67(1), 35-60. doi: 10.3233/JAD-180213 PMID: 30530972
  24. Novais, F.; Starkstein, S. Phenomenology of depression in Alzheimer’s Disease. J. Alzheimers Dis., 2015, 47(4), 845-855. doi: 10.3233/JAD-148004 PMID: 26401763
  25. Kouzoupis, A.V.; Lyrakos, D.; Kokras, N.; Panagiotarakou, M.; Syrigos, K.N.; Papadimitriou, G.N. Dysfunctional remembered parenting in oncology outpatients affects psychological distress symptoms in a gender‐specific manner. Stress Health, 2012, 28(5), 381-388. doi: 10.1002/smi.2460 PMID: 23023836
  26. Riecher-Rössler, A.; Butler, S.; Kulkarni, J. Sex and gender differences in schizophrenic psychoses-a critical review. Arch. Women Ment. Health, 2018, 21(6), 627-648. doi: 10.1007/s00737-018-0847-9 PMID: 29766281
  27. McGrath, J.; Saha, S.; Chant, D.; Welham, J. Schizophrenia: A concise overview of incidence, prevalence, and mortality. Epidemiol. Rev., 2008, 30(1), 67-76. doi: 10.1093/epirev/mxn001 PMID: 18480098
  28. Green, M.J.; Girshkin, L.; Teroganova, N.; Quidé, Y. Stress,Schizophrenia and Bipolar Disorder; In: Behavioral Neurobiology of Stress-related Disorders, SpringerLink; , 2014, pp. 217-235.
  29. Martin, L.A.; Neighbors, H.W.; Griffith, D.M. The experience of symptoms of depression in men vs. women: Analysis of the national comorbidity survey replication. JAMA Psychiatry, 2013, 70(10), 1100-1106. doi: 10.1001/jamapsychiatry.2013.1985 PMID: 23986338
  30. Gururajan, A.; Reif, A.; Cryan, J.F.; Slattery, D.A. The future of rodent models in depression research. Nat. Rev. Neurosci., 2019, 20(11), 686-701. doi: 10.1038/s41583-019-0221-6 PMID: 31578460
  31. Beery, A.K.; Zucker, I. Sex bias in neuroscience and biomedical research. Neurosci. Biobehav. Rev., 2011, 35(3), 565-572. doi: 10.1016/j.neubiorev.2010.07.002 PMID: 20620164
  32. Tannenbaum, C.; Schwarz, J.M.; Clayton, J.A.; de Vries, G.J.; Sullivan, C. Evaluating sex as a biological variable in preclinical research: The devil in the details. Biol. Sex Differ., 2016, 7(1), 13. doi: 10.1186/s13293-016-0066-x PMID: 26870316
  33. Mamlouk, G.M.; Dorris, D.M.; Barrett, L.R.; Meitzen, J. Sex bias and omission in neuroscience research is influenced by research model and journal, but not reported NIH funding. Front. Neuroendocrinol., 2020, 57, 100835. doi: 10.1016/j.yfrne.2020.100835 PMID: 32070715
  34. Rechlin, R.K.; Splinter, T.F.L.; Hodges, T.E.; Albert, A.Y.; Galea, L.A.M. An analysis of neuroscience and psychiatry papers published from 2009 and 2019 outlines opportunities for increasing discovery of sex differences. Nat. Commun., 2022, 13(1), 2137. doi: 10.1038/s41467-022-29903-3 PMID: 35440664
  35. Dalla, C. Integrating sex and gender in mental health research: Enhanced funding for better treatments. Nat. Mental Health, 2023, 1(6), 383-384. doi: 10.1038/s44220-023-00076-2
  36. Kokras, N.; Hodes, G.E.; Bangasser, D.A.; Dalla, C. Sex differences in the hypothalamic-pituitary-adrenal axis: An obstacle to antidepressant drug development? Br. J. Pharmacol., 2019, 176(21), 4090-4106. doi: 10.1111/bph.14710 PMID: 31093959
  37. Atkinson, H.C.; Waddell, B.J. Circadian variation in basal plasma corticosterone and adrenocorticotropin in the rat: sexual dimorphism and changes across the estrous cycle. Endocrinology, 1997, 138(9), 3842-3848. doi: 10.1210/endo.138.9.5395 PMID: 9275073
  38. Weinstock, M.; Razin, M.; Schorer-apelbaum, D.; Men, D.; McCarty, R. Gender differences in sympathoadrenal activity in rats at rest and in response to footshock stress. Int. J. Dev. Neurosci., 1998, 16(3-4), 289-295. doi: 10.1016/S0736-5748(98)00021-5 PMID: 9785125
  39. Kokras, N.; Pastromas, N.; Papasava, D.; de Bournonville, C.; Cornil, C.A.; Dalla, C. Sex differences in behavioral and neurochemical effects of gonadectomy and aromatase inhibition in rats. Psychoneuroendocrinology, 2018, 87, 93-107. doi: 10.1016/j.psyneuen.2017.10.007 PMID: 29054014
  40. Dalla, C.; Antoniou, K.; Drossopoulou, G.; Xagoraris, M.; Kokras, N.; Sfikakis, A.; Papadopoulou-Daifoti, Z. Chronic mild stress impact: Are females more vulnerable? Neuroscience, 2005, 135(3), 703-714. doi: 10.1016/j.neuroscience.2005.06.068 PMID: 16125862
  41. Bangasser, D.A.; Valentino, R.J. Sex differences in stress-related psychiatric disorders: Neurobiological perspectives. Front. Neuroendocrinol., 2014, 35(3), 303-319. doi: 10.1016/j.yfrne.2014.03.008 PMID: 24726661
  42. Kokras, N.; Sotiropoulos, I.; Pitychoutis, P.M.; Almeida, O.F.X.; Papadopoulou-Daifoti, Z. Citalopram-mediated anxiolysis and differing neurobiological responses in both sexes of a genetic model of depression. Neuroscience, 2011, 194, 62-71. doi: 10.1016/j.neuroscience.2011.07.077 PMID: 21839808
  43. Gala, R.R.; Westphal, U. Further studies on the corticosteroid-binding globulin in the rat: Proposed endocrine control. Endocrinology, 1966, 79(1), 67-76. doi: 10.1210/endo-79-1-67 PMID: 5917132
  44. Oyola, M.G.; Handa, R.J. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: Sex differences in regulation of stress responsivity. Stress, 2017, 20(5), 476-494. doi: 10.1080/10253890.2017.1369523 PMID: 28859530
  45. Kokras, N.; Dalla, C.; Sideris, A.C.; Dendi, A.; Mikail, H.G.; Antoniou, K.; Papadopoulou-Daifoti, Z. Behavioral sexual dimorphism in models of anxiety and depression due to changes in HPA axis activity. Neuropharmacology, 2012, 62(1), 436-445. doi: 10.1016/j.neuropharm.2011.08.025 PMID: 21884710
  46. Kokras, N.; Krokida, S.; Varoudaki, T.Z.; Dalla, C. Do corticosterone levels predict female depressive‐like behavior in rodents? J. Neurosci. Res., 2021, 99(1), 324-331. doi: 10.1002/jnr.24686 PMID: 32640495
  47. Rivier, C. Gender, sex steroids, corticotropin-releasing factor, nitric oxide, and the HPA response to stress. Pharmacol. Biochem. Behav., 1999, 64(4), 737-751. doi: 10.1016/S0091-3057(99)00148-3 PMID: 10593197
  48. Viau, V.; Bingham, B.; Davis, J.; Lee, P.; Wong, M. Gender and puberty interact on the stress-induced activation of parvocellular neurosecretory neurons and corticotropin-releasing hormone messenger ribonucleic acid expression in the rat. Endocrinology, 2005, 146(1), 137-146. doi: 10.1210/en.2004-0846 PMID: 15375029
  49. Wood, G.E.; Beylin, A.V.; Shors, T.J. The contribution of adrenal and reproductive hormones to the opposing effects of stress on trace conditioning males versus females. Behav. Neurosci., 2001, 115(1), 175-187. doi: 10.1037/0735-7044.115.1.175 PMID: 11256441
  50. Bangasser, D.A.; Shors, T.J. The hippocampus is necessary for enhancements and impairments of learning following stress. Nat. Neurosci., 2007, 10(11), 1401-1403. doi: 10.1038/nn1973 PMID: 17906620
  51. Dalla, C.; Shors, T.J. Sex differences in learning processes of classical and operant conditioning. Physiol. Behav., 2009, 97(2), 229-238. doi: 10.1016/j.physbeh.2009.02.035 PMID: 19272397
  52. Dalla, C.; Whetstone, A.S.; Hodes, G.E.; Shors, T.J. Stressful experience has opposite effects on dendritic spines in the hippocampus of cycling versus masculinized females. Neurosci. Lett., 2009, 449(1), 52-56. doi: 10.1016/j.neulet.2008.10.051 PMID: 18952150
  53. Shors, T.J.; Chua, C.; Falduto, J. Sex differences and opposite effects of stress on dendritic spine density in the male versus female hippocampus. J. Neurosci., 2001, 21(16), 6292-6297. doi: 10.1523/JNEUROSCI.21-16-06292.2001 PMID: 11487652
  54. Leuner, B.; Shors, T.J. New spines, new memories. Mol. Neurobiol., 2004, 29(2), 117-130. doi: 10.1385/MN:29:2:117 PMID: 15126680
  55. Dalla, C.; Pitychoutis, P.M.; Kokras, N.; Papadopoulou-Daifoti, Z. Sex differences in response to stress and expression of depressive-like behaviours in the rat. Curr. Top. Behav. Neurosci., 2011, 8, 97-118.
  56. Kokras, N.; Antoniou, K.; Dalla, C.; Bekris, S.; Xagoraris, M.; Ovestreet, D.H.; Papadopoulou-Daifoti, Z. Sex-related differential response to clomipramine treatment in a rat model of depression. J. Psychopharmacol., 2009, 23(8), 945-956. doi: 10.1177/0269881108095914 PMID: 18755816
  57. Mikail, H.G.; Dalla, C.; Kokras, N.; Kafetzopoulos, V.; Papadopoulou-Daifoti, Z. Sertraline behavioral response associates closer and dose-dependently with cortical rather than hippocampal serotonergic activity in the rat forced swim stress. Physiol. Behav., 2012, 107(2), 201-206. doi: 10.1016/j.physbeh.2012.06.016 PMID: 22771833
  58. Dalla, C.; Antoniou, K.; Kokras, N.; Drossopoulou, G.; Papathanasiou, G.; Bekris, S.; Daskas, S.; Papadopoulou-Daifoti, Z. Sex differences in the effects of two stress paradigms on dopaminergic neurotransmission. Physiol. Behav., 2008, 93(3), 595-605. doi: 10.1016/j.physbeh.2007.10.020 PMID: 18031771
  59. Kokras, N.; Antoniou, K.; Polissidis, A.; Papadopoulou-Daifoti, Z. Antidepressants induce regionally discrete, sex-dependent changes in brain’s glutamate content. Neurosci. Lett., 2009, 464(2), 98-102. doi: 10.1016/j.neulet.2009.08.011 PMID: 19666087
  60. Shors, T.J.; Falduto, J.; Leuner, B. The opposite effects of stress on dendritic spines in male vs. female rats are NMDA receptor-dependent. Eur. J. Neurosci., 2004, 19(1), 145-150. doi: 10.1046/j.1460-9568.2003.03065.x PMID: 14750972
  61. Kokras, N.; Sotiropoulos, I.; Besinis, D.; Tzouveka, E.L.; Almeida, O.F.X.; Sousa, N.; Dalla, C. Neuroplasticity-related correlates of environmental enrichment combined with physical activity differ between the sexes. Eur. Neuropsychopharmacol., 2019, 29(1), 1-15. doi: 10.1016/j.euroneuro.2018.11.1107 PMID: 30497839
  62. Andolina, D.; Maran, D.; Viscomi, M.T.; Puglisi-Allegra, S. Strain-dependent variations in stress coping behavior are mediated by a 5-HT/GABA interaction within the prefrontal corticolimbic system. Int. J. Neuropsychopharmacol., 2015, 18(3), pyu074. doi: 10.1093/ijnp/pyu074 PMID: 25522413
  63. Treccani, G.; Musazzi, L.; Perego, C.; Milanese, M.; Nava, N.; Bonifacino, T.; Lamanna, J.; Malgaroli, A.; Drago, F.; Racagni, G.; Nyengaard, J.R.; Wegener, G.; Bonanno, G.; Popoli, M. Acute stress rapidly increases the readily releasable pool of glutamate vesicles in prefrontal and frontal cortex through non-genomic action of corticosterone. Mol. Psychiatry, 2014, 19(4), 401. doi: 10.1038/mp.2014.20 PMID: 24658610
  64. Bremner, J.D.; Licinio, J.; Darnell, A.; Krystal, J.H.; Owens, M.J.; Southwick, S.M.; Nemeroff, C.B.; Charney, D.S. Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am. J. Psychiatry, 1997, 154(5), 624-629. doi: 10.1176/ajp.154.5.624 PMID: 9137116
  65. Banki, C.M.; Karmacsi, L.; Bissette, G.; Nemeroff, C.B. CSF corticotropin-releasing hormone and somatostatin in major depression: Response to antidepressant treatment and relapse. Eur. Neuropsychopharmacol., 1992, 2(2), 107-113. doi: 10.1016/0924-977X(92)90019-5 PMID: 1352999
  66. Heuser, I.; Bissette, G.; Dettling, M.; Schweiger, U.; Gotthardt, U.; Schmider, J.; Lammers, C.H.; Nemeroff, C.B.; Holsboer, F. Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and healthy controls: Response to amitriptyline treatment. Depress. Anxiety, 1998, 8(2), 71-79. doi: 10.1002/(SICI)1520-6394(1998)8:23.0.CO;2-N PMID: 9784981
  67. Austin, M.C.; Janosky, J.E.; Murphy, H.A. Increased corticotropin-releasing hormone immunoreactivity in monoamine-containing pontine nuclei of depressed suicide men. Mol. Psychiatry, 2003, 8(3), 324-332. doi: 10.1038/sj.mp.4001250 PMID: 12660805
  68. Bissette, G.; Klimek, V.; Pan, J.; Stockmeier, C.; Ordway, G. Elevated concentrations of CRF in the locus coeruleus of depressed subjects. Neuropsychopharmacology, 2003, 28(7), 1328-1335. doi: 10.1038/sj.npp.1300191 PMID: 12784115
  69. Vandael, D.; Gounko, N.V. Corticotropin releasing factor-binding protein (CRF-BP) as a potential new therapeutic target in Alzheimer’s disease and stress disorders. Transl. Psychiatry, 2019, 9(1), 272. doi: 10.1038/s41398-019-0581-8 PMID: 31641098
  70. Pomara, N.; Greenberg, W.M.; Branford, M.D.; Doraiswamy, P.M. Therapeutic implications of HPA axis abnormalities in Alzheimer’s disease: Review and update. Psychopharmacol. Bull., 2003, 37(2), 120-134. PMID: 14674372
  71. Whitehouse, P.J.; Vale, W.W.; Zweig, R.M.; Singer, H.S.; Mayeux, R.; Kuhar, M.J.; Price, D.L.; De Souza, E.B. Reductions in corticotropin releasing factor-like immunoreactivity in cerebral cortex in Alzheimer’s disease, Parkinson’s disease, and progressive supranuclear palsy. Neurology, 1987, 37(6), 905-909. doi: 10.1212/WNL.37.6.905 PMID: 3495748
  72. Souza, E.B.D. CRH defects in Alzheimer’s and other neurologic diseases. Hosp. Pract., 1988, 23(9), 59-71. doi: 10.1080/21548331.1988.11703535 PMID: 2901426
  73. Gallucci, W.T.; Baum, A.; Laue, L.; Rabin, D.S.; Chrousos, G.P.; Gold, P.W.; Kling, M.A. Sex differences in sensitivity of the hypothalamic-pituitary-adrenal axis. Health Psychol., 1993, 12(5), 420-425. doi: 10.1037/0278-6133.12.5.420 PMID: 8223368
  74. Bangasser, D.A.; Wiersielis, K.R. Sex differences in stress responses: A critical role for corticotropin-releasing factor. Hormones, 2018, 17(1), 5-13. doi: 10.1007/s42000-018-0002-z PMID: 29858858
  75. Dunčko, R.; Kiss, A.; Škultétyová, I.; Rusnák, M.; Ježová, D. Corticotropin-releasing hormone mRNA levels in response to chronic mild stress rise in male but not in female rats while tyrosine hydroxylase mRNA levels decrease in both sexes. Psychoneuroendocrinology, 2001, 26(1), 77-89. doi: 10.1016/S0306-4530(00)00040-8 PMID: 11070336
  76. Speert, D.B.; McClennen, S.J.; Seasholtz, A.F. Sexually dimorphic expression of corticotropin-releasing hormone-binding protein in the mouse pituitary. Endocrinology, 2002, 143(12), 4730-4741. doi: 10.1210/en.2002-220556 PMID: 12446601
  77. Wiersielis, K.R.; Ceretti, A.; Hall, A.; Famularo, S.T.; Salvatore, M.; Ellis, A.S.; Jang, H.; Wimmer, M.E.; Bangasser, D.A. Sex differences in corticotropin releasing factor regulation of medial septum-mediated memory formation. Neurobiol. Stress, 2019, 10, 100150. doi: 10.1016/j.ynstr.2019.100150 PMID: 30937355
  78. Bale, T.L.; Vale, W.W. Increased depression-like behaviors in corticotropin-releasing factor receptor-2-deficient mice: sexually dichotomous responses. J. Neurosci., 2003, 23(12), 5295-5301. doi: 10.1523/JNEUROSCI.23-12-05295.2003 PMID: 12832554
  79. Bale, T.L.; Picetti, R.; Contarino, A.; Koob, G.F.; Vale, W.W.; Lee, K.F. Mice deficient for both corticotropin-releasing factor receptor 1 (CRFR1) and CRFR2 have an impaired stress response and display sexually dichotomous anxiety-like behavior. J. Neurosci., 2002, 22(1), 193-199. doi: 10.1523/JNEUROSCI.22-01-00193.2002 PMID: 11756502
  80. Bale, T.L. Sensitivity to stress: Dysregulation of CRF pathways and disease development. Horm. Behav., 2005, 48(1), 1-10. doi: 10.1016/j.yhbeh.2005.01.009 PMID: 15919381
  81. Weathington, J.M.; Hamki, A.; Cooke, B.M. Sex- and region-specific pubertal maturation of the corticotropin-releasing factor receptor system in the rat. J. Comp. Neurol., 2014, 522(6), 1284-1298. doi: 10.1002/cne.23475 PMID: 24115088
  82. Rosinger, Z.J.; Jacobskind, J.S.; Park, S.G.; Justice, N.J.; Zuloaga, D.G. Distribution of corticotropin-releasing factor receptor 1 in the developing mouse forebrain: A novel sex difference revealed in the rostral periventricular hypothalamus. Neuroscience, 2017, 361, 167-178. doi: 10.1016/j.neuroscience.2017.08.016 PMID: 28823817
  83. Rosinger, Z.J.; De Guzman, R.M.; Jacobskind, J.S.; Saglimbeni, B.; Malone, M.; Fico, D.; Justice, N.J.; Forni, P.E.; Zuloaga, D.G. Sex-dependent effects of chronic variable stress on discrete corticotropin-releasing factor receptor 1 cell populations. Physiol. Behav., 2020, 219, 112847. doi: 10.1016/j.physbeh.2020.112847 PMID: 32081812
  84. Howerton, A.R.; Roland, A.V.; Fluharty, J.M.; Marshall, A.; Chen, A.; Daniels, D.; Beck, S.G.; Bale, T.L. Sex differences in corticotropin-releasing factor receptor-1 action within the dorsal raphe nucleus in stress responsivity. Biol. Psychiatry, 2014, 75(11), 873-883. doi: 10.1016/j.biopsych.2013.10.013 PMID: 24289884
  85. Williams, T.J.; Akama, K.T.; Knudsen, M.G.; McEwen, B.S.; Milner, T.A. Ovarian hormones influence corticotropin releasing factor receptor colocalization with delta opioid receptors in CA1 pyramidal cell dendrites. Exp. Neurol., 2011, 230(2), 186-196. doi: 10.1016/j.expneurol.2011.04.012 PMID: 21549703
  86. Hauger, R.L.; Risbrough, V.; Oakley, R.H.; Olivares-Reyes, J.A.; Dautzenberg, F.M. Role of CRF receptor signaling in stress vulnerability, anxiety, and depression. Ann. N. Y. Acad. Sci., 2009, 1179(1), 120-143. doi: 10.1111/j.1749-6632.2009.05011.x PMID: 19906236
  87. Hillhouse, E.W.; Grammatopoulos, D.K. The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocr. Rev., 2006, 27(3), 260-286. doi: 10.1210/er.2005-0034 PMID: 16484629
  88. Berridge, C.W.; Foote, S.L. Effects of locus coeruleus activation on electroencephalographic activity in neocortex and hippocampus. J. Neurosci., 1991, 11(10), 3135-3145. doi: 10.1523/JNEUROSCI.11-10-03135.1991 PMID: 1682425
  89. Berridge, C.W.; Waterhouse, B.D. The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev., 2003, 42(1), 33-84. doi: 10.1016/S0165-0173(03)00143-7 PMID: 12668290
  90. Gary, Aston-Jones. M.G. Role of the locus coeruleusnorepinephrine system in arousal and circadian regulation of the sleep-wake cycle. In: Brain norepinephrine: Neurobiology and therapeutics; Ordway, G.A; Frazer, A, Eds.; Cambridge University Press,, 2007, pp. 157-195.
  91. Bangasser, D.A.; Curtis, A.; Reyes, B.A.; Bethea, T.T.; Parastatidis, I.; Ischiropoulos, H.; Van Bockstaele, E.J.; Valentino, R.J. Sex differences in corticotropin-releasing factor receptor signaling and trafficking: Potential role in female vulnerability to stress-related psychopathology. Mol. Psychiatry, 2010, 15(9), 877-896-904. doi: 10.1038/mp.2010.89 PMID: 20548297
  92. Bates, M.L.S.; Arner, J.R.; Curtis, A.L.; Valentino, R.; Bhatnagar, S. Sex-specific alterations in corticotropin-releasing factor regulation of coerulear-cortical network activity. Neuropharmacology, 2023, 223, 109317. doi: 10.1016/j.neuropharm.2022.109317 PMID: 36334761
  93. Coker, A.L.; Weston, R.; Creson, D.L.; Justice, B.; Blakeney, P. PTSD symptoms among men and women survivors of intimate partner violence: the role of risk and protective factors. Violence Vict., 2005, 20(6), 625-643. doi: 10.1891/0886-6708.20.6.625 PMID: 16468442
  94. Breslau, N.; Chilcoat, H.D.; Kessler, R.C.; Peterson, E.L.; Lucia, V.C. Vulnerability to assaultive violence: further specification of the sex difference in post-traumatic stress disorder. Psychol. Med., 1999, 29(4), 813-821. doi: 10.1017/S0033291799008612 PMID: 10473308
  95. Plante, D.T.; Landsness, E.C.; Peterson, M.J.; Goldstein, M.R.; Riedner, B.A.; Wanger, T.; Guokas, J.J.; Tononi, G.; Benca, R.M. Sex-related differences in sleep slow wave activity in major depressive disorder: A high-density EEG investigation. BMC Psychiatry, 2012, 12(1), 146. doi: 10.1186/1471-244X-12-146 PMID: 22989072
  96. Nolen-Hoeksema, S.; Larson, J.; Grayson, C. Explaining the gender difference in depressive symptoms. J. Pers. Soc. Psychol., 1999, 77(5), 1061-1072. doi: 10.1037/0022-3514.77.5.1061 PMID: 10573880
  97. Lefkowitz, R.J.; Shenoy, S.K. Transduction of receptor signals by beta-arrestins. Science, 2005, 308(5721), 512-517. doi: 10.1126/science.1109237 PMID: 15845844
  98. Violin, J.D. Lefkowitz, R.J. β-Arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol. Sci., 2007, 28(8), 416-422. doi: 10.1016/j.tips.2007.06.006 PMID: 17644195
  99. Bangasser, D.A.; Dong, H.; Carroll, J.; Plona, Z.; Ding, H.; Rodriguez, L.; McKennan, C.; Csernansky, J.G.; Seeholzer, S.H.; Valentino, R.J. Corticotropin-releasing factor overexpression gives rise to sex differences in Alzheimer’s disease-related signaling. Mol. Psychiatry, 2017, 22(8), 1126-1133. doi: 10.1038/mp.2016.185 PMID: 27752081
  100. Valentino, R.J.; Van Bockstaele, E.; Bangasser, D. Sex-specific cell signaling: The corticotropin-releasing factor receptor model. Trends Pharmacol. Sci., 2013, 34(8), 437-444. doi: 10.1016/j.tips.2013.06.004 PMID: 23849813
  101. Murrough, J.W.; Charney, D.S. Corticotropin-releasing factor type 1 receptor antagonists for stress-related disorders: Time to call it quits? Biol. Psychiatry, 2017, 82(12), 858-860. doi: 10.1016/j.biopsych.2017.10.012 PMID: 29129198
  102. Mansbach, R.S.; Brooks, E.N.; Chen, Y.L. Antidepressant-like effects of CP-154,526, a selective CRF1 receptor antagonist. Eur. J. Pharmacol., 1997, 323(1), 21-26. doi: 10.1016/S0014-2999(97)00025-3 PMID: 9105872
  103. Schulz, D.W.; Mansbach, R.S.; Sprouse, J.; Braselton, J.P.; Collins, J.; Corman, M.; Dunaiskis, A.; Faraci, S.; Schmidt, A.W.; Seeger, T.; Seymour, P.; Tingley, F.D., III; Winston, E.N.; Chen, Y.L.; Heym, J. CP-154,526: A potent and selective nonpeptide antagonist of corticotropin releasing factor receptors. Proc. Natl. Acad. Sci. , 1996, 93(19), 10477-10482. doi: 10.1073/pnas.93.19.10477 PMID: 8816826
  104. Deak, T.; Nguyen, K.T.; Ehrlich, A.L.; Watkins, L.R.; Spencer, R.L.; Maier, S.F.; Licinio, J.; Wong, M.L.; Chrousos, G.P.; Webster, E.; Gold, P.W. The impact of the nonpeptide corticotropin-releasing hormone antagonist antalarmin on behavioral and endocrine responses to stress. Endocrinology, 1999, 140(1), 79-86. doi: 10.1210/endo.140.1.6415 PMID: 9886810
  105. Zorrilla, E.P.; Valdez, G.R.; Nozulak, J.; Koob, G.F.; Markou, A. Effects of antalarmin, a CRF type 1 receptor antagonist, on anxiety-like behavior and motor activation in the rat. Brain Res., 2002, 952(2), 188-199. doi: 10.1016/S0006-8993(02)03189-X PMID: 12376179
  106. Chaki, S.; Nakazato, A.; Kennis, L.; Nakamura, M.; Mackie, C.; Sugiura, M.; Vinken, P.; Ashton, D.; Langlois, X.; Steckler, T. Anxiolytic- and antidepressant-like profile of a new CRF1 receptor antagonist, R278995/CRA0450. Eur. J. Pharmacol., 2004, 485(1-3), 145-158. doi: 10.1016/j.ejphar.2003.11.032 PMID: 14757135
  107. Ising, M.; Zimmermann, U.S.; Künzel, H.E.; Uhr, M.; Foster, A.C.; Learned-Coughlin, S.M.; Holsboer, F.; Grigoriadis, D.E. High-affinity CRF1 receptor antagonist NBI-34041: preclinical and clinical data suggest safety and efficacy in attenuating elevated stress response. Neuropsychopharmacology, 2007, 32(9), 1941-1949. doi: 10.1038/sj.npp.1301328 PMID: 17287823
  108. Caruso, A.; Nicoletti, F.; Gaetano, A.; Scaccianoce, S. Risk factors for Alzheimer’s disease: Focus on stress. Front. Pharmacol., 2019, 10, 976. doi: 10.3389/fphar.2019.00976 PMID: 31551781
  109. Ouanes, S.; Popp, J. High cortisol and the risk of dementia and alzheimer’s disease: A review of the literature. Front. Aging Neurosci., 2019, 11, 43. doi: 10.3389/fnagi.2019.00043 PMID: 30881301
  110. Csernansky, J.G.; Dong, H.; Fagan, A.M.; Wang, L.; Xiong, C.; Holtzman, D.M.; Morris, J.C. Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. Am. J. Psychiatry, 2006, 163(12), 2164-2169. doi: 10.1176/ajp.2006.163.12.2164 PMID: 17151169
  111. Elgh, E.; Lindqvist Åstot, A.; Fagerlund, M.; Eriksson, S.; Olsson, T.; Näsman, B. Cognitive dysfunction, hippocampal atrophy and glucocorticoid feedback in Alzheimer’s disease. Biol. Psychiatry, 2006, 59(2), 155-161. doi: 10.1016/j.biopsych.2005.06.017 PMID: 16125145
  112. Vyas, S.; Rodrigues, A.J.; Silva, J.M.; Tronche, F.; Almeida, O.F.X.; Sousa, N.; Sotiropoulos, I. Chronic stress and glucocorticoids: From neuronal plasticity to neurodegeneration. Neural Plast., 2016, 2016, 1-15. doi: 10.1155/2016/6391686 PMID: 27034847
  113. Hatzinger, M. Z’Brun, A.; Hemmeter, U.; Seifritz, E.; Baumann, F.; Holsboer-Trachsler, E.; Heuser, I.J. Hypothalamic-pituitary-adrenal system function in patients with alzheimer’s disease. Neurobiol. Aging, 1995, 16(2), 205-209. doi: 10.1016/0197-4580(94)00159-6 PMID: 7777138
  114. Peskind, E.R.; Wilkinson, C.W.; Petrie, E.C.; Schellenberg, G.D.; Raskind, M.A. Increased CSF cortisol in AD is a function of APOE genotype. Neurology, 2001, 56(8), 1094-1098. doi: 10.1212/WNL.56.8.1094 PMID: 11320185
  115. Greenwald, B.S.; Mathé, A.A.; Mohs, R.C.; Levy, M.I.; Johns, C.A.; Davis, K.L. Cortisol and Alzheimer’s disease, II: Dexamethasone suppression, dementia severity, and affective symptoms. Am. J. Psychiatry, 1986, 143(4), 442-446. doi: 10.1176/ajp.143.4.442 PMID: 3953887
  116. Hartmann, A.; Veldhuis, J.D.; Deuschle, M.; Standhardt, H.; Heuser, I. Twenty-four hour cortisol release profiles in patients with Alzheimer’s and Parkinson’s disease compared to normal controls: Ultradian secretory pulsatility and diurnal variation. Neurobiol. Aging, 1997, 18(3), 285-289. doi: 10.1016/S0197-4580(97)80309-0 PMID: 9263193
  117. Rasmuson, S.; Näsman, B.; Olsson, T. Increased serum levels of dehydroepiandrosterone (DHEA) and interleukin-6 (IL-6) in women with mild to moderate Alzheimer’s disease. Int. Psychogeriatr., 2011, 23(9), 1386-1392. doi: 10.1017/S1041610211000810 PMID: 21729423
  118. Toledo, J.B.; Toledo, E.; Weiner, M.W.; Jack, C.R., Jr; Jagust, W.; Lee, V.M.Y.; Shaw, L.M.; Trojanowski, J.Q. Cardiovascular risk factors, cortisol, and amyloid‐β deposition in Alzheimer’s Disease Neuroimaging Initiative. Alzheimers Dement., 2012, 8(6), 483-489. doi: 10.1016/j.jalz.2011.08.008 PMID: 23102118
  119. Catania, C.; Sotiropoulos, I.; Silva, R.; Onofri, C.; Breen, K.C.; Sousa, N.; Almeida, O F X. The amyloidogenic potential and behavioral correlates of stress. Mol. Psychiatry, 2009, 14(1), 95-105. doi: 10.1038/sj.mp.4002101 PMID: 17912249
  120. Green, K.N.; Billings, L.M.; Roozendaal, B.; McGaugh, J.L.; LaFerla, F.M. Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. J. Neurosci., 2006, 26(35), 9047-9056. doi: 10.1523/JNEUROSCI.2797-06.2006 PMID: 16943563
  121. Xia, M.; Yang, L.; Sun, G.; Qi, S.; Li, B. Mechanism of depression as a risk factor in the development of Alzheimer’s disease: The function of AQP4 and the glymphatic system. Psychopharmacology, 2017, 234(3), 365-379. doi: 10.1007/s00213-016-4473-9 PMID: 27837334
  122. Devi, L.; Alldred, M.J.; Ginsberg, S.D.; Ohno, M. Sex- and brain region-specific acceleration of β-amyloidogenesis following behavioral stress in a mouse model of Alzheimer’s disease. Mol. Brain, 2010, 3(1), 34. doi: 10.1186/1756-6606-3-34 PMID: 21059265
  123. Sotiropoulos, I.; Catania, C.; Pinto, L.G.; Silva, R.; Pollerberg, G.E.; Takashima, A.; Sousa, N.; Almeida, O.F.X. Stress acts cumulatively to precipitate Alzheimer’s disease-like tau pathology and cognitive deficits. J. Neurosci., 2011, 31(21), 7840-7847. doi: 10.1523/JNEUROSCI.0730-11.2011 PMID: 21613497
  124. Sotiropoulos, I.; Silva, J.; Kimura, T.; Rodrigues, A.J.; Costa, P.; Almeida, O.F.X.; Sousa, N.; Takashima, A. Female hippocampus vulnerability to environmental stress, a precipitating factor in Tau aggregation pathology. J. Alzheimers Dis., 2014, 43(3), 763-774. doi: 10.3233/JAD-140693 PMID: 25159665
  125. Lopes, S.; Vaz-Silva, J.; Pinto, V.; Dalla, C.; Kokras, N.; Bedenk, B.; Mack, N.; Czisch, M.; Almeida, O.F.X.; Sousa, N.; Sotiropoulos, I. Tau protein is essential for stress-induced brain pathology. Proc. Natl. Acad. Sci., 2016, 113(26), E3755-E3763. doi: 10.1073/pnas.1600953113 PMID: 27274066
  126. Silva, J.M.; Rodrigues, S.; Sampaio-Marques, B.; Gomes, P.; Neves-Carvalho, A.; Dioli, C.; Soares-Cunha, C.; Mazuik, B.F.; Takashima, A.; Ludovico, P.; Wolozin, B.; Sousa, N.; Sotiropoulos, I. Dysregulation of autophagy and stress granule-related proteins in stress-driven Tau pathology. Cell Death Differ., 2019, 26(8), 1411-1427. doi: 10.1038/s41418-018-0217-1 PMID: 30442948
  127. Vaz-Silva, J.; Gomes, P.; Jin, Q.; Zhu, M.; Zhuravleva, V.; Quintremil, S.; Meira, T.; Silva, J.; Dioli, C.; Soares-Cunha, C.; Daskalakis, N.P.; Sousa, N.; Sotiropoulos, I.; Waites, C.L. Endolysosomal degradation of Tau and its role in glucocorticoid‐driven hippocampal malfunction. EMBO J., 2018, 37(20), e99084. doi: 10.15252/embj.201899084 PMID: 30166454
  128. Pinheiro, S.; Silva, J.; Mota, C.; Vaz-Silva, J.; Veloso, A.; Pinto, V.; Sousa, N.; Cerqueira, J.; Sotiropoulos, I. Tau mislocation in glucocorticoid-triggered hippocampal pathology. Mol. Neurobiol., 2016, 53(7), 4745-4753. doi: 10.1007/s12035-015-9356-2 PMID: 26328538
  129. Sotiropoulos, I.; Silva, J.M.; Gomes, P.; Sousa, N.; Almeida, O.F.X. Stress and the etiopathogenesis of alzheimer’s disease and depression. Adv. Exp. Med. Biol., 2019, 1184, 241-257. doi: 10.1007/978-981-32-9358-8_20 PMID: 32096043
  130. Rissman, R.A.; Lee, K.F.; Vale, W.; Sawchenko, P.E. Corticotropin-releasing factor receptors differentially regulate stress-induced tau phosphorylation. J. Neurosci., 2007, 27(24), 6552-6562. doi: 10.1523/JNEUROSCI.5173-06.2007 PMID: 17567816
  131. Rissman, R.A.; Staup, M.A.; Lee, A.R.; Justice, N.J.; Rice, K.C.; Vale, W.; Sawchenko, P.E. Corticotropin-releasing factor receptor-dependent effects of repeated stress on tau phosphorylation, solubility, and aggregation. Proc. Natl. Acad. Sci. USA, 2012, 109(16), 6277-6282. doi: 10.1073/pnas.1203140109 PMID: 22451915
  132. Gandy, S.; Duff, K. Post-menopausal estrogen deprivation and Alzheimer’s disease. Exp. Gerontol., 2000, 35(4), 503-511. doi: 10.1016/S0531-5565(00)00116-9 PMID: 10959038
  133. Carroll, J.C.; Rosario, E.R.; Kreimer, S.; Villamagna, A.; Gentzschein, E.; Stanczyk, F.Z.; Pike, C.J. Sex differences in β-amyloid accumulation in 3xTg-AD mice: Role of neonatal sex steroid hormone exposure. Brain Res., 2010, 1366, 233-245. doi: 10.1016/j.brainres.2010.10.009 PMID: 20934413
  134. Monteiro-Fernandes, D.; Sousa, N.; Almeida, O.F.X.; Sotiropoulos, I. Sex hormone depletion augments glucocorticoid induction of tau hyperphosphorylation in male rat brain. Neuroscience, 2021, 454, 140-150. doi: 10.1016/j.neuroscience.2020.05.049 PMID: 32512138
  135. Panizzon, M.S.; Hauger, R.L.; Xian, H.; Jacobson, K.; Lyons, M.J.; Franz, C.E.; Kremen, W.S. Interactive effects of testosterone and cortisol on hippocampal volume and episodic memory in middle-aged men. Psychoneuroendocrinology, 2018, 91, 115-122. doi: 10.1016/j.psyneuen.2018.03.003 PMID: 29547742
  136. Fiacco, S.; Walther, A.; Ehlert, U. Steroid secretion in healthy aging. Psychoneuroendocrinology, 2019, 105, 64-78. doi: 10.1016/j.psyneuen.2018.09.035 PMID: 30314729
  137. Italia, M.; Forastieri, C.; Longaretti, A.; Battaglioli, E.; Rusconi, F. Rationale, relevance, and limits of stress-induced psychopathology in rodents as models for psychiatry research: An introductory overview. Int. J. Mol. Sci., 2020, 21(20), 7455. doi: 10.3390/ijms21207455 PMID: 33050350
  138. Kokras, N.; Dalla, C. Sex differences in animal models of psychiatric disorders. Br. J. Pharmacol., 2014, 171(20), 4595-4619. doi: 10.1111/bph.12710 PMID: 24697577
  139. Hodes, G.E. A primer on sex differences in the behavioral response to stress. Curr. Opin. Behav. Sci., 2018, 23, 75-83. doi: 10.1016/j.cobeha.2018.03.012
  140. Hodes, G.E.; Pfau, M.L.; Purushothaman, I.; Ahn, H.F.; Golden, S.A.; Christoffel, D.J.; Magida, J.; Brancato, A.; Takahashi, A.; Flanigan, M.E.; Ménard, C.; Aleyasin, H.; Koo, J.W.; Lorsch, Z.S.; Feng, J.; Heshmati, M.; Wang, M.; Turecki, G.; Neve, R.; Zhang, B.; Shen, L.; Nestler, E.J.; Russo, S.J. Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress. J. Neurosci., 2015, 35(50), 16362-16376. doi: 10.1523/JNEUROSCI.1392-15.2015 PMID: 26674863
  141. van der Zee, Y.Y.; Lardner, C.K.; Parise, E.M.; Mews, P.; Ramakrishnan, A.; Patel, V.; Teague, C.D.; Salery, M.; Walker, D.M.; Browne, C.J.; Labonté, B.; Parise, L.F.; Kronman, H.; Penã, C.J.; Torres-Berrío, A.; Duffy, J.E.; de Nijs, L.; Eijssen, L.M.T.; Shen, L.; Rutten, B.; Issler, O.; Nestler, E.J. Sex-specific role for SLIT1 in regulating stress susceptibility. Biol. Psychiatry, 2022, 91(1), 81-91. doi: 10.1016/j.biopsych.2021.01.019 PMID: 33896623
  142. Lorsch, Z.S.; Loh, Y.H.E.; Purushothaman, I.; Walker, D.M.; Parise, E.M.; Salery, M.; Cahill, M.E.; Hodes, G.E.; Pfau, M.L.; Kronman, H.; Hamilton, P.J.; Issler, O.; Labonté, B.; Symonds, A.E.; Zucker, M.; Zhang, T.Y.; Meaney, M.J.; Russo, S.J.; Shen, L.; Bagot, R.C.; Nestler, E.J. Estrogen receptor α drives pro-resilient transcription in mouse models of depression. Nat. Commun., 2018, 9(1), 1116. doi: 10.1038/s41467-018-03567-4 PMID: 29549264
  143. Issler, O.; van der Zee, Y.Y.; Ramakrishnan, A.; Xia, S.; Zinsmaier, A.K.; Tan, C.; Li, W.; Browne, C.J.; Walker, D.M.; Salery, M.; Torres-Berrío, A.; Futamura, R.; Duffy, J.E.; Labonte, B.; Girgenti, M.J.; Tamminga, C.A.; Dupree, J.L.; Dong, Y.; Murrough, J.W.; Shen, L.; Nestler, E.J. The long noncoding RNA FEDORA is a cell type- and sex-specific regulator of depression. Sci. Adv., 2022, 8(48), eabn9494. doi: 10.1126/sciadv.abn9494 PMID: 36449610
  144. Issler, O.; van der Zee, Y.Y.; Ramakrishnan, A.; Wang, J.; Tan, C.; Loh, Y.H.E.; Purushothaman, I.; Walker, D.M.; Lorsch, Z.S.; Hamilton, P.J.; Peña, C.J.; Flaherty, E.; Hartley, B.J.; Torres-Berrío, A.; Parise, E.M.; Kronman, H.; Duffy, J.E.; Estill, M.S.; Calipari, E.S.; Labonté, B.; Neve, R.L.; Tamminga, C.A.; Brennand, K.J.; Dong, Y.; Shen, L.; Nestler, E.J. Sex-specific role for the long non-coding RNA LINC00473 in depression. Neuron, 2020, 106(6), 912-926.e5. doi: 10.1016/j.neuron.2020.03.023 PMID: 32304628
  145. Labonté, B.; Engmann, O.; Purushothaman, I.; Menard, C.; Wang, J.; Tan, C.; Scarpa, J.R.; Moy, G.; Loh, Y.H.E.; Cahill, M.; Lorsch, Z.S.; Hamilton, P.J.; Calipari, E.S.; Hodes, G.E.; Issler, O.; Kronman, H.; Pfau, M.; Obradovic, A.L.J.; Dong, Y.; Neve, R.L.; Russo, S.; Kasarskis, A.; Tamminga, C.; Mechawar, N.; Turecki, G.; Zhang, B.; Shen, L.; Nestler, E.J. Sex-specific transcriptional signatures in human depression. Nat. Med., 2017, 23(9), 1102-1111. doi: 10.1038/nm.4386 PMID: 28825715
  146. Seney, M.L.; Chang, L.C.; Oh, H.; Wang, X.; Tseng, G.C.; Lewis, D.A.; Sibille, E. The role of genetic sex in affect regulation and expression of gaba-related genes across species. Front. Psychiatry, 2013, 4, 104. doi: 10.3389/fpsyt.2013.00104 PMID: 24062698
  147. Seney, M.L.; Huo, Z.; Cahill, K.; French, L.; Puralewski, R.; Zhang, J.; Logan, R.W.; Tseng, G.; Lewis, D.A.; Sibille, E. Opposite molecular signatures of depression in men and women. Biol. Psychiatry, 2018, 84(1), 18-27. doi: 10.1016/j.biopsych.2018.01.017 PMID: 29548746
  148. Bestor, T.H. The DNA methyltransferases of mammals. Hum. Mol. Genet., 2000, 9(16), 2395-2402. doi: 10.1093/hmg/9.16.2395 PMID: 11005794
  149. Feng, J.; Fan, G. The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int. Rev. Neurobiol., 2009, 89, 67-84. doi: 10.1016/S0074-7742(09)89004-1 PMID: 19900616
  150. Nugent, B.M.; Wright, C.L.; Shetty, A.C.; Hodes, G.E.; Lenz, K.M.; Mahurkar, A.; Russo, S.J.; Devine, S.E.; McCarthy, M.M. Brain feminization requires active repression of masculinization via DNA methylation. Nat. Neurosci., 2015, 18(5), 690-697. doi: 10.1038/nn.3988 PMID: 25821913
  151. LaPlant, Q.; Vialou, V.; Covington, H.E., III; Dumitriu, D.; Feng, J.; Warren, B.L.; Maze, I.; Dietz, D.M.; Watts, E.L.; Iñiguez, S.D.; Koo, J.W.; Mouzon, E.; Renthal, W.; Hollis, F.; Wang, H.; Noonan, M.A.; Ren, Y.; Eisch, A.J.; Bolaños, C.A.; Kabbaj, M.; Xiao, G.; Neve, R.L.; Hurd, Y.L.; Oosting, R.S.; Fan, G.; Morrison, J.H.; Nestler, E.J. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat. Neurosci., 2010, 13(9), 1137-1143. doi: 10.1038/nn.2619 PMID: 20729844
  152. Christoffel, D.J. Golden, S.A.; Dumitriu, D.; Robison, A.J.; Janssen, W.G.; Ahn, H.F.; Krishnan, V.; Reyes, C.M.; Han, M.H.; Ables, J.L.; Eisch, A.J.; Dietz, D.M.; Ferguson, D.; Neve, R.L.; Greengard, P.; Kim, Y.; Morrison, J.H.; Russo, S.J. IκB kinase regulates social defeat stress-induced synaptic and behavioral plasticity. J. Neurosci., 2011, 31(1), 314-321. doi: 10.1523/JNEUROSCI.4763-10.2011 PMID: 21209217
  153. Wang, J.; Hodes, G.E.; Zhang, H.; Zhang, S.; Zhao, W.; Golden, S.A.; Bi, W.; Menard, C.; Kana, V.; Leboeuf, M.; Xie, M.; Bregman, D.; Pfau, M.L.; Flanigan, M.E.; Esteban-Fernández, A.; Yemul, S.; Sharma, A.; Ho, L.; Dixon, R.; Merad, M.; Han, M.H.; Russo, S.J.; Pasinetti, G.M. Epigenetic modulation of inflammation and synaptic plasticity promotes resilience against stress in mice. Nat. Commun., 2018, 9(1), 477. doi: 10.1038/s41467-017-02794-5 PMID: 29396460
  154. Deonaraine, K.K.; Wang, Q.; Cheng, H.; Chan, K.L.; Lin, H.Y.; Liu, K.; Parise, L.F.; Cathomas, F.; Leclair, K.B.; Flanigan, M.E.; Li, L.; Aleyasin, H.; Guevara, C.; Hao, K.; Zhang, B.; Russo, S.J.; Wang, J. Sex‐specific peripheral and central responses to stres induced depression and treatment in a mouse model. J. Neurosci. Res., 2020, 98(12), 2541-2553. doi: 10.1002/jnr.24724 PMID: 32918293
  155. Peña, C.J.; Bagot, R.C.; Labonté, B.; Nestler, E.J. Epigenetic signaling in psychiatric disorders. J. Mol. Biol., 2014, 426(20), 3389-3412. doi: 10.1016/j.jmb.2014.03.016 PMID: 24709417
  156. Jenuwein, T.; Allis, C.D. Translating the histone code. Science, 2001, 293(5532), 1074-1080. doi: 10.1126/science.1063127 PMID: 11498575
  157. Sun, H.; Kennedy, P.J.; Nestler, E.J. Epigenetics of the depressed brain: Role of histone acetylation and methylation. Neuropsychopharmacology, 2013, 38(1), 124-137. doi: 10.1038/npp.2012.73 PMID: 22692567
  158. Fischle, W.; Wang, Y.; Allis, D.C. Binary switches and modification cassettes in histone biology and beyond. Nature, 2003, 425(6957), 475-479. doi: 10.1038/nature02017 PMID: 14523437
  159. Vialou, V.; Feng, J.; Robison, A.J.; Nestler, E.J. Epigenetic mechanisms of depression and antidepressant action. Annu. Rev. Pharmacol. Toxicol., 2013, 53(1), 59-87. doi: 10.1146/annurev-pharmtox-010611-134540 PMID: 23020296
  160. Iizuka, M.; Smith, M.M. Functional consequences of histone modifications. Curr. Opin. Genet. Dev., 2003, 13(2), 154-160. doi: 10.1016/S0959-437X(03)00020-0 PMID: 12672492
  161. Murray, E.K.; Hien, A.; de Vries, G.J.; Forger, N.G. Epigenetic control of sexual differentiation of the bed nucleus of the stria terminalis. Endocrinology, 2009, 150(9), 4241-4247. doi: 10.1210/en.2009-0458 PMID: 19497973
  162. Bangasser, D.A.; Shors, T.J. The bed nucleus of the stria terminalis modulates learning after stress in masculinized but not cycling females. J. Neurosci., 2008, 28(25), 6383-6387. doi: 10.1523/JNEUROSCI.0831-08.2008 PMID: 18562608
  163. Bangasser, D.A.; Santollo, J.; Shors, T.J. The bed nucleus of the stria terminalis is critically involved in enhancing associative learning after stressful experience. Behav. Neurosci., 2005, 119(6), 1459-1466. doi: 10.1037/0735-7044.119.6.1459 PMID: 16420150
  164. Tsankova, N.M.; Berton, O.; Renthal, W.; Kumar, A.; Neve, R.L.; Nestler, E.J. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci., 2006, 9(4), 519-525. doi: 10.1038/nn1659 PMID: 16501568
  165. Sase, A.S.; Lombroso, S.I.; Santhumayor, B.A.; Wood, R.R.; Lim, C.J.; Neve, R.L.; Heller, E.A. Sex-specific regulation of fear memory by targeted epigenetic editing of Cdk5. Biol. Psychiatry, 2019, 85(8), 623-634. doi: 10.1016/j.biopsych.2018.11.022 PMID: 30661667
  166. O’Carroll, D.; Schaefer, A. General principals of miRNA biogenesis and regulation in the brain. Neuropsychopharmacology, 2013, 38(1), 39-54. doi: 10.1038/npp.2012.87 PMID: 22669168
  167. Pfau, M.L.; Purushothaman, I.; Feng, J.; Golden, S.A.; Aleyasin, H.; Lorsch, Z.S.; Cates, H.M.; Flanigan, M.E.; Menard, C.; Heshmati, M.; Wang, Z.; Ma’ayan, A.; Shen, L.; Hodes, G.E.; Russo, S.J. Integrative analysis of sex-specific microRNA networks following stress in mouse nucleus accumbens. Front. Mol. Neurosci., 2016, 9, 144. doi: 10.3389/fnmol.2016.00144 PMID: 28066174
  168. Pfau, M.L.; Menard, C.; Cathomas, F.; Desland, F.; Kana, V.; Chan, K.L.; Shimo, Y.; LeClair, K.; Flanigan, M.E.; Aleyasin, H.; Walker, D.M.; Bouchard, S.; Mack, M.; Hodes, G.E.; Merad, M.M.; Russo, S.J. Role of monocyte-derived microRNA106b∼25 in resilience to social stress. Biol. Psychiatry, 2019, 86(6), 474-482. doi: 10.1016/j.biopsych.2019.02.023 PMID: 31101319
  169. van der Zee, Y.Y.; Eijssen, L.M.T.; Mews, P.; Ramakrishnan, A.; Alvarez, K.; Lardner, C.K.; Cates, H.M.; Walker, D.M.; Torres-Berrío, A.; Browne, C.J.; Cunningham, A.; Cathomas, F.; Kronman, H.; Parise, E.M.; de Nijs, L.; Shen, L.; Murrough, J.W.; Rutten, B.P.F.; Nestler, E.J.; Issler, O. Blood miR-144-3p: A novel diagnostic and therapeutic tool for depression. Mol. Psychiatry, 2022, 27(11), 4536-4549. doi: 10.1038/s41380-022-01712-6 PMID: 35902629
  170. Rodgers, A.B.; Morgan, C.P.; Leu, N.A.; Bale, T.L. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc. Natl. Acad. Sci. , 2015, 112(44), 13699-13704. doi: 10.1073/pnas.1508347112 PMID: 26483456
  171. Dietz, D.M.; LaPlant, Q.; Watts, E.L.; Hodes, G.E.; Russo, S.J.; Feng, J.; Oosting, R.S.; Vialou, V.; Nestler, E.J. Paternal transmission of stress-induced pathologies. Biol. Psychiatry, 2011, 70(5), 408-414. doi: 10.1016/j.biopsych.2011.05.005 PMID: 21679926
  172. Cunningham, A.M.; Walker, D.M.; Ramakrishnan, A.; Doyle, M.A.; Bagot, R.C.; Cates, H.M.; Peña, C.J.; Issler, O.; Lardner, C.K.; Browne, C.; Russo, S.J.; Shen, L.; Nestler, E.J. Sperm transcriptional state associated with paternal transmission of stress phenotypes. J. Neurosci., 2021, 41(29), 6202-6216. doi: 10.1523/JNEUROSCI.3192-20.2021 PMID: 34099514
  173. Bianchi, I.; Lleo, A.; Gershwin, M.E.; Invernizzi, P. The X chromosome and immune associated genes. J. Autoimmun., 2012, 38(2-3), J187-J192. doi: 10.1016/j.jaut.2011.11.012 PMID: 22178198
  174. Youness, A.; Miquel, C.H.; Guéry, J.C. Escape from X chromosome inactivation and the female predominance in autoimmune diseases. Int. J. Mol. Sci., 2021, 22(3), 1114. doi: 10.3390/ijms22031114 PMID: 33498655
  175. Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol., 2016, 16(10), 626-638. doi: 10.1038/nri.2016.90 PMID: 27546235
  176. Maes, M.; Kubera, M.; Leunis, J.C. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuroendocrinol. Lett., 2008, 29(1), 117-124. PMID: 18283240
  177. Kelly, J.R.; Borre, Y.; O’ Brien, C.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; Hoban, A.E.; Scott, L.; Fitzgerald, P.; Ross, P.; Stanton, C.; Clarke, G.; Cryan, J.F.; Dinan, T.G. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res., 2016, 82, 109-118. doi: 10.1016/j.jpsychires.2016.07.019 PMID: 27491067
  178. Lyte, M. Microbial endocrinology and the microbiota-gut-brain axis. Adv. Exp. Med. Biol., 2014, 817, 3-24. doi: 10.1007/978-1-4939-0897-4_1 PMID: 24997027
  179. Cruz-Pereira, J.S.; Rea, K.; Nolan, Y.M.; O’Leary, O.F.; Dinan, T.G.; Cryan, J.F. Depression’s unholy trinity: Dysregulated stress, immunity, and the microbiome. Annu. Rev. Psychol., 2020, 71(1), 49-78. doi: 10.1146/annurev-psych-122216-011613 PMID: 31567042
  180. Foster, J.A.; Rinaman, L.; Cryan, J.F. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol. Stress, 2017, 7, 124-136. doi: 10.1016/j.ynstr.2017.03.001 PMID: 29276734
  181. Kim, Y.S.; Unno, T.; Kim, B.Y.; Park, M.S. Sex differences in gut microbiota. World J. Mens Health, 2020, 38(1), 48-60. doi: 10.5534/wjmh.190009 PMID: 30929328
  182. Markle, J.G.M.; Frank, D.N.; Mortin-Toth, S.; Robertson, C.E.; Feazel, L.M.; Rolle-Kampczyk, U.; von Bergen, M.; McCoy, K.D.; Macpherson, A.J.; Danska, J.S. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science, 2013, 339(6123), 1084-1088. doi: 10.1126/science.1233521 PMID: 23328391
  183. Dalla, C.; Pavlidi, P.; Sakelliadou, D.G.; Grammatikopoulou, T.; Kokras, N. Sex differences in blood-brain barrier transport of psychotropic drugs. Front. Behav. Neurosci., 2022, 16, 844916. doi: 10.3389/fnbeh.2022.844916 PMID: 35677576
  184. Kumar, M.; Rainville, J.R.; Williams, K.; Lile, J.A.; Hodes, G.E.; Vassoler, F.M.; Turner, J.R. Sexually dimorphic neuroimmune response to chronic opioid treatment and withdrawal. Neuropharmacology, 2021, 186, 108469. doi: 10.1016/j.neuropharm.2021.108469 PMID: 33485944
  185. Menard, C.; Pfau, M.L.; Hodes, G.E.; Kana, V.; Wang, V.X.; Bouchard, S.; Takahashi, A.; Flanigan, M.E.; Aleyasin, H.; LeClair, K.B.; Janssen, W.G.; Labonté, B.; Parise, E.M.; Lorsch, Z.S.; Golden, S.A.; Heshmati, M.; Tamminga, C.; Turecki, G.; Campbell, M.; Fayad, Z.A.; Tang, C.Y.; Merad, M.; Russo, S.J. Social stress induces neurovascular pathology promoting depression. Nat. Neurosci., 2017, 20(12), 1752-1760. doi: 10.1038/s41593-017-0010-3 PMID: 29184215
  186. Dion-Albert, L.; Bandeira Binder, L.; Daigle, B.; Hong-Minh, A.; Lebel, M.; Menard, C. Sex differences in the blood-brain barrier: Implications for mental health. Front. Neuroendocrinol., 2022, 65, 100989. doi: 10.1016/j.yfrne.2022.100989 PMID: 35271863
  187. Dion-Albert, L.; Cadoret, A.; Doney, E.; Kaufmann, F.N.; Dudek, K.A.; Daigle, B.; Parise, L.F.; Cathomas, F.; Samba, N.; Hudson, N.; Lebel, M.; Aardema, F.; Ait Bentaleb, L.; Beauchamp, J.; Bendahmane, H.; Benoit, E.; Bergeron, L.; Bertone, A.; Bertrand, N.; Berube, F-A.; Blanchet, P.; Boissonneault, J.; Bolduc, C.J.; Bonin, J-P.; Borgeat, F.; Boyer, R.; Breault, C.; Breton, J-J.; Briand, C.; Brodeur, J.; Brule, K.; Brunet, L.; Carriere, S.; Chartrand, C.; Chenard-Soucy, R.; Chevrette, T.; Cloutier, E.; Cloutier, R.; Cormier, H.; Cote, G.; Cyr, J.; David, P.; De Benedictis, L.; Delisle, M-C.; Deschenes, P.; Desjardins, C.D.; Desmarais, G.; Dubreucq, J-L.; Dumont, M.; Dumais, A.; Ethier, G.; Feltrin, C.; Felx, A.; Findlay, H.; Fortier, L.; Fortin, D.; Fortin, L.; Francois, N.; Gagne, V.; Gagnon, M-P.; Gignac-Hens, M-C.; Giguere, C-E.; Godbout, R.; Grou, C.; Guay, S.; Guillem, F.; Hachimi-Idrissi, N.; Herry, C.; Hodgins, S.; Homayoun, S.; Jemel, B.; Joyal, C.; Kouassi, E.; Labelle, R.; Lafortune, D.; Lahaie, M.; Lahlafi, S.; Lalonde, P.; Landry, P.; Lapaige, V.; Larocque, G.; Larue, C.; Lavoie, M.; Leclerc, J-J.; Lecomte, T.; Lecours, C.; Leduc, L.; Lelan, M-F.; Lemieux, A.; Lesage, A.; Letarte, A.; Lepage, J.; Levesque, A.; Lipp, O.; Luck, D.; Lupien, S.; Lusignan, F-A.; Lusignan, R.; Luyet, A.J.; Lynhiavu, A.; Melun, J-P.; Morin, C.; Nicole, L.; Noel, F.; Normandeau, L.; O’Connor, K.; Ouellette, C.; Parent, V.; Parizeau, M-H.; Pelletier, J-F.; Pelletier, J.; Pelletier, M.; Plusquellec, P.; Poirier, D.; Potvin, S.; Prevost, G.; Prevost, M-J.; Racicot, P.; Racine-Gagne, M-F.; Renaud, P.; Ricard, N.; Rivet, S.; Rolland, M.; Sasseville, M.; Safadi, G.; Smith, S.; Smolla, N.; Stip, E.; Teitelbaum, J.; Thibault, A.; Thibault, L.; Thibault, S.; Thomas, F.; Todorov, C.; Tourjman, V.; Tranulis, C.; Trudeau, S.; Trudel, G.; Vacri, N.; Valiquette, L.; Vanier, C.; Villeneuve, K.; Villeneuve, M.; Vincent, P.; Wolfe, M.; Xiong, L.; Zizzi, A.; Campbell, M.; Turecki, G.; Mechawar, N.; Menard, C. Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue. Nat. Commun., 2022, 13(1), 164. doi: 10.1038/s41467-021-27604-x PMID: 35013188
  188. Bollinger, J.L.; Salinas, I.; Fender, E.; Sengelaub, D.R.; Wellman, C.L. Gonadal hormones differentially regulate sex‐specific stress effects on glia in the medial prefrontal cortex. J. Neuroendocrinol., 2019, 31(8), e12762. doi: 10.1111/jne.12762 PMID: 31228875
  189. Van Camp, N.; Lavisse, S.; Roost, P.; Gubinelli, F.; Hillmer, A.; Boutin, H. TSPO imaging in animal models of brain diseases. Eur. J. Nucl. Med. Mol. Imaging, 2021, 49(1), 77-109. doi: 10.1007/s00259-021-05379-z PMID: 34245328
  190. Tsyglakova, M.; Huskey, A.M.; Hurst, E.H.; Telep, N.M.; Wilding, M.C.; Babington, M.E.; Rainville, J.R.; Hodes, G.E. Sex and region-specific effects of variable stress on microglia morphology. Brain, Behav. Immun. Health, 2021, 18, 100378. doi: 10.1016/j.bbih.2021.100378 PMID: 34820640
  191. Keselman, A.; Heller, N. Estrogen signaling modulates allergic inflammation and contributes to sex differences in asthma. Front. Immunol., 2015, 6, 568. doi: 10.3389/fimmu.2015.00568 PMID: 26635789
  192. Molero, L.; García-Durán, M.; Diaz-Recasens, J.; Rico, L.; Casado, S.; López-Farré, A. Expression of estrogen receptor subtypes and neuronal nitric oxide synthase in neutrophils from women and men Regulation by estrogen. Cardiovasc. Res., 2002, 56(1), 43-51. doi: 10.1016/S0008-6363(02)00505-9 PMID: 12237165
  193. Zierau, O.; Zenclussen, A.C.; Jensen, F. Role of female sex hormones, estradiol and progesterone, in mast cell behavior. Front. Immunol., 2012, 3, 169. doi: 10.3389/fimmu.2012.00169 PMID: 22723800
  194. Rainville, J.R.; Tsyglakova, M.; Hodes, G.E. Deciphering sex differences in the immune system and depression. Front. Neuroendocrinol., 2018, 50, 67-90. doi: 10.1016/j.yfrne.2017.12.004 PMID: 29288680
  195. Finnell, J.E.; Muniz, B.L.; Padi, A.R.; Lombard, C.M.; Moffitt, C.M.; Wood, C.S.; Wilson, L.B.; Reagan, L.P.; Wilson, M.A.; Wood, S.K. Essential role of ovarian hormones in susceptibility to the consequences of witnessing social defeat in female rats. Biol. Psychiatry, 2018, 84(5), 372-382. doi: 10.1016/j.biopsych.2018.01.013 PMID: 29544773
  196. Furman, D.; Hejblum, B.P.; Simon, N.; Jojic, V.; Dekker, C.L.; Thiébaut, R.; Tibshirani, R.J.; Davis, M.M. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc. Natl. Acad. Sci., 2014, 111(2), 869-874. doi: 10.1073/pnas.1321060111 PMID: 24367114
  197. McMurray, R.W.; Suwannaroj, S.; Ndebele, K.; Jenkins, J.K. Differential effects of sex steroids on T and B cells: modulation of cell cycle phase distribution, apoptosis and bcl-2 protein levels. Pathobiology, 2001, 69(1), 44-58. doi: 10.1159/000048757 PMID: 11641617
  198. Trigunaite, A.; Dimo, J.; Jørgensen, T.N. Suppressive effects of androgens on the immune system. Cell. Immunol., 2015, 294(2), 87-94. doi: 10.1016/j.cellimm.2015.02.004 PMID: 25708485
  199. Gaillard, R.C.; Spinedi, E. Sex- and stress-steroids interactions and the immune system: Evidence for a neuroendocrine-immunological sexual dimorphism. Domest. Anim. Endocrinol., 1998, 15(5), 345-352. doi: 10.1016/S0739-7240(98)00028-9 PMID: 9785038
  200. Dantzer, R.; Kelley, K.W. Stress and immunity: An integrated view of relationships between the brain and the immune system. Life Sci., 1989, 44(26), 1995-2008. doi: 10.1016/0024-3205(89)90345-7 PMID: 2568569
  201. Engler, H.; Benson, S.; Wegner, A.; Spreitzer, I.; Schedlowski, M.; Elsenbruch, S. Men and women differ in inflammatory and neuroendocrine responses to endotoxin but not in the severity of sickness symptoms. Brain Behav. Immun., 2016, 52, 18-26. doi: 10.1016/j.bbi.2015.08.013 PMID: 26291403
  202. Harden, K.P.; Wrzus, C.; Luong, G.; Grotzinger, A.; Bajbouj, M.; Rauers, A.; Wagner, G.G.; Riediger, M. Diurnal coupling between testosterone and cortisol from adolescence to older adulthood. Psychoneuroendocrinology, 2016, 73, 79-90. doi: 10.1016/j.psyneuen.2016.07.216 PMID: 27474909
  203. Andrews, G.; Bell, C.; Boyce, P.; Gale, C.; Lampe, L.; Marwat, O.; Rapee, R.; Wilkins, G. Royal australian and new zealand college of psychiatrists clinical practice guidelines for the treatment of panic disorder, social anxiety disorder and generalised anxiety disorder. Aust. N. Z. J. Psychiatry, 2018, 52(12), 1109-1172. doi: 10.1177/0004867418799453
  204. Zohar, J.; Stahl, S.; Moller, H.J.; Blier, P.; Kupfer, D.; Yamawaki, S.; Uchida, H.; Spedding, M.; Goodwin, G.M.; Nutt, D. A review of the current nomenclature for psychotropic agents and an introduction to the Neuroscience-based Nomenclature. Eur. Neuropsychopharmacol., 2015, 25(12), 2318-2325. doi: 10.1016/j.euroneuro.2015.08.019 PMID: 26527055
  205. Khan, A.; Brodhead, A.E.; Schwartz, K.A.; Kolts, R.L.; Brown, W.A. Sex differences in antidepressant response in recent antidepressant clinical trials. J. Clin. Psychopharmacol., 2005, 25(4), 318-324. doi: 10.1097/01.jcp.0000168879.03169.ce PMID: 16012273
  206. Kokras, N.; Dalla, C.; Papadopoulou-Daifoti, Z. Sex differences in pharmacokinetics of antidepressants. Expert Opin. Drug Metab. Toxicol., 2011, 7(2), 213-226. doi: 10.1517/17425255.2011.544250 PMID: 21192772
  207. Sramek, J.J.; Murphy, M.F.; Cutler, N.R. Sex differences in the psychopharmacological treatment of depression. Dialogues Clin. Neurosci., 2016, 18(4), 447-457. doi: 10.31887/DCNS.2016.18.4/ncutler PMID: 28179816
  208. Hutson, W.R.; Roehrkasse, R.L.; Wald, A. Influence of gender and menopause on gastric emptying and motility. Gastroenterology, 1989, 96(1), 11-17. doi: 10.1016/0016-5085(89)90758-0 PMID: 2909416
  209. Marazziti, D.; Baroni, S.; Picchetti, M.; Piccinni, A.; Carlini, M.; Vatteroni, E.; Falaschi, V.; Lombardi, A.; Dell’Osso, L. Pharmacokinetics and pharmacodinamics of psychotropic drugs: Effect of sex. CNS Spectr., 2013, 18(3), 118-127. doi: 10.1017/S1092852912001010 PMID: 23374978
  210. Nicolas, J.M.; Espie, P.; Molimard, M. Gender and interindividual variability in pharmacokinetics. Drug Metab. Rev., 2009, 41(3), 408-421. doi: 10.1080/10837450902891485 PMID: 19601720
  211. Kristensen, C.B. Imipramine serum protein binding in healthy subjects. Clin. Pharmacol. Ther., 1983, 34(5), 689-694. doi: 10.1038/clpt.1983.233 PMID: 6627829
  212. Anderson, G.D. Sex and racial differences in pharmacological response: where is the evidence? Pharmacogenetics, pharmacokinetics, and pharmacodynamics. J. Womens Health, 2005, 14(1), 19-29. doi: 10.1089/jwh.2005.14.19 PMID: 15692274
  213. Schwartz, J.B. The current state of knowledge on age, sex, and their interactions on clinical pharmacology. Clin. Pharmacol. Ther., 2007, 82(1), 87-96. doi: 10.1038/sj.clpt.6100226 PMID: 17495875
  214. Farkas, R.H.; Unger, E.F.; Temple, R. Zolpidem and driving impairment-identifying persons at risk. N. Engl. J. Med., 2013, 369(8), 689-691. doi: 10.1056/NEJMp1307972 PMID: 23923991
  215. Bigos, K.L.; Pollock, B.G.; Stankevich, B.A.; Bies, R.R. Sex differences in the pharmacokinetics and pharmacodynamics of antidepressants: An updated review. Gend. Med., 2009, 6(4), 522-543. doi: 10.1016/j.genm.2009.12.004 PMID: 20114004
  216. Berlanga, C.; Flores-Ramos, M. Different gender response to serotonergic and noradrenergic antidepressants. A comparative study of the efficacy of citalopram and reboxetine. J. Affect. Disord., 2006, 95(1-3), 119-123. doi: 10.1016/j.jad.2006.04.029 PMID: 16782204
  217. Kornstein, S.G.; Schatzberg, A.F.; Thase, M.E.; Yonkers, K.A.; McCullough, J.P.; Keitner, G.I.; Gelenberg, A.J.; Davis, S.M.; Harrison, W.M.; Keller, M.B. Gender differences in treatment response to sertraline versus imipramine in chronic depression. Am. J. Psychiatry, 2000, 157(9), 1445-1452. doi: 10.1176/appi.ajp.157.9.1445 PMID: 10964861
  218. Young, E.A.; Kornstein, S.G.; Marcus, S.M.; Harvey, A.T.; Warden, D.; Wisniewski, S.R.; Balasubramani, G.K.; Fava, M.; Trivedi, M.H.; John Rush, A. Sex differences in response to citalopram: A STAR∗D report. J. Psychiatr. Res., 2009, 43(5), 503-511. doi: 10.1016/j.jpsychires.2008.07.002 PMID: 18752809
  219. Parker, G.; Parker, K.; Austin, M.P.; Mitchell, P.; Brotchie, H. Gender differences in response to differing antidepressant drug classes: Two negative studies. Psychol. Med., 2003, 33(8), 1473-1477. doi: 10.1017/S0033291703007918 PMID: 14672256
  220. Kornstein, S.G.; Pedersen, R.D.; Holland, P.J.; Nemeroff, C.B.; Rothschild, A.J.; Thase, M.E.; Trivedi, M.H.; Ninan, P.T.; Keller, M.B. Influence of sex and menopausal status on response, remission, and recurrence in patients with recurrent major depressive disorder treated with venlafaxine extended release or fluoxetine: Analysis of data from the PREVENT study. J. Clin. Psychiatry, 2014, 75(1), 62-68. doi: 10.4088/JCP.12m07841 PMID: 24345717
  221. Thase, M.E.; Entsuah, R.; Cantillon, M.; Kornstein, S.G. Relative antidepressant efficacy of venlafaxine and SSRIs: sex-age interactions. J. Womens Health, 2005, 14(7), 609-616. doi: 10.1089/jwh.2005.14.609 PMID: 16181017
  222. Naito, S.; Sato, K.; Yoshida, K.; Higuchi, H.; Takahashi, H.; Kamata, M.; Ito, K.; Ohkubo, T.; Shimizu, T. Gender differences in the clinical effects of fluvoxamine and milnacipran in Japanese major depressive patients. Psychiatry Clin. Neurosci., 2007, 61(4), 421-427. doi: 10.1111/j.1440-1819.2007.01679.x PMID: 17610668
  223. Williams, A.V.; Trainor, B.C. The impact of sex as a biological variable in the search for novel antidepressants. Front. Neuroendocrinol., 2018, 50, 107-117. doi: 10.1016/j.yfrne.2018.05.003 PMID: 29859882
  224. Keating, C.; Tilbrook, A.; Kulkarni, J. Oestrogen: an overlooked mediator in the neuropsychopharmacology of treatment response? Int. J. Neuropsychopharmacol., 2011, 14(4), 553-566. doi: 10.1017/S1461145710000982 PMID: 20860875
  225. Schneider, L.S.; Small, G.W.; Clary, C.M. Estrogen replacement therapy and antidepressant response to sertraline in older depressed women. Am. J. Geriatr. Psychiatry, 2001, 9(4), 393-399. doi: 10.1097/00019442-200111000-00007 PMID: 11739065
  226. Schneider, L.S.; Small, G.W.; Hamilton, S.H.; Bystritsky, A.; Nemeroff, C.B.; Meyers, B.S. Estrogen replacement and response to fluoxetine in a multicenter geriatric depression trial. Am. J. Geriatr. Psychiatry, 1997, 5(2), 97-106. doi: 10.1097/00019442-199721520-00002 PMID: 9106373
  227. Stahl, S.M. Basic psychopharmacology of antidepressants, part 2: Estrogen as an adjunct to antidepressant treatment. J. Clin. Psychiatry, 1998, 59(S4), 15-24. PMID: 9554317
  228. Richardson, T.A.; Robinson, R.D. Menopause and depression: A review of psychologic function and sex steroid neurobiology during the menopause. Prim. Care Update Ob Gyns, 2000, 7(6), 215-223. doi: 10.1016/S1068-607X(00)00049-4 PMID: 11077233
  229. Shapira, B.; Oppenheim, G.; Zohar, J.; Segal, M.; Malach, D.; Belmaker, R.H. Lack of efficacy of estrogen supplementation to imipramine in resistant female depressives. Biol. Psychiatry, 1985, 20(5), 576-579. doi: 10.1016/0006-3223(85)90031-9 PMID: 2985131
  230. Amsterdam, J.; Garcia-España, F.; Fawcett, J.; Quitkin, F.; Reimherr, F.; Rosenbaum, J.; Beasley, C. Fluoxetine efficacy in menopausal women with and without estrogen replacement. J. Affect. Disord., 1999, 55(1), 11-17. doi: 10.1016/S0165-0327(98)00203-1 PMID: 10512601
  231. Frokjaer, V.G.; Pinborg, A.; Holst, K.K.; Overgaard, A.; Henningsson, S.; Heede, M.; Larsen, E.C.; Jensen, P.S.; Agn, M.; Nielsen, A.P.; Stenbæk, D.S.; da Cunha-Bang, S.; Lehel, S.; Siebner, H.R.; Mikkelsen, J.D.; Svarer, C.; Knudsen, G.M. Role of serotonin transporter changes in depressive responses to sex-steroid hormone manipulation: A positron emission tomography study. Biol. Psychiatry, 2015, 78(8), 534-543. doi: 10.1016/j.biopsych.2015.04.015 PMID: 26004162
  232. Kokras, N.; Dalla, C. Preclinical sex differences in depression and antidepressant response: Implications for clinical research. J. Neurosci. Res., 2017, 95(1-2), 731-736. doi: 10.1002/jnr.23861 PMID: 27870451
  233. Eid, R.S.; Gobinath, A.R.; Galea, L.A.M. Sex differences in depression: Insights from clinical and preclinical studies. Prog. Neurobiol., 2019, 176, 86-102. doi: 10.1016/j.pneurobio.2019.01.006 PMID: 30721749
  234. Kokras, N.; Antoniou, K.; Mikail, H.G.; Kafetzopoulos, V.; Papadopoulou-Daifoti, Z.; Dalla, C. Forced swim test: What about females? Neuropharmacology, 2015, 99, 408-421. doi: 10.1016/j.neuropharm.2015.03.016 PMID: 25839894
  235. Dalla, C.; Pitychoutis, P.M.; Kokras, N.; Papadopoulou-Daifoti, Z. Sex differences in animal models of depression and antidepressant response. Basic Clin. Pharmacol. Toxicol., 2010, 106(3), 226-233. doi: 10.1111/j.1742-7843.2009.00516.x PMID: 20050844
  236. Saland, S.K.; Duclot, F.; Kabbaj, M. Integrative analysis of sex differences in the rapid antidepressant effects of ketamine in preclinical models for individualized clinical outcomes. Curr. Opin. Behav. Sci., 2017, 14, 19-26. doi: 10.1016/j.cobeha.2016.11.002 PMID: 28584860
  237. Fernández-Guasti, A.; Olivares-Nazario, M.; Reyes, R.; Martínez-Mota, L. Sex and age differences in the antidepressant-like effect of fluoxetine in the forced swim test. Pharmacol. Biochem. Behav., 2017, 152, 81-89. doi: 10.1016/j.pbb.2016.01.011 PMID: 26807812
  238. Gómez, M.L.; Martínez-Mota, L.; Estrada-Camarena, E.; Fernández-Guasti, A. Influence of the brain sexual differentiation process on despair and antidepressant-like effect of fluoxetine in the rat forced swim test. Neuroscience, 2014, 261, 11-22. doi: 10.1016/j.neuroscience.2013.12.035 PMID: 24374081
  239. David, D.J.P.; Nic Dhonnchadha, B.Á.; Jolliet, P.; Hascoët, M.; Bourin, M. Are there gender differences in the temperature profile of mice after acute antidepressant administration and exposure to two animal models of depression? Behav. Brain Res., 2001, 119(2), 203-211. doi: 10.1016/S0166-4328(00)00351-X PMID: 11165336
  240. Melo, A.; Kokras, N.; Dalla, C.; Ferreira, C.; Ventura-Silva, A.P.; Sousa, N.; Pêgo, J.M. The positive effect on ketamine as a priming adjuvant in antidepressant treatment. Transl. Psychiatry, 2015, 5(5), e573-e573. doi: 10.1038/tp.2015.66 PMID: 26080090
  241. Pavlidi, P.; Megalokonomou, A.; Sofron, A.; Kokras, N.; Dalla, C. Pharmacology of ketamine and esketamine as rapid-acting antidepressants. Psychiatriki, 2021, 32(S1), 55-63.
  242. Carrier, N.; Kabbaj, M. Sex differences in the antidepressant-like effects of ketamine. Neuropharmacology, 2013, 70, 27-34. doi: 10.1016/j.neuropharm.2012.12.009 PMID: 23337256
  243. Sarkar, A.; Kabbaj, M. Sex differences in effects of ketamine on behavior, spine density, and synaptic proteins in socially isolated rats. Biol. Psychiatry, 2016, 80(6), 448-456. doi: 10.1016/j.biopsych.2015.12.025 PMID: 26957131
  244. Scacchi, R.; Gambina, G.; Broggio, E.; Corbo, R.M. Sex and ESR1 genotype may influence the response to treatment with donepezil and rivastigmine in patients with Alzheimer’s disease. Int. J. Geriatr. Psychiatry, 2014, 29(6), 610-615. doi: 10.1002/gps.4043 PMID: 24150894
  245. Mehta, N.; Rodrigues, C.; Lamba, M.; Wu, W.; Bronskill, S.E.; Herrmann, N.; Gill, S.S.; Chan, A.W.; Mason, R.; Day, S.; Gurwitz, J.H.; Rochon, P.A. Systematic review of sex‐specific reporting of data: Cholinesterase inhibitor example. J. Am. Geriatr. Soc., 2017, 65(10), 2213-2219. doi: 10.1111/jgs.15020 PMID: 28832937
  246. Marwaha, S.; Palmer, E.; Suppes, T.; Cons, E.; Young, A.H.; Upthegrove, R. Novel and emerging treatments for major depression. Lancet, 2023, 401(10371), 141-153. doi: 10.1016/S0140-6736(22)02080-3 PMID: 36535295
  247. Garakani, A.; Murrough, J.W.; Freire, R.C.; Thom, R.P.; Larkin, K.; Buono, F.D.; Iosifescu, D.V. Pharmacotherapy of anxiety disorders: Current and emerging treatment options. Front. Psychiatry, 2020, 11, 595584. doi: 10.3389/fpsyt.2020.595584 PMID: 33424664
  248. Sartori, S.B.; Singewald, N. Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders. Pharmacol. Ther., 2019, 204, 107402. doi: 10.1016/j.pharmthera.2019.107402 PMID: 31470029
  249. Gillies, G.E.; McArthur, S. Estrogen actions in the brain and the basis for differential action in men and women: A case for sex-specific medicines. Pharmacol. Rev., 2010, 62(2), 155-198. doi: 10.1124/pr.109.002071 PMID: 20392807
  250. Almeida, F.B.; Pinna, G.; Barros, H.M.T. The Role of HPA Axis and Allopregnanolone on the Neurobiology of Major Depressive Disorders and PTSD. Int. J. Mol. Sci., 2021, 22(11), 5495. doi: 10.3390/ijms22115495 PMID: 34071053
  251. Meltzer-Brody, S.; Colquhoun, H.; Riesenberg, R.; Epperson, C.N.; Deligiannidis, K.M.; Rubinow, D.R.; Li, H.; Sankoh, A.J.; Clemson, C.; Schacterle, A.; Jonas, J.; Kanes, S. Brexanolone injection in post-partum depression: Two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet, 2018, 392(10152), 1058-1070. doi: 10.1016/S0140-6736(18)31551-4 PMID: 30177236
  252. Arevalo, M.A.; Azcoitia, I.; Garcia-Segura, L.M. The neuroprotective actions of oestradiol and oestrogen receptors. Nat. Rev. Neurosci., 2015, 16(1), 17-29. doi: 10.1038/nrn3856 PMID: 25423896
  253. Srivastava, D.P.; Woolfrey, K.M.; Penzes, P. Insights into rapid modulation of neuroplasticity by brain estrogens. Pharmacol. Rev., 2013, 65(4), 1318-1350. doi: 10.1124/pr.111.005272 PMID: 24076546
  254. Pavlidi, P.; Kokras, N.; Dalla, C. Sex differences in depression and anxiety. Curr. Top. Behav. Neurosci., 2022, 62, 103-132. doi: 10.1007/7854_2022_375
  255. Handa, R.J.; Weiser, M.J. Gonadal steroid hormones and the hypothalamo-pituitary-adrenal axis. Front. Neuroendocrinol., 2014, 35(2), 197-220. doi: 10.1016/j.yfrne.2013.11.001 PMID: 24246855
  256. Juster, R.P.; Raymond, C.; Desrochers, A.B.; Bourdon, O.; Durand, N.; Wan, N.; Pruessner, J.C.; Lupien, S.J. Sex hormones adjust "sex-specific" reactive and diurnal cortisol profiles. Psychoneuroendocrinology, 2016, 63, 282-290. doi: 10.1016/j.psyneuen.2015.10.012 PMID: 26539966
  257. Balthazart, J.; Charlier, T.D.; Cornil, C.A.; Dickens, M.J.; Harada, N.; Konkle, A.T.M.; Voigt, C.; Ball, G.F. Sex differences in brain aromatase activity: genomic and non-genomic controls. Front. Endocrinol., 2011, 2, 34. doi: 10.3389/fendo.2011.00034 PMID: 22645508
  258. Kokras, N.; Pastromas, N.; Porto, T.H.; Kafetzopoulos, V.; Mavridis, T.; Dalla, C. Acute but not sustained aromatase inhibition displays antidepressant properties. Int. J. Neuropsychopharmacol., 2014, 17(8), 1307-1313. doi: 10.1017/S1461145714000212 PMID: 24674846
  259. Chaiton, J.A.; Wong, S.J.; Galea, L.A.M. Chronic aromatase inhibition increases ventral hippocampal neurogenesis in middle-aged female mice. Psychoneuroendocrinology, 2019, 106, 111-116. doi: 10.1016/j.psyneuen.2019.04.003 PMID: 30974324
  260. Dalla, C.; Antoniou, K.; Papadopoulou-Daifoti, Z.; Balthazart, J.; Bakker, J. Oestrogen-deficient female aromatase knockout (ArKO) mice exhibit ‘depressive-like’ symptomatology. Eur. J. Neurosci., 2004, 20(1), 217-228. doi: 10.1111/j.1460-9568.2004.03443.x PMID: 15245494
  261. Alexander, A.; Irving, A.J.; Harvey, J. Emerging roles for the novel estrogen-sensing receptor GPER1 in the CNS. Neuropharmacology., 2017, 113((Pt B)), 652-660. doi: 10.1016/j.neuropharm.2016.07.003
  262. Tang, H.; Zhang, Q.; Yang, L.; Dong, Y.; Khan, M.; Yang, F.; Brann, D.W.; Wang, R. GPR30 mediates estrogen rapid signaling and neuroprotection. Mol. Cell. Endocrinol., 2014, 387(1-2), 52-58. doi: 10.1016/j.mce.2014.01.024 PMID: 24594140
  263. Yang, Z.D.; Yu, J.; Zhang, Q. Effects of raloxifene on cognition, mental health, sleep and sexual function in menopausal women: A systematic review of randomized controlled trials. Maturitas, 2013, 75(4), 341-348. doi: 10.1016/j.maturitas.2013.05.010 PMID: 23764354
  264. Solomon, M.B.; Herman, J.P. Sex differences in psychopathology: Of gonads, adrenals and mental illness. Physiol. Behav., 2009, 97(2), 250-258. doi: 10.1016/j.physbeh.2009.02.033 PMID: 19275906
  265. Carmassi, C.; Cordone, A.; Dell’Oste, V.; Pedrinelli, V.; Pardini, F.; Simoncini, M.; Dell’Osso, L. Prescribing tamoxifen in patients with mood disorders. J. Clin. Psychopharmacol., 2021, 41(4), 450-460. doi: 10.1097/JCP.0000000000001412 PMID: 34166298
  266. Palacios, J.; Yildiz, A.; Young, A.H.; Taylor, M.J. Tamoxifen for bipolar disorder: Systematic review and meta-analysis. J. Psychopharmacol., 2019, 33(2), 177-184. doi: 10.1177/0269881118822167 PMID: 30741085
  267. Kastenberger, I.; Schwarzer, C. GPER1 (GPR30) knockout mice display reduced anxiety and altered stress response in a sex and paradigm dependent manner. Horm. Behav., 2014, 66(4), 628-636. doi: 10.1016/j.yhbeh.2014.09.001 PMID: 25236887
  268. Kastenberger, I.; Lutsch, C.; Schwarzer, C. Activation of the G-protein-coupled receptor GPR30 induces anxiogenic effects in mice, similar to oestradiol. Psychopharmacology (Berl.), 2012, 221(3), 527-535. doi: 10.1007/s00213-011-2599-3 PMID: 22143579
  269. Findikli, E.; Kurutas, E.B.; Camkurt, M.A.; Karaaslan, M.F.; Izci, F. Fındıklı, H.A.; Kardaş S.; Dag, B.; Altun, H. Increased serum g protein-coupled estrogen receptor 1 levels and its diagnostic value in drug naïve patients with major depressive disorder. Clin. Psychopharmacol. Neurosci., 2017, 15(4), 337-342. doi: 10.9758/cpn.2017.15.4.337 PMID: 29073745
  270. Miller, L.R.; Marks, C.; Becker, J.B.; Hurn, P.D.; Chen, W.J.; Woodruff, T.; McCarthy, M.M.; Sohrabji, F.; Schiebinger, L.; Wetherington, C.L.; Makris, S.; Arnold, A.P.; Einstein, G.; Miller, V.M.; Sandberg, K.; Maier, S.; Cornelison, T.L.; Clayton, J.A. Considering sex as a biological variable in preclinical research. FASEB J., 2017, 31(1), 29-34. doi: 10.1096/fj.201600781r PMID: 27682203
  271. Accounting for Neglected Factors and Applying Practical Solutions to Enhance Rigor and Reproducibility, 2023. Available from: https://www.preclinicaldataforum.org/addressing-sex-as-a-biological-variable-training/
  272. Clayton, J.A.; Collins, F.S. Policy: NIH to balance sex in cell and animal studies. Nature, 2014, 509(7500), 282-283. doi: 10.1038/509282a PMID: 24834516
  273. Pawluski, J.L.; Kokras, N.; Charlier, T.D.; Dalla, C. Sex matters in neuroscience and neuropsychopharmacology. Eur. J. Neurosci., 2020, 52(1), 2423-2428. doi: 10.1111/ejn.14880 PMID: 32578303
  274. Shansky, R.M. Are hormones a "female problem" for animal research? Science, 2019, 364(6443), 825-826. doi: 10.1126/science.aaw7570 PMID: 31147505
  275. Butlen-Ducuing, F.; Balkowiec-Iskra, E.; Dalla, C.; Slattery, D.A.; Ferretti, M.T.; Kokras, N.; Balabanov, P.; De Vries, C.; Mellino, S.; Chadha, S.A. Implications of sex-related differences in central nervous system disorders for drug research and development. Nat. Rev. Drug Discov., 2021, 20(12), 881-882. doi: 10.1038/d41573-021-00115-6 PMID: 34226696
  276. Bespalov, A.; Steckler, T. Lacking quality in research: Is behavioral neuroscience affected more than other areas of biomedical science? J. Neurosci. Methods, 2018, 300, 4-9. doi: 10.1016/j.jneumeth.2017.10.018 PMID: 29107620
  277. Bespalov, A.; Steckler, T.; Altevogt, B.; Koustova, E.; Skolnick, P.; Deaver, D.; Millan, M.J.; Bastlund, J.F.; Doller, D.; Witkin, J.; Moser, P.; O’Donnell, P.; Ebert, U.; Geyer, M.A.; Prinssen, E.; Ballard, T.; Macleod, M. Failed trials for central nervous system disorders do not necessarily invalidate preclinical models and drug targets. Nat. Rev. Drug Discov., 2016, 15(7), 516. doi: 10.1038/nrd.2016.88 PMID: 27312728
  278. Hodes, G.E.; Kropp, D.R. Sex as a biological variable in stress and mood disorder research. Nat. Mental Health, 2023, 1(7), 453-461. doi: 10.1038/s44220-023-00083-3

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers