Sex Differences in Stress Response: Classical Mechanisms and Beyond
- Authors: Hodes G.1, Bangasser D.2, Sotiropoulos I.3, Kokras N.4, Dalla C.5
-
Affiliations:
- Virginia Tech, School of Neuroscience
- Center for Behavioral Neuroscience, Georgia State University
- , Institute of Biosciences & Applications NCSR "Demokritos
- Department of Pharmacology, Medical School,, National and Kapodistrian University of Athens
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens
- Issue: Vol 22, No 3 (2024)
- Pages: 475-494
- Section: Neurology
- URL: https://rjraap.com/1570-159X/article/view/644704
- DOI: https://doi.org/10.2174/1570159X22666231005090134
- ID: 644704
Cite item
Full Text
Abstract
Neuropsychiatric disorders, which are associated with stress hormone dysregulation, occur at different rates in men and women. Moreover, nowadays, preclinical and clinical evidence demonstrates that sex and gender can lead to differences in stress responses that predispose males and females to different expressions of similar pathologies. In this curated review, we focus on what is known about sex differences in classic mechanisms of stress response, such as glucocorticoid hormones and corticotrophin-releasing factor (CRF), which are components of the hypothalamicpituitary- adrenal (HPA) axis. Then, we present sex differences in neurotransmitter levels, such as serotonin, dopamine, glutamate and GABA, as well as indices of neurodegeneration, such as amyloid β and Tau. Gonadal hormone effects, such as estrogens and testosterone, are also discussed throughout the review. We also review in detail preclinical data investigating sex differences caused by recentlyrecognized regulators of stress and disease, such as the immune system, genetic and epigenetic mechanisms, as well neurosteroids. Finally, we discuss how understanding sex differences in stress responses, as well as in pharmacology, can be leveraged into novel, more efficacious therapeutics for all. Based on the supporting evidence, it is obvious that incorporating sex as a biological variable into preclinical research is imperative for the understanding and treatment of stress-related neuropsychiatric disorders, such as depression, anxiety and Alzheimers disease.
Keywords
About the authors
Georgia Hodes
Virginia Tech, School of Neuroscience
Email: info@benthamscience.net
Debra Bangasser
Center for Behavioral Neuroscience, Georgia State University
Email: info@benthamscience.net
Ioannis Sotiropoulos
, Institute of Biosciences & Applications NCSR "Demokritos
Email: info@benthamscience.net
Nikolaos Kokras
Department of Pharmacology, Medical School,, National and Kapodistrian University of Athens
Email: info@benthamscience.net
Christina Dalla
Department of Pharmacology, Medical School, National and Kapodistrian University of Athens
Author for correspondence.
Email: info@benthamscience.net
References
- Munck, A.; Guyre, P.M.; Holbrook, N.J. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr. Rev., 1984, 5(1), 25-44. doi: 10.1210/edrv-5-1-25 PMID: 6368214
- McEwen, B.S.; Gianaros, P.J. Stress- and allostasis-induced brain plasticity. Annu. Rev. Med., 2011, 62(1), 431-445. doi: 10.1146/annurev-med-052209-100430 PMID: 20707675
- Lyons, D.M.; Parker, K.J.; Schatzberg, A.F. Animal models of early life stress: Implications for understanding resilience. Dev. Psychobiol., 2010, 52(7), 616-624. doi: 10.1002/dev.20500 PMID: 20957724
- Masten, A.S. Ordinary magic: Resilience processes in development. Am. Psychol., 2001, 56(3), 227-238. doi: 10.1037/0003-066X.56.3.227 PMID: 11315249
- De Berardis, D.; Fornaro, M.; Orsolini, L. Editorial: "No Words for Feelings, Yet!" exploring alexithymia, disorder of affect regulation, and the "Mind-Body" connection. Front. Psychiatry, 2020, 11, 593462. doi: 10.3389/fpsyt.2020.593462 PMID: 33061929
- Grandinetti, P.; Gooney, M.; Scheibein, F.; Testa, R.; Ruggieri, G.; Tondo, P.; Corona, A.; Boi, G.; Floris, L.; Profeta, V.F.; G. Wells, J.S.; De Berardis, D. Stress and maladaptive coping of italians health care professionals during the first wave of the pandemic. Brain Sci., 2021, 11(12), 1586. doi: 10.3390/brainsci11121586 PMID: 34942888
- Wilson, R.S.; Arnold, S.E.; Schneider, J.A.; Kelly, J.F.; Tang, Y.; Bennett, D.A. Chronic psychological distress and risk of Alzheimers disease in old age. Neuroepidemiology, 2006, 27(3), 143-153. doi: 10.1159/000095761 PMID: 16974109
- Riboni, F.V.; Belzung, C. Stress and psychiatric disorders: From categorical to dimensional approaches. Curr. Opin. Behav. Sci., 2017, 14, 72-77. doi: 10.1016/j.cobeha.2016.12.011
- Newman, S.C.; Bland, R.C. Life events and the 1-year prevalence of major depressive episode, generalized anxiety disorder, and panic disorder in a community sample. Compr. Psychiatry, 1994, 35(1), 76-82. doi: 10.1016/0010-440X(94)90173-2 PMID: 8149733
- Altemus, M.; Sarvaiya, N.; Epperson, N.C. Sex differences in anxiety and depression clinical perspectives. Front. Neuroendocrinol., 2014, 35(3), 320-330. doi: 10.1016/j.yfrne.2014.05.004 PMID: 24887405
- Kessler, R.C.; Petukhova, M.; Sampson, N.A.; Zaslavsky, A.M.; Wittchen, H.U. Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. Int. J. Methods Psychiatr. Res., 2012, 21(3), 169-184. doi: 10.1002/mpr.1359 PMID: 22865617
- Marcus, S.M.; Young, E.A.; Kerber, K.B.; Kornstein, S.; Farabaugh, A.H.; Mitchell, J.; Wisniewski, S.R.; Balasubramani, G.K.; Trivedi, M.H.; Rush, A.J. Gender differences in depression: Findings from the STAR*D study. J. Affect. Disord., 2005, 87(2-3), 141-150. doi: 10.1016/j.jad.2004.09.008 PMID: 15982748
- McLean, C.P.; Asnaani, A.; Litz, B.T.; Hofmann, S.G. Gender differences in anxiety disorders: Prevalence, course of illness, comorbidity and burden of illness. J. Psychiatr. Res., 2011, 45(8), 1027-1035. doi: 10.1016/j.jpsychires.2011.03.006 PMID: 21439576
- Kessler, R.C.; Aguilar-Gaxiola, S.; Alonso, J.; Chatterji, S.; Lee, S.; Ormel, J.; Üstün, T.B.; Wang, P.S. The global burden of mental disorders: An update from the WHO World Mental Health (WMH) Surveys. Epidemiol. Psichiatr. Soc., 2009, 18(1), 23-33. doi: 10.1017/S1121189X00001421 PMID: 19378696
- Tolin, D.F.; Foa, E.B. Sex differences in trauma and posttraumatic stress disorder: A quantitative review of 25 years of research. Psychol. Bull., 2006, 132(6), 959-992. doi: 10.1037/0033-2909.132.6.959 PMID: 17073529
- Lydiard, R.B. Irritable bowel syndrome, anxiety, and depression: what are the links? J. Clin. Psychiatry, 2001, 62(S8), 38-45. PMID: 12108820
- Beghi, E.; Allais, G.; Cortelli, P.; DAmico, D.; De Simone, R.; dOnofrio, F.; Genco, S.; Manzoni, G.C.; Moschiano, F.; Tonini, M.C.; Torelli, P.; Quartaroli, M.; Roncolato, M.; Salvi, S.; Bussone, G. Headache and anxiety-depressive disorder comorbidity: The HADAS study. Neurol. Sci., 2007, 28(S2), S217-S219. doi: 10.1007/s10072-007-0780-6 PMID: 17508174
- van Mill, J.G.; Hoogendijk, W.J.G.; Vogelzangs, N.; van Dyck, R.; Penninx, B.W.J.H. Insomnia and sleep duration in a large cohort of patients with major depressive disorder and anxiety disorders. J. Clin. Psychiatry, 2010, 71(3), 239-246. doi: 10.4088/JCP.09m05218gry PMID: 20331928
- Lipton, R.B.; Stewart, W.F.; Diamond, S.; Diamond, M.L.; Reed, M. Prevalence and burden of migraine in the United States: Data from the American Migraine Study II. Headache, 2001, 41(7), 646-657. doi: 10.1046/j.1526-4610.2001.041007646.x PMID: 11554952
- Singareddy, R.; Vgontzas, A.N.; Fernandez-Mendoza, J.; Liao, D.; Calhoun, S.; Shaffer, M.L.; Bixler, E.O. Risk factors for incident chronic insomnia: A general population prospective study. Sleep Med., 2012, 13(4), 346-353. doi: 10.1016/j.sleep.2011.10.033 PMID: 22425576
- Drossman, D.A.; Thompson, W.G.; Talley, N.J.; Funch-Jensen, P.; Janssens, J.; Whitehead, W.E. Identification of sub-groups of functional gastrointestinal disorders. Gastroenterol. Intl., 1990, 3(4), 159-172.
- Gao, S.; Hendrie, H.C.; Hall, K.S.; Hui, S. The relationships between age, sex, and the incidence of dementia and Alzheimer disease: A meta-analysis. Arch. Gen. Psychiatry, 1998, 55(9), 809-815. doi: 10.1001/archpsyc.55.9.809 PMID: 9736007
- Medeiros, A.M.; Silva, R.H. Sex differences in Alzheimers Disease: Where do we stand? J. Alzheimers Dis., 2019, 67(1), 35-60. doi: 10.3233/JAD-180213 PMID: 30530972
- Novais, F.; Starkstein, S. Phenomenology of depression in Alzheimers Disease. J. Alzheimers Dis., 2015, 47(4), 845-855. doi: 10.3233/JAD-148004 PMID: 26401763
- Kouzoupis, A.V.; Lyrakos, D.; Kokras, N.; Panagiotarakou, M.; Syrigos, K.N.; Papadimitriou, G.N. Dysfunctional remembered parenting in oncology outpatients affects psychological distress symptoms in a gender‐specific manner. Stress Health, 2012, 28(5), 381-388. doi: 10.1002/smi.2460 PMID: 23023836
- Riecher-Rössler, A.; Butler, S.; Kulkarni, J. Sex and gender differences in schizophrenic psychoses-a critical review. Arch. Women Ment. Health, 2018, 21(6), 627-648. doi: 10.1007/s00737-018-0847-9 PMID: 29766281
- McGrath, J.; Saha, S.; Chant, D.; Welham, J. Schizophrenia: A concise overview of incidence, prevalence, and mortality. Epidemiol. Rev., 2008, 30(1), 67-76. doi: 10.1093/epirev/mxn001 PMID: 18480098
- Green, M.J.; Girshkin, L.; Teroganova, N.; Quidé, Y. Stress,Schizophrenia and Bipolar Disorder; In: Behavioral Neurobiology of Stress-related Disorders, SpringerLink; , 2014, pp. 217-235.
- Martin, L.A.; Neighbors, H.W.; Griffith, D.M. The experience of symptoms of depression in men vs. women: Analysis of the national comorbidity survey replication. JAMA Psychiatry, 2013, 70(10), 1100-1106. doi: 10.1001/jamapsychiatry.2013.1985 PMID: 23986338
- Gururajan, A.; Reif, A.; Cryan, J.F.; Slattery, D.A. The future of rodent models in depression research. Nat. Rev. Neurosci., 2019, 20(11), 686-701. doi: 10.1038/s41583-019-0221-6 PMID: 31578460
- Beery, A.K.; Zucker, I. Sex bias in neuroscience and biomedical research. Neurosci. Biobehav. Rev., 2011, 35(3), 565-572. doi: 10.1016/j.neubiorev.2010.07.002 PMID: 20620164
- Tannenbaum, C.; Schwarz, J.M.; Clayton, J.A.; de Vries, G.J.; Sullivan, C. Evaluating sex as a biological variable in preclinical research: The devil in the details. Biol. Sex Differ., 2016, 7(1), 13. doi: 10.1186/s13293-016-0066-x PMID: 26870316
- Mamlouk, G.M.; Dorris, D.M.; Barrett, L.R.; Meitzen, J. Sex bias and omission in neuroscience research is influenced by research model and journal, but not reported NIH funding. Front. Neuroendocrinol., 2020, 57, 100835. doi: 10.1016/j.yfrne.2020.100835 PMID: 32070715
- Rechlin, R.K.; Splinter, T.F.L.; Hodges, T.E.; Albert, A.Y.; Galea, L.A.M. An analysis of neuroscience and psychiatry papers published from 2009 and 2019 outlines opportunities for increasing discovery of sex differences. Nat. Commun., 2022, 13(1), 2137. doi: 10.1038/s41467-022-29903-3 PMID: 35440664
- Dalla, C. Integrating sex and gender in mental health research: Enhanced funding for better treatments. Nat. Mental Health, 2023, 1(6), 383-384. doi: 10.1038/s44220-023-00076-2
- Kokras, N.; Hodes, G.E.; Bangasser, D.A.; Dalla, C. Sex differences in the hypothalamic-pituitary-adrenal axis: An obstacle to antidepressant drug development? Br. J. Pharmacol., 2019, 176(21), 4090-4106. doi: 10.1111/bph.14710 PMID: 31093959
- Atkinson, H.C.; Waddell, B.J. Circadian variation in basal plasma corticosterone and adrenocorticotropin in the rat: sexual dimorphism and changes across the estrous cycle. Endocrinology, 1997, 138(9), 3842-3848. doi: 10.1210/endo.138.9.5395 PMID: 9275073
- Weinstock, M.; Razin, M.; Schorer-apelbaum, D.; Men, D.; McCarty, R. Gender differences in sympathoadrenal activity in rats at rest and in response to footshock stress. Int. J. Dev. Neurosci., 1998, 16(3-4), 289-295. doi: 10.1016/S0736-5748(98)00021-5 PMID: 9785125
- Kokras, N.; Pastromas, N.; Papasava, D.; de Bournonville, C.; Cornil, C.A.; Dalla, C. Sex differences in behavioral and neurochemical effects of gonadectomy and aromatase inhibition in rats. Psychoneuroendocrinology, 2018, 87, 93-107. doi: 10.1016/j.psyneuen.2017.10.007 PMID: 29054014
- Dalla, C.; Antoniou, K.; Drossopoulou, G.; Xagoraris, M.; Kokras, N.; Sfikakis, A.; Papadopoulou-Daifoti, Z. Chronic mild stress impact: Are females more vulnerable? Neuroscience, 2005, 135(3), 703-714. doi: 10.1016/j.neuroscience.2005.06.068 PMID: 16125862
- Bangasser, D.A.; Valentino, R.J. Sex differences in stress-related psychiatric disorders: Neurobiological perspectives. Front. Neuroendocrinol., 2014, 35(3), 303-319. doi: 10.1016/j.yfrne.2014.03.008 PMID: 24726661
- Kokras, N.; Sotiropoulos, I.; Pitychoutis, P.M.; Almeida, O.F.X.; Papadopoulou-Daifoti, Z. Citalopram-mediated anxiolysis and differing neurobiological responses in both sexes of a genetic model of depression. Neuroscience, 2011, 194, 62-71. doi: 10.1016/j.neuroscience.2011.07.077 PMID: 21839808
- Gala, R.R.; Westphal, U. Further studies on the corticosteroid-binding globulin in the rat: Proposed endocrine control. Endocrinology, 1966, 79(1), 67-76. doi: 10.1210/endo-79-1-67 PMID: 5917132
- Oyola, M.G.; Handa, R.J. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: Sex differences in regulation of stress responsivity. Stress, 2017, 20(5), 476-494. doi: 10.1080/10253890.2017.1369523 PMID: 28859530
- Kokras, N.; Dalla, C.; Sideris, A.C.; Dendi, A.; Mikail, H.G.; Antoniou, K.; Papadopoulou-Daifoti, Z. Behavioral sexual dimorphism in models of anxiety and depression due to changes in HPA axis activity. Neuropharmacology, 2012, 62(1), 436-445. doi: 10.1016/j.neuropharm.2011.08.025 PMID: 21884710
- Kokras, N.; Krokida, S.; Varoudaki, T.Z.; Dalla, C. Do corticosterone levels predict female depressive‐like behavior in rodents? J. Neurosci. Res., 2021, 99(1), 324-331. doi: 10.1002/jnr.24686 PMID: 32640495
- Rivier, C. Gender, sex steroids, corticotropin-releasing factor, nitric oxide, and the HPA response to stress. Pharmacol. Biochem. Behav., 1999, 64(4), 737-751. doi: 10.1016/S0091-3057(99)00148-3 PMID: 10593197
- Viau, V.; Bingham, B.; Davis, J.; Lee, P.; Wong, M. Gender and puberty interact on the stress-induced activation of parvocellular neurosecretory neurons and corticotropin-releasing hormone messenger ribonucleic acid expression in the rat. Endocrinology, 2005, 146(1), 137-146. doi: 10.1210/en.2004-0846 PMID: 15375029
- Wood, G.E.; Beylin, A.V.; Shors, T.J. The contribution of adrenal and reproductive hormones to the opposing effects of stress on trace conditioning males versus females. Behav. Neurosci., 2001, 115(1), 175-187. doi: 10.1037/0735-7044.115.1.175 PMID: 11256441
- Bangasser, D.A.; Shors, T.J. The hippocampus is necessary for enhancements and impairments of learning following stress. Nat. Neurosci., 2007, 10(11), 1401-1403. doi: 10.1038/nn1973 PMID: 17906620
- Dalla, C.; Shors, T.J. Sex differences in learning processes of classical and operant conditioning. Physiol. Behav., 2009, 97(2), 229-238. doi: 10.1016/j.physbeh.2009.02.035 PMID: 19272397
- Dalla, C.; Whetstone, A.S.; Hodes, G.E.; Shors, T.J. Stressful experience has opposite effects on dendritic spines in the hippocampus of cycling versus masculinized females. Neurosci. Lett., 2009, 449(1), 52-56. doi: 10.1016/j.neulet.2008.10.051 PMID: 18952150
- Shors, T.J.; Chua, C.; Falduto, J. Sex differences and opposite effects of stress on dendritic spine density in the male versus female hippocampus. J. Neurosci., 2001, 21(16), 6292-6297. doi: 10.1523/JNEUROSCI.21-16-06292.2001 PMID: 11487652
- Leuner, B.; Shors, T.J. New spines, new memories. Mol. Neurobiol., 2004, 29(2), 117-130. doi: 10.1385/MN:29:2:117 PMID: 15126680
- Dalla, C.; Pitychoutis, P.M.; Kokras, N.; Papadopoulou-Daifoti, Z. Sex differences in response to stress and expression of depressive-like behaviours in the rat. Curr. Top. Behav. Neurosci., 2011, 8, 97-118.
- Kokras, N.; Antoniou, K.; Dalla, C.; Bekris, S.; Xagoraris, M.; Ovestreet, D.H.; Papadopoulou-Daifoti, Z. Sex-related differential response to clomipramine treatment in a rat model of depression. J. Psychopharmacol., 2009, 23(8), 945-956. doi: 10.1177/0269881108095914 PMID: 18755816
- Mikail, H.G.; Dalla, C.; Kokras, N.; Kafetzopoulos, V.; Papadopoulou-Daifoti, Z. Sertraline behavioral response associates closer and dose-dependently with cortical rather than hippocampal serotonergic activity in the rat forced swim stress. Physiol. Behav., 2012, 107(2), 201-206. doi: 10.1016/j.physbeh.2012.06.016 PMID: 22771833
- Dalla, C.; Antoniou, K.; Kokras, N.; Drossopoulou, G.; Papathanasiou, G.; Bekris, S.; Daskas, S.; Papadopoulou-Daifoti, Z. Sex differences in the effects of two stress paradigms on dopaminergic neurotransmission. Physiol. Behav., 2008, 93(3), 595-605. doi: 10.1016/j.physbeh.2007.10.020 PMID: 18031771
- Kokras, N.; Antoniou, K.; Polissidis, A.; Papadopoulou-Daifoti, Z. Antidepressants induce regionally discrete, sex-dependent changes in brains glutamate content. Neurosci. Lett., 2009, 464(2), 98-102. doi: 10.1016/j.neulet.2009.08.011 PMID: 19666087
- Shors, T.J.; Falduto, J.; Leuner, B. The opposite effects of stress on dendritic spines in male vs. female rats are NMDA receptor-dependent. Eur. J. Neurosci., 2004, 19(1), 145-150. doi: 10.1046/j.1460-9568.2003.03065.x PMID: 14750972
- Kokras, N.; Sotiropoulos, I.; Besinis, D.; Tzouveka, E.L.; Almeida, O.F.X.; Sousa, N.; Dalla, C. Neuroplasticity-related correlates of environmental enrichment combined with physical activity differ between the sexes. Eur. Neuropsychopharmacol., 2019, 29(1), 1-15. doi: 10.1016/j.euroneuro.2018.11.1107 PMID: 30497839
- Andolina, D.; Maran, D.; Viscomi, M.T.; Puglisi-Allegra, S. Strain-dependent variations in stress coping behavior are mediated by a 5-HT/GABA interaction within the prefrontal corticolimbic system. Int. J. Neuropsychopharmacol., 2015, 18(3), pyu074. doi: 10.1093/ijnp/pyu074 PMID: 25522413
- Treccani, G.; Musazzi, L.; Perego, C.; Milanese, M.; Nava, N.; Bonifacino, T.; Lamanna, J.; Malgaroli, A.; Drago, F.; Racagni, G.; Nyengaard, J.R.; Wegener, G.; Bonanno, G.; Popoli, M. Acute stress rapidly increases the readily releasable pool of glutamate vesicles in prefrontal and frontal cortex through non-genomic action of corticosterone. Mol. Psychiatry, 2014, 19(4), 401. doi: 10.1038/mp.2014.20 PMID: 24658610
- Bremner, J.D.; Licinio, J.; Darnell, A.; Krystal, J.H.; Owens, M.J.; Southwick, S.M.; Nemeroff, C.B.; Charney, D.S. Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am. J. Psychiatry, 1997, 154(5), 624-629. doi: 10.1176/ajp.154.5.624 PMID: 9137116
- Banki, C.M.; Karmacsi, L.; Bissette, G.; Nemeroff, C.B. CSF corticotropin-releasing hormone and somatostatin in major depression: Response to antidepressant treatment and relapse. Eur. Neuropsychopharmacol., 1992, 2(2), 107-113. doi: 10.1016/0924-977X(92)90019-5 PMID: 1352999
- Heuser, I.; Bissette, G.; Dettling, M.; Schweiger, U.; Gotthardt, U.; Schmider, J.; Lammers, C.H.; Nemeroff, C.B.; Holsboer, F. Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and healthy controls: Response to amitriptyline treatment. Depress. Anxiety, 1998, 8(2), 71-79. doi: 10.1002/(SICI)1520-6394(1998)8:23.0.CO;2-N PMID: 9784981
- Austin, M.C.; Janosky, J.E.; Murphy, H.A. Increased corticotropin-releasing hormone immunoreactivity in monoamine-containing pontine nuclei of depressed suicide men. Mol. Psychiatry, 2003, 8(3), 324-332. doi: 10.1038/sj.mp.4001250 PMID: 12660805
- Bissette, G.; Klimek, V.; Pan, J.; Stockmeier, C.; Ordway, G. Elevated concentrations of CRF in the locus coeruleus of depressed subjects. Neuropsychopharmacology, 2003, 28(7), 1328-1335. doi: 10.1038/sj.npp.1300191 PMID: 12784115
- Vandael, D.; Gounko, N.V. Corticotropin releasing factor-binding protein (CRF-BP) as a potential new therapeutic target in Alzheimers disease and stress disorders. Transl. Psychiatry, 2019, 9(1), 272. doi: 10.1038/s41398-019-0581-8 PMID: 31641098
- Pomara, N.; Greenberg, W.M.; Branford, M.D.; Doraiswamy, P.M. Therapeutic implications of HPA axis abnormalities in Alzheimers disease: Review and update. Psychopharmacol. Bull., 2003, 37(2), 120-134. PMID: 14674372
- Whitehouse, P.J.; Vale, W.W.; Zweig, R.M.; Singer, H.S.; Mayeux, R.; Kuhar, M.J.; Price, D.L.; De Souza, E.B. Reductions in corticotropin releasing factor-like immunoreactivity in cerebral cortex in Alzheimers disease, Parkinsons disease, and progressive supranuclear palsy. Neurology, 1987, 37(6), 905-909. doi: 10.1212/WNL.37.6.905 PMID: 3495748
- Souza, E.B.D. CRH defects in Alzheimers and other neurologic diseases. Hosp. Pract., 1988, 23(9), 59-71. doi: 10.1080/21548331.1988.11703535 PMID: 2901426
- Gallucci, W.T.; Baum, A.; Laue, L.; Rabin, D.S.; Chrousos, G.P.; Gold, P.W.; Kling, M.A. Sex differences in sensitivity of the hypothalamic-pituitary-adrenal axis. Health Psychol., 1993, 12(5), 420-425. doi: 10.1037/0278-6133.12.5.420 PMID: 8223368
- Bangasser, D.A.; Wiersielis, K.R. Sex differences in stress responses: A critical role for corticotropin-releasing factor. Hormones, 2018, 17(1), 5-13. doi: 10.1007/s42000-018-0002-z PMID: 29858858
- Dunčko, R.; Kiss, A.; kultétyová, I.; Rusnák, M.; Jeová, D. Corticotropin-releasing hormone mRNA levels in response to chronic mild stress rise in male but not in female rats while tyrosine hydroxylase mRNA levels decrease in both sexes. Psychoneuroendocrinology, 2001, 26(1), 77-89. doi: 10.1016/S0306-4530(00)00040-8 PMID: 11070336
- Speert, D.B.; McClennen, S.J.; Seasholtz, A.F. Sexually dimorphic expression of corticotropin-releasing hormone-binding protein in the mouse pituitary. Endocrinology, 2002, 143(12), 4730-4741. doi: 10.1210/en.2002-220556 PMID: 12446601
- Wiersielis, K.R.; Ceretti, A.; Hall, A.; Famularo, S.T.; Salvatore, M.; Ellis, A.S.; Jang, H.; Wimmer, M.E.; Bangasser, D.A. Sex differences in corticotropin releasing factor regulation of medial septum-mediated memory formation. Neurobiol. Stress, 2019, 10, 100150. doi: 10.1016/j.ynstr.2019.100150 PMID: 30937355
- Bale, T.L.; Vale, W.W. Increased depression-like behaviors in corticotropin-releasing factor receptor-2-deficient mice: sexually dichotomous responses. J. Neurosci., 2003, 23(12), 5295-5301. doi: 10.1523/JNEUROSCI.23-12-05295.2003 PMID: 12832554
- Bale, T.L.; Picetti, R.; Contarino, A.; Koob, G.F.; Vale, W.W.; Lee, K.F. Mice deficient for both corticotropin-releasing factor receptor 1 (CRFR1) and CRFR2 have an impaired stress response and display sexually dichotomous anxiety-like behavior. J. Neurosci., 2002, 22(1), 193-199. doi: 10.1523/JNEUROSCI.22-01-00193.2002 PMID: 11756502
- Bale, T.L. Sensitivity to stress: Dysregulation of CRF pathways and disease development. Horm. Behav., 2005, 48(1), 1-10. doi: 10.1016/j.yhbeh.2005.01.009 PMID: 15919381
- Weathington, J.M.; Hamki, A.; Cooke, B.M. Sex- and region-specific pubertal maturation of the corticotropin-releasing factor receptor system in the rat. J. Comp. Neurol., 2014, 522(6), 1284-1298. doi: 10.1002/cne.23475 PMID: 24115088
- Rosinger, Z.J.; Jacobskind, J.S.; Park, S.G.; Justice, N.J.; Zuloaga, D.G. Distribution of corticotropin-releasing factor receptor 1 in the developing mouse forebrain: A novel sex difference revealed in the rostral periventricular hypothalamus. Neuroscience, 2017, 361, 167-178. doi: 10.1016/j.neuroscience.2017.08.016 PMID: 28823817
- Rosinger, Z.J.; De Guzman, R.M.; Jacobskind, J.S.; Saglimbeni, B.; Malone, M.; Fico, D.; Justice, N.J.; Forni, P.E.; Zuloaga, D.G. Sex-dependent effects of chronic variable stress on discrete corticotropin-releasing factor receptor 1 cell populations. Physiol. Behav., 2020, 219, 112847. doi: 10.1016/j.physbeh.2020.112847 PMID: 32081812
- Howerton, A.R.; Roland, A.V.; Fluharty, J.M.; Marshall, A.; Chen, A.; Daniels, D.; Beck, S.G.; Bale, T.L. Sex differences in corticotropin-releasing factor receptor-1 action within the dorsal raphe nucleus in stress responsivity. Biol. Psychiatry, 2014, 75(11), 873-883. doi: 10.1016/j.biopsych.2013.10.013 PMID: 24289884
- Williams, T.J.; Akama, K.T.; Knudsen, M.G.; McEwen, B.S.; Milner, T.A. Ovarian hormones influence corticotropin releasing factor receptor colocalization with delta opioid receptors in CA1 pyramidal cell dendrites. Exp. Neurol., 2011, 230(2), 186-196. doi: 10.1016/j.expneurol.2011.04.012 PMID: 21549703
- Hauger, R.L.; Risbrough, V.; Oakley, R.H.; Olivares-Reyes, J.A.; Dautzenberg, F.M. Role of CRF receptor signaling in stress vulnerability, anxiety, and depression. Ann. N. Y. Acad. Sci., 2009, 1179(1), 120-143. doi: 10.1111/j.1749-6632.2009.05011.x PMID: 19906236
- Hillhouse, E.W.; Grammatopoulos, D.K. The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocr. Rev., 2006, 27(3), 260-286. doi: 10.1210/er.2005-0034 PMID: 16484629
- Berridge, C.W.; Foote, S.L. Effects of locus coeruleus activation on electroencephalographic activity in neocortex and hippocampus. J. Neurosci., 1991, 11(10), 3135-3145. doi: 10.1523/JNEUROSCI.11-10-03135.1991 PMID: 1682425
- Berridge, C.W.; Waterhouse, B.D. The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev., 2003, 42(1), 33-84. doi: 10.1016/S0165-0173(03)00143-7 PMID: 12668290
- Gary, Aston-Jones. M.G. Role of the locus coeruleusnorepinephrine system in arousal and circadian regulation of the sleep-wake cycle. In: Brain norepinephrine: Neurobiology and therapeutics; Ordway, G.A; Frazer, A, Eds.; Cambridge University Press,, 2007, pp. 157-195.
- Bangasser, D.A.; Curtis, A.; Reyes, B.A.; Bethea, T.T.; Parastatidis, I.; Ischiropoulos, H.; Van Bockstaele, E.J.; Valentino, R.J. Sex differences in corticotropin-releasing factor receptor signaling and trafficking: Potential role in female vulnerability to stress-related psychopathology. Mol. Psychiatry, 2010, 15(9), 877-896-904. doi: 10.1038/mp.2010.89 PMID: 20548297
- Bates, M.L.S.; Arner, J.R.; Curtis, A.L.; Valentino, R.; Bhatnagar, S. Sex-specific alterations in corticotropin-releasing factor regulation of coerulear-cortical network activity. Neuropharmacology, 2023, 223, 109317. doi: 10.1016/j.neuropharm.2022.109317 PMID: 36334761
- Coker, A.L.; Weston, R.; Creson, D.L.; Justice, B.; Blakeney, P. PTSD symptoms among men and women survivors of intimate partner violence: the role of risk and protective factors. Violence Vict., 2005, 20(6), 625-643. doi: 10.1891/0886-6708.20.6.625 PMID: 16468442
- Breslau, N.; Chilcoat, H.D.; Kessler, R.C.; Peterson, E.L.; Lucia, V.C. Vulnerability to assaultive violence: further specification of the sex difference in post-traumatic stress disorder. Psychol. Med., 1999, 29(4), 813-821. doi: 10.1017/S0033291799008612 PMID: 10473308
- Plante, D.T.; Landsness, E.C.; Peterson, M.J.; Goldstein, M.R.; Riedner, B.A.; Wanger, T.; Guokas, J.J.; Tononi, G.; Benca, R.M. Sex-related differences in sleep slow wave activity in major depressive disorder: A high-density EEG investigation. BMC Psychiatry, 2012, 12(1), 146. doi: 10.1186/1471-244X-12-146 PMID: 22989072
- Nolen-Hoeksema, S.; Larson, J.; Grayson, C. Explaining the gender difference in depressive symptoms. J. Pers. Soc. Psychol., 1999, 77(5), 1061-1072. doi: 10.1037/0022-3514.77.5.1061 PMID: 10573880
- Lefkowitz, R.J.; Shenoy, S.K. Transduction of receptor signals by beta-arrestins. Science, 2005, 308(5721), 512-517. doi: 10.1126/science.1109237 PMID: 15845844
- Violin, J.D. Lefkowitz, R.J. β-Arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol. Sci., 2007, 28(8), 416-422. doi: 10.1016/j.tips.2007.06.006 PMID: 17644195
- Bangasser, D.A.; Dong, H.; Carroll, J.; Plona, Z.; Ding, H.; Rodriguez, L.; McKennan, C.; Csernansky, J.G.; Seeholzer, S.H.; Valentino, R.J. Corticotropin-releasing factor overexpression gives rise to sex differences in Alzheimers disease-related signaling. Mol. Psychiatry, 2017, 22(8), 1126-1133. doi: 10.1038/mp.2016.185 PMID: 27752081
- Valentino, R.J.; Van Bockstaele, E.; Bangasser, D. Sex-specific cell signaling: The corticotropin-releasing factor receptor model. Trends Pharmacol. Sci., 2013, 34(8), 437-444. doi: 10.1016/j.tips.2013.06.004 PMID: 23849813
- Murrough, J.W.; Charney, D.S. Corticotropin-releasing factor type 1 receptor antagonists for stress-related disorders: Time to call it quits? Biol. Psychiatry, 2017, 82(12), 858-860. doi: 10.1016/j.biopsych.2017.10.012 PMID: 29129198
- Mansbach, R.S.; Brooks, E.N.; Chen, Y.L. Antidepressant-like effects of CP-154,526, a selective CRF1 receptor antagonist. Eur. J. Pharmacol., 1997, 323(1), 21-26. doi: 10.1016/S0014-2999(97)00025-3 PMID: 9105872
- Schulz, D.W.; Mansbach, R.S.; Sprouse, J.; Braselton, J.P.; Collins, J.; Corman, M.; Dunaiskis, A.; Faraci, S.; Schmidt, A.W.; Seeger, T.; Seymour, P.; Tingley, F.D., III; Winston, E.N.; Chen, Y.L.; Heym, J. CP-154,526: A potent and selective nonpeptide antagonist of corticotropin releasing factor receptors. Proc. Natl. Acad. Sci. , 1996, 93(19), 10477-10482. doi: 10.1073/pnas.93.19.10477 PMID: 8816826
- Deak, T.; Nguyen, K.T.; Ehrlich, A.L.; Watkins, L.R.; Spencer, R.L.; Maier, S.F.; Licinio, J.; Wong, M.L.; Chrousos, G.P.; Webster, E.; Gold, P.W. The impact of the nonpeptide corticotropin-releasing hormone antagonist antalarmin on behavioral and endocrine responses to stress. Endocrinology, 1999, 140(1), 79-86. doi: 10.1210/endo.140.1.6415 PMID: 9886810
- Zorrilla, E.P.; Valdez, G.R.; Nozulak, J.; Koob, G.F.; Markou, A. Effects of antalarmin, a CRF type 1 receptor antagonist, on anxiety-like behavior and motor activation in the rat. Brain Res., 2002, 952(2), 188-199. doi: 10.1016/S0006-8993(02)03189-X PMID: 12376179
- Chaki, S.; Nakazato, A.; Kennis, L.; Nakamura, M.; Mackie, C.; Sugiura, M.; Vinken, P.; Ashton, D.; Langlois, X.; Steckler, T. Anxiolytic- and antidepressant-like profile of a new CRF1 receptor antagonist, R278995/CRA0450. Eur. J. Pharmacol., 2004, 485(1-3), 145-158. doi: 10.1016/j.ejphar.2003.11.032 PMID: 14757135
- Ising, M.; Zimmermann, U.S.; Künzel, H.E.; Uhr, M.; Foster, A.C.; Learned-Coughlin, S.M.; Holsboer, F.; Grigoriadis, D.E. High-affinity CRF1 receptor antagonist NBI-34041: preclinical and clinical data suggest safety and efficacy in attenuating elevated stress response. Neuropsychopharmacology, 2007, 32(9), 1941-1949. doi: 10.1038/sj.npp.1301328 PMID: 17287823
- Caruso, A.; Nicoletti, F.; Gaetano, A.; Scaccianoce, S. Risk factors for Alzheimers disease: Focus on stress. Front. Pharmacol., 2019, 10, 976. doi: 10.3389/fphar.2019.00976 PMID: 31551781
- Ouanes, S.; Popp, J. High cortisol and the risk of dementia and alzheimers disease: A review of the literature. Front. Aging Neurosci., 2019, 11, 43. doi: 10.3389/fnagi.2019.00043 PMID: 30881301
- Csernansky, J.G.; Dong, H.; Fagan, A.M.; Wang, L.; Xiong, C.; Holtzman, D.M.; Morris, J.C. Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. Am. J. Psychiatry, 2006, 163(12), 2164-2169. doi: 10.1176/ajp.2006.163.12.2164 PMID: 17151169
- Elgh, E.; Lindqvist Åstot, A.; Fagerlund, M.; Eriksson, S.; Olsson, T.; Näsman, B. Cognitive dysfunction, hippocampal atrophy and glucocorticoid feedback in Alzheimers disease. Biol. Psychiatry, 2006, 59(2), 155-161. doi: 10.1016/j.biopsych.2005.06.017 PMID: 16125145
- Vyas, S.; Rodrigues, A.J.; Silva, J.M.; Tronche, F.; Almeida, O.F.X.; Sousa, N.; Sotiropoulos, I. Chronic stress and glucocorticoids: From neuronal plasticity to neurodegeneration. Neural Plast., 2016, 2016, 1-15. doi: 10.1155/2016/6391686 PMID: 27034847
- Hatzinger, M. ZBrun, A.; Hemmeter, U.; Seifritz, E.; Baumann, F.; Holsboer-Trachsler, E.; Heuser, I.J. Hypothalamic-pituitary-adrenal system function in patients with alzheimers disease. Neurobiol. Aging, 1995, 16(2), 205-209. doi: 10.1016/0197-4580(94)00159-6 PMID: 7777138
- Peskind, E.R.; Wilkinson, C.W.; Petrie, E.C.; Schellenberg, G.D.; Raskind, M.A. Increased CSF cortisol in AD is a function of APOE genotype. Neurology, 2001, 56(8), 1094-1098. doi: 10.1212/WNL.56.8.1094 PMID: 11320185
- Greenwald, B.S.; Mathé, A.A.; Mohs, R.C.; Levy, M.I.; Johns, C.A.; Davis, K.L. Cortisol and Alzheimers disease, II: Dexamethasone suppression, dementia severity, and affective symptoms. Am. J. Psychiatry, 1986, 143(4), 442-446. doi: 10.1176/ajp.143.4.442 PMID: 3953887
- Hartmann, A.; Veldhuis, J.D.; Deuschle, M.; Standhardt, H.; Heuser, I. Twenty-four hour cortisol release profiles in patients with Alzheimers and Parkinsons disease compared to normal controls: Ultradian secretory pulsatility and diurnal variation. Neurobiol. Aging, 1997, 18(3), 285-289. doi: 10.1016/S0197-4580(97)80309-0 PMID: 9263193
- Rasmuson, S.; Näsman, B.; Olsson, T. Increased serum levels of dehydroepiandrosterone (DHEA) and interleukin-6 (IL-6) in women with mild to moderate Alzheimers disease. Int. Psychogeriatr., 2011, 23(9), 1386-1392. doi: 10.1017/S1041610211000810 PMID: 21729423
- Toledo, J.B.; Toledo, E.; Weiner, M.W.; Jack, C.R., Jr; Jagust, W.; Lee, V.M.Y.; Shaw, L.M.; Trojanowski, J.Q. Cardiovascular risk factors, cortisol, and amyloid‐β deposition in Alzheimers Disease Neuroimaging Initiative. Alzheimers Dement., 2012, 8(6), 483-489. doi: 10.1016/j.jalz.2011.08.008 PMID: 23102118
- Catania, C.; Sotiropoulos, I.; Silva, R.; Onofri, C.; Breen, K.C.; Sousa, N.; Almeida, O F X. The amyloidogenic potential and behavioral correlates of stress. Mol. Psychiatry, 2009, 14(1), 95-105. doi: 10.1038/sj.mp.4002101 PMID: 17912249
- Green, K.N.; Billings, L.M.; Roozendaal, B.; McGaugh, J.L.; LaFerla, F.M. Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimers disease. J. Neurosci., 2006, 26(35), 9047-9056. doi: 10.1523/JNEUROSCI.2797-06.2006 PMID: 16943563
- Xia, M.; Yang, L.; Sun, G.; Qi, S.; Li, B. Mechanism of depression as a risk factor in the development of Alzheimers disease: The function of AQP4 and the glymphatic system. Psychopharmacology, 2017, 234(3), 365-379. doi: 10.1007/s00213-016-4473-9 PMID: 27837334
- Devi, L.; Alldred, M.J.; Ginsberg, S.D.; Ohno, M. Sex- and brain region-specific acceleration of β-amyloidogenesis following behavioral stress in a mouse model of Alzheimers disease. Mol. Brain, 2010, 3(1), 34. doi: 10.1186/1756-6606-3-34 PMID: 21059265
- Sotiropoulos, I.; Catania, C.; Pinto, L.G.; Silva, R.; Pollerberg, G.E.; Takashima, A.; Sousa, N.; Almeida, O.F.X. Stress acts cumulatively to precipitate Alzheimers disease-like tau pathology and cognitive deficits. J. Neurosci., 2011, 31(21), 7840-7847. doi: 10.1523/JNEUROSCI.0730-11.2011 PMID: 21613497
- Sotiropoulos, I.; Silva, J.; Kimura, T.; Rodrigues, A.J.; Costa, P.; Almeida, O.F.X.; Sousa, N.; Takashima, A. Female hippocampus vulnerability to environmental stress, a precipitating factor in Tau aggregation pathology. J. Alzheimers Dis., 2014, 43(3), 763-774. doi: 10.3233/JAD-140693 PMID: 25159665
- Lopes, S.; Vaz-Silva, J.; Pinto, V.; Dalla, C.; Kokras, N.; Bedenk, B.; Mack, N.; Czisch, M.; Almeida, O.F.X.; Sousa, N.; Sotiropoulos, I. Tau protein is essential for stress-induced brain pathology. Proc. Natl. Acad. Sci., 2016, 113(26), E3755-E3763. doi: 10.1073/pnas.1600953113 PMID: 27274066
- Silva, J.M.; Rodrigues, S.; Sampaio-Marques, B.; Gomes, P.; Neves-Carvalho, A.; Dioli, C.; Soares-Cunha, C.; Mazuik, B.F.; Takashima, A.; Ludovico, P.; Wolozin, B.; Sousa, N.; Sotiropoulos, I. Dysregulation of autophagy and stress granule-related proteins in stress-driven Tau pathology. Cell Death Differ., 2019, 26(8), 1411-1427. doi: 10.1038/s41418-018-0217-1 PMID: 30442948
- Vaz-Silva, J.; Gomes, P.; Jin, Q.; Zhu, M.; Zhuravleva, V.; Quintremil, S.; Meira, T.; Silva, J.; Dioli, C.; Soares-Cunha, C.; Daskalakis, N.P.; Sousa, N.; Sotiropoulos, I.; Waites, C.L. Endolysosomal degradation of Tau and its role in glucocorticoid‐driven hippocampal malfunction. EMBO J., 2018, 37(20), e99084. doi: 10.15252/embj.201899084 PMID: 30166454
- Pinheiro, S.; Silva, J.; Mota, C.; Vaz-Silva, J.; Veloso, A.; Pinto, V.; Sousa, N.; Cerqueira, J.; Sotiropoulos, I. Tau mislocation in glucocorticoid-triggered hippocampal pathology. Mol. Neurobiol., 2016, 53(7), 4745-4753. doi: 10.1007/s12035-015-9356-2 PMID: 26328538
- Sotiropoulos, I.; Silva, J.M.; Gomes, P.; Sousa, N.; Almeida, O.F.X. Stress and the etiopathogenesis of alzheimers disease and depression. Adv. Exp. Med. Biol., 2019, 1184, 241-257. doi: 10.1007/978-981-32-9358-8_20 PMID: 32096043
- Rissman, R.A.; Lee, K.F.; Vale, W.; Sawchenko, P.E. Corticotropin-releasing factor receptors differentially regulate stress-induced tau phosphorylation. J. Neurosci., 2007, 27(24), 6552-6562. doi: 10.1523/JNEUROSCI.5173-06.2007 PMID: 17567816
- Rissman, R.A.; Staup, M.A.; Lee, A.R.; Justice, N.J.; Rice, K.C.; Vale, W.; Sawchenko, P.E. Corticotropin-releasing factor receptor-dependent effects of repeated stress on tau phosphorylation, solubility, and aggregation. Proc. Natl. Acad. Sci. USA, 2012, 109(16), 6277-6282. doi: 10.1073/pnas.1203140109 PMID: 22451915
- Gandy, S.; Duff, K. Post-menopausal estrogen deprivation and Alzheimers disease. Exp. Gerontol., 2000, 35(4), 503-511. doi: 10.1016/S0531-5565(00)00116-9 PMID: 10959038
- Carroll, J.C.; Rosario, E.R.; Kreimer, S.; Villamagna, A.; Gentzschein, E.; Stanczyk, F.Z.; Pike, C.J. Sex differences in β-amyloid accumulation in 3xTg-AD mice: Role of neonatal sex steroid hormone exposure. Brain Res., 2010, 1366, 233-245. doi: 10.1016/j.brainres.2010.10.009 PMID: 20934413
- Monteiro-Fernandes, D.; Sousa, N.; Almeida, O.F.X.; Sotiropoulos, I. Sex hormone depletion augments glucocorticoid induction of tau hyperphosphorylation in male rat brain. Neuroscience, 2021, 454, 140-150. doi: 10.1016/j.neuroscience.2020.05.049 PMID: 32512138
- Panizzon, M.S.; Hauger, R.L.; Xian, H.; Jacobson, K.; Lyons, M.J.; Franz, C.E.; Kremen, W.S. Interactive effects of testosterone and cortisol on hippocampal volume and episodic memory in middle-aged men. Psychoneuroendocrinology, 2018, 91, 115-122. doi: 10.1016/j.psyneuen.2018.03.003 PMID: 29547742
- Fiacco, S.; Walther, A.; Ehlert, U. Steroid secretion in healthy aging. Psychoneuroendocrinology, 2019, 105, 64-78. doi: 10.1016/j.psyneuen.2018.09.035 PMID: 30314729
- Italia, M.; Forastieri, C.; Longaretti, A.; Battaglioli, E.; Rusconi, F. Rationale, relevance, and limits of stress-induced psychopathology in rodents as models for psychiatry research: An introductory overview. Int. J. Mol. Sci., 2020, 21(20), 7455. doi: 10.3390/ijms21207455 PMID: 33050350
- Kokras, N.; Dalla, C. Sex differences in animal models of psychiatric disorders. Br. J. Pharmacol., 2014, 171(20), 4595-4619. doi: 10.1111/bph.12710 PMID: 24697577
- Hodes, G.E. A primer on sex differences in the behavioral response to stress. Curr. Opin. Behav. Sci., 2018, 23, 75-83. doi: 10.1016/j.cobeha.2018.03.012
- Hodes, G.E.; Pfau, M.L.; Purushothaman, I.; Ahn, H.F.; Golden, S.A.; Christoffel, D.J.; Magida, J.; Brancato, A.; Takahashi, A.; Flanigan, M.E.; Ménard, C.; Aleyasin, H.; Koo, J.W.; Lorsch, Z.S.; Feng, J.; Heshmati, M.; Wang, M.; Turecki, G.; Neve, R.; Zhang, B.; Shen, L.; Nestler, E.J.; Russo, S.J. Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress. J. Neurosci., 2015, 35(50), 16362-16376. doi: 10.1523/JNEUROSCI.1392-15.2015 PMID: 26674863
- van der Zee, Y.Y.; Lardner, C.K.; Parise, E.M.; Mews, P.; Ramakrishnan, A.; Patel, V.; Teague, C.D.; Salery, M.; Walker, D.M.; Browne, C.J.; Labonté, B.; Parise, L.F.; Kronman, H.; Penã, C.J.; Torres-Berrío, A.; Duffy, J.E.; de Nijs, L.; Eijssen, L.M.T.; Shen, L.; Rutten, B.; Issler, O.; Nestler, E.J. Sex-specific role for SLIT1 in regulating stress susceptibility. Biol. Psychiatry, 2022, 91(1), 81-91. doi: 10.1016/j.biopsych.2021.01.019 PMID: 33896623
- Lorsch, Z.S.; Loh, Y.H.E.; Purushothaman, I.; Walker, D.M.; Parise, E.M.; Salery, M.; Cahill, M.E.; Hodes, G.E.; Pfau, M.L.; Kronman, H.; Hamilton, P.J.; Issler, O.; Labonté, B.; Symonds, A.E.; Zucker, M.; Zhang, T.Y.; Meaney, M.J.; Russo, S.J.; Shen, L.; Bagot, R.C.; Nestler, E.J. Estrogen receptor α drives pro-resilient transcription in mouse models of depression. Nat. Commun., 2018, 9(1), 1116. doi: 10.1038/s41467-018-03567-4 PMID: 29549264
- Issler, O.; van der Zee, Y.Y.; Ramakrishnan, A.; Xia, S.; Zinsmaier, A.K.; Tan, C.; Li, W.; Browne, C.J.; Walker, D.M.; Salery, M.; Torres-Berrío, A.; Futamura, R.; Duffy, J.E.; Labonte, B.; Girgenti, M.J.; Tamminga, C.A.; Dupree, J.L.; Dong, Y.; Murrough, J.W.; Shen, L.; Nestler, E.J. The long noncoding RNA FEDORA is a cell type- and sex-specific regulator of depression. Sci. Adv., 2022, 8(48), eabn9494. doi: 10.1126/sciadv.abn9494 PMID: 36449610
- Issler, O.; van der Zee, Y.Y.; Ramakrishnan, A.; Wang, J.; Tan, C.; Loh, Y.H.E.; Purushothaman, I.; Walker, D.M.; Lorsch, Z.S.; Hamilton, P.J.; Peña, C.J.; Flaherty, E.; Hartley, B.J.; Torres-Berrío, A.; Parise, E.M.; Kronman, H.; Duffy, J.E.; Estill, M.S.; Calipari, E.S.; Labonté, B.; Neve, R.L.; Tamminga, C.A.; Brennand, K.J.; Dong, Y.; Shen, L.; Nestler, E.J. Sex-specific role for the long non-coding RNA LINC00473 in depression. Neuron, 2020, 106(6), 912-926.e5. doi: 10.1016/j.neuron.2020.03.023 PMID: 32304628
- Labonté, B.; Engmann, O.; Purushothaman, I.; Menard, C.; Wang, J.; Tan, C.; Scarpa, J.R.; Moy, G.; Loh, Y.H.E.; Cahill, M.; Lorsch, Z.S.; Hamilton, P.J.; Calipari, E.S.; Hodes, G.E.; Issler, O.; Kronman, H.; Pfau, M.; Obradovic, A.L.J.; Dong, Y.; Neve, R.L.; Russo, S.; Kasarskis, A.; Tamminga, C.; Mechawar, N.; Turecki, G.; Zhang, B.; Shen, L.; Nestler, E.J. Sex-specific transcriptional signatures in human depression. Nat. Med., 2017, 23(9), 1102-1111. doi: 10.1038/nm.4386 PMID: 28825715
- Seney, M.L.; Chang, L.C.; Oh, H.; Wang, X.; Tseng, G.C.; Lewis, D.A.; Sibille, E. The role of genetic sex in affect regulation and expression of gaba-related genes across species. Front. Psychiatry, 2013, 4, 104. doi: 10.3389/fpsyt.2013.00104 PMID: 24062698
- Seney, M.L.; Huo, Z.; Cahill, K.; French, L.; Puralewski, R.; Zhang, J.; Logan, R.W.; Tseng, G.; Lewis, D.A.; Sibille, E. Opposite molecular signatures of depression in men and women. Biol. Psychiatry, 2018, 84(1), 18-27. doi: 10.1016/j.biopsych.2018.01.017 PMID: 29548746
- Bestor, T.H. The DNA methyltransferases of mammals. Hum. Mol. Genet., 2000, 9(16), 2395-2402. doi: 10.1093/hmg/9.16.2395 PMID: 11005794
- Feng, J.; Fan, G. The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int. Rev. Neurobiol., 2009, 89, 67-84. doi: 10.1016/S0074-7742(09)89004-1 PMID: 19900616
- Nugent, B.M.; Wright, C.L.; Shetty, A.C.; Hodes, G.E.; Lenz, K.M.; Mahurkar, A.; Russo, S.J.; Devine, S.E.; McCarthy, M.M. Brain feminization requires active repression of masculinization via DNA methylation. Nat. Neurosci., 2015, 18(5), 690-697. doi: 10.1038/nn.3988 PMID: 25821913
- LaPlant, Q.; Vialou, V.; Covington, H.E., III; Dumitriu, D.; Feng, J.; Warren, B.L.; Maze, I.; Dietz, D.M.; Watts, E.L.; Iñiguez, S.D.; Koo, J.W.; Mouzon, E.; Renthal, W.; Hollis, F.; Wang, H.; Noonan, M.A.; Ren, Y.; Eisch, A.J.; Bolaños, C.A.; Kabbaj, M.; Xiao, G.; Neve, R.L.; Hurd, Y.L.; Oosting, R.S.; Fan, G.; Morrison, J.H.; Nestler, E.J. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat. Neurosci., 2010, 13(9), 1137-1143. doi: 10.1038/nn.2619 PMID: 20729844
- Christoffel, D.J. Golden, S.A.; Dumitriu, D.; Robison, A.J.; Janssen, W.G.; Ahn, H.F.; Krishnan, V.; Reyes, C.M.; Han, M.H.; Ables, J.L.; Eisch, A.J.; Dietz, D.M.; Ferguson, D.; Neve, R.L.; Greengard, P.; Kim, Y.; Morrison, J.H.; Russo, S.J. IκB kinase regulates social defeat stress-induced synaptic and behavioral plasticity. J. Neurosci., 2011, 31(1), 314-321. doi: 10.1523/JNEUROSCI.4763-10.2011 PMID: 21209217
- Wang, J.; Hodes, G.E.; Zhang, H.; Zhang, S.; Zhao, W.; Golden, S.A.; Bi, W.; Menard, C.; Kana, V.; Leboeuf, M.; Xie, M.; Bregman, D.; Pfau, M.L.; Flanigan, M.E.; Esteban-Fernández, A.; Yemul, S.; Sharma, A.; Ho, L.; Dixon, R.; Merad, M.; Han, M.H.; Russo, S.J.; Pasinetti, G.M. Epigenetic modulation of inflammation and synaptic plasticity promotes resilience against stress in mice. Nat. Commun., 2018, 9(1), 477. doi: 10.1038/s41467-017-02794-5 PMID: 29396460
- Deonaraine, K.K.; Wang, Q.; Cheng, H.; Chan, K.L.; Lin, H.Y.; Liu, K.; Parise, L.F.; Cathomas, F.; Leclair, K.B.; Flanigan, M.E.; Li, L.; Aleyasin, H.; Guevara, C.; Hao, K.; Zhang, B.; Russo, S.J.; Wang, J. Sex‐specific peripheral and central responses to stres induced depression and treatment in a mouse model. J. Neurosci. Res., 2020, 98(12), 2541-2553. doi: 10.1002/jnr.24724 PMID: 32918293
- Peña, C.J.; Bagot, R.C.; Labonté, B.; Nestler, E.J. Epigenetic signaling in psychiatric disorders. J. Mol. Biol., 2014, 426(20), 3389-3412. doi: 10.1016/j.jmb.2014.03.016 PMID: 24709417
- Jenuwein, T.; Allis, C.D. Translating the histone code. Science, 2001, 293(5532), 1074-1080. doi: 10.1126/science.1063127 PMID: 11498575
- Sun, H.; Kennedy, P.J.; Nestler, E.J. Epigenetics of the depressed brain: Role of histone acetylation and methylation. Neuropsychopharmacology, 2013, 38(1), 124-137. doi: 10.1038/npp.2012.73 PMID: 22692567
- Fischle, W.; Wang, Y.; Allis, D.C. Binary switches and modification cassettes in histone biology and beyond. Nature, 2003, 425(6957), 475-479. doi: 10.1038/nature02017 PMID: 14523437
- Vialou, V.; Feng, J.; Robison, A.J.; Nestler, E.J. Epigenetic mechanisms of depression and antidepressant action. Annu. Rev. Pharmacol. Toxicol., 2013, 53(1), 59-87. doi: 10.1146/annurev-pharmtox-010611-134540 PMID: 23020296
- Iizuka, M.; Smith, M.M. Functional consequences of histone modifications. Curr. Opin. Genet. Dev., 2003, 13(2), 154-160. doi: 10.1016/S0959-437X(03)00020-0 PMID: 12672492
- Murray, E.K.; Hien, A.; de Vries, G.J.; Forger, N.G. Epigenetic control of sexual differentiation of the bed nucleus of the stria terminalis. Endocrinology, 2009, 150(9), 4241-4247. doi: 10.1210/en.2009-0458 PMID: 19497973
- Bangasser, D.A.; Shors, T.J. The bed nucleus of the stria terminalis modulates learning after stress in masculinized but not cycling females. J. Neurosci., 2008, 28(25), 6383-6387. doi: 10.1523/JNEUROSCI.0831-08.2008 PMID: 18562608
- Bangasser, D.A.; Santollo, J.; Shors, T.J. The bed nucleus of the stria terminalis is critically involved in enhancing associative learning after stressful experience. Behav. Neurosci., 2005, 119(6), 1459-1466. doi: 10.1037/0735-7044.119.6.1459 PMID: 16420150
- Tsankova, N.M.; Berton, O.; Renthal, W.; Kumar, A.; Neve, R.L.; Nestler, E.J. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci., 2006, 9(4), 519-525. doi: 10.1038/nn1659 PMID: 16501568
- Sase, A.S.; Lombroso, S.I.; Santhumayor, B.A.; Wood, R.R.; Lim, C.J.; Neve, R.L.; Heller, E.A. Sex-specific regulation of fear memory by targeted epigenetic editing of Cdk5. Biol. Psychiatry, 2019, 85(8), 623-634. doi: 10.1016/j.biopsych.2018.11.022 PMID: 30661667
- OCarroll, D.; Schaefer, A. General principals of miRNA biogenesis and regulation in the brain. Neuropsychopharmacology, 2013, 38(1), 39-54. doi: 10.1038/npp.2012.87 PMID: 22669168
- Pfau, M.L.; Purushothaman, I.; Feng, J.; Golden, S.A.; Aleyasin, H.; Lorsch, Z.S.; Cates, H.M.; Flanigan, M.E.; Menard, C.; Heshmati, M.; Wang, Z.; Maayan, A.; Shen, L.; Hodes, G.E.; Russo, S.J. Integrative analysis of sex-specific microRNA networks following stress in mouse nucleus accumbens. Front. Mol. Neurosci., 2016, 9, 144. doi: 10.3389/fnmol.2016.00144 PMID: 28066174
- Pfau, M.L.; Menard, C.; Cathomas, F.; Desland, F.; Kana, V.; Chan, K.L.; Shimo, Y.; LeClair, K.; Flanigan, M.E.; Aleyasin, H.; Walker, D.M.; Bouchard, S.; Mack, M.; Hodes, G.E.; Merad, M.M.; Russo, S.J. Role of monocyte-derived microRNA106b∼25 in resilience to social stress. Biol. Psychiatry, 2019, 86(6), 474-482. doi: 10.1016/j.biopsych.2019.02.023 PMID: 31101319
- van der Zee, Y.Y.; Eijssen, L.M.T.; Mews, P.; Ramakrishnan, A.; Alvarez, K.; Lardner, C.K.; Cates, H.M.; Walker, D.M.; Torres-Berrío, A.; Browne, C.J.; Cunningham, A.; Cathomas, F.; Kronman, H.; Parise, E.M.; de Nijs, L.; Shen, L.; Murrough, J.W.; Rutten, B.P.F.; Nestler, E.J.; Issler, O. Blood miR-144-3p: A novel diagnostic and therapeutic tool for depression. Mol. Psychiatry, 2022, 27(11), 4536-4549. doi: 10.1038/s41380-022-01712-6 PMID: 35902629
- Rodgers, A.B.; Morgan, C.P.; Leu, N.A.; Bale, T.L. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc. Natl. Acad. Sci. , 2015, 112(44), 13699-13704. doi: 10.1073/pnas.1508347112 PMID: 26483456
- Dietz, D.M.; LaPlant, Q.; Watts, E.L.; Hodes, G.E.; Russo, S.J.; Feng, J.; Oosting, R.S.; Vialou, V.; Nestler, E.J. Paternal transmission of stress-induced pathologies. Biol. Psychiatry, 2011, 70(5), 408-414. doi: 10.1016/j.biopsych.2011.05.005 PMID: 21679926
- Cunningham, A.M.; Walker, D.M.; Ramakrishnan, A.; Doyle, M.A.; Bagot, R.C.; Cates, H.M.; Peña, C.J.; Issler, O.; Lardner, C.K.; Browne, C.; Russo, S.J.; Shen, L.; Nestler, E.J. Sperm transcriptional state associated with paternal transmission of stress phenotypes. J. Neurosci., 2021, 41(29), 6202-6216. doi: 10.1523/JNEUROSCI.3192-20.2021 PMID: 34099514
- Bianchi, I.; Lleo, A.; Gershwin, M.E.; Invernizzi, P. The X chromosome and immune associated genes. J. Autoimmun., 2012, 38(2-3), J187-J192. doi: 10.1016/j.jaut.2011.11.012 PMID: 22178198
- Youness, A.; Miquel, C.H.; Guéry, J.C. Escape from X chromosome inactivation and the female predominance in autoimmune diseases. Int. J. Mol. Sci., 2021, 22(3), 1114. doi: 10.3390/ijms22031114 PMID: 33498655
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol., 2016, 16(10), 626-638. doi: 10.1038/nri.2016.90 PMID: 27546235
- Maes, M.; Kubera, M.; Leunis, J.C. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuroendocrinol. Lett., 2008, 29(1), 117-124. PMID: 18283240
- Kelly, J.R.; Borre, Y.; O Brien, C.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; Hoban, A.E.; Scott, L.; Fitzgerald, P.; Ross, P.; Stanton, C.; Clarke, G.; Cryan, J.F.; Dinan, T.G. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res., 2016, 82, 109-118. doi: 10.1016/j.jpsychires.2016.07.019 PMID: 27491067
- Lyte, M. Microbial endocrinology and the microbiota-gut-brain axis. Adv. Exp. Med. Biol., 2014, 817, 3-24. doi: 10.1007/978-1-4939-0897-4_1 PMID: 24997027
- Cruz-Pereira, J.S.; Rea, K.; Nolan, Y.M.; OLeary, O.F.; Dinan, T.G.; Cryan, J.F. Depressions unholy trinity: Dysregulated stress, immunity, and the microbiome. Annu. Rev. Psychol., 2020, 71(1), 49-78. doi: 10.1146/annurev-psych-122216-011613 PMID: 31567042
- Foster, J.A.; Rinaman, L.; Cryan, J.F. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol. Stress, 2017, 7, 124-136. doi: 10.1016/j.ynstr.2017.03.001 PMID: 29276734
- Kim, Y.S.; Unno, T.; Kim, B.Y.; Park, M.S. Sex differences in gut microbiota. World J. Mens Health, 2020, 38(1), 48-60. doi: 10.5534/wjmh.190009 PMID: 30929328
- Markle, J.G.M.; Frank, D.N.; Mortin-Toth, S.; Robertson, C.E.; Feazel, L.M.; Rolle-Kampczyk, U.; von Bergen, M.; McCoy, K.D.; Macpherson, A.J.; Danska, J.S. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science, 2013, 339(6123), 1084-1088. doi: 10.1126/science.1233521 PMID: 23328391
- Dalla, C.; Pavlidi, P.; Sakelliadou, D.G.; Grammatikopoulou, T.; Kokras, N. Sex differences in blood-brain barrier transport of psychotropic drugs. Front. Behav. Neurosci., 2022, 16, 844916. doi: 10.3389/fnbeh.2022.844916 PMID: 35677576
- Kumar, M.; Rainville, J.R.; Williams, K.; Lile, J.A.; Hodes, G.E.; Vassoler, F.M.; Turner, J.R. Sexually dimorphic neuroimmune response to chronic opioid treatment and withdrawal. Neuropharmacology, 2021, 186, 108469. doi: 10.1016/j.neuropharm.2021.108469 PMID: 33485944
- Menard, C.; Pfau, M.L.; Hodes, G.E.; Kana, V.; Wang, V.X.; Bouchard, S.; Takahashi, A.; Flanigan, M.E.; Aleyasin, H.; LeClair, K.B.; Janssen, W.G.; Labonté, B.; Parise, E.M.; Lorsch, Z.S.; Golden, S.A.; Heshmati, M.; Tamminga, C.; Turecki, G.; Campbell, M.; Fayad, Z.A.; Tang, C.Y.; Merad, M.; Russo, S.J. Social stress induces neurovascular pathology promoting depression. Nat. Neurosci., 2017, 20(12), 1752-1760. doi: 10.1038/s41593-017-0010-3 PMID: 29184215
- Dion-Albert, L.; Bandeira Binder, L.; Daigle, B.; Hong-Minh, A.; Lebel, M.; Menard, C. Sex differences in the blood-brain barrier: Implications for mental health. Front. Neuroendocrinol., 2022, 65, 100989. doi: 10.1016/j.yfrne.2022.100989 PMID: 35271863
- Dion-Albert, L.; Cadoret, A.; Doney, E.; Kaufmann, F.N.; Dudek, K.A.; Daigle, B.; Parise, L.F.; Cathomas, F.; Samba, N.; Hudson, N.; Lebel, M.; Aardema, F.; Ait Bentaleb, L.; Beauchamp, J.; Bendahmane, H.; Benoit, E.; Bergeron, L.; Bertone, A.; Bertrand, N.; Berube, F-A.; Blanchet, P.; Boissonneault, J.; Bolduc, C.J.; Bonin, J-P.; Borgeat, F.; Boyer, R.; Breault, C.; Breton, J-J.; Briand, C.; Brodeur, J.; Brule, K.; Brunet, L.; Carriere, S.; Chartrand, C.; Chenard-Soucy, R.; Chevrette, T.; Cloutier, E.; Cloutier, R.; Cormier, H.; Cote, G.; Cyr, J.; David, P.; De Benedictis, L.; Delisle, M-C.; Deschenes, P.; Desjardins, C.D.; Desmarais, G.; Dubreucq, J-L.; Dumont, M.; Dumais, A.; Ethier, G.; Feltrin, C.; Felx, A.; Findlay, H.; Fortier, L.; Fortin, D.; Fortin, L.; Francois, N.; Gagne, V.; Gagnon, M-P.; Gignac-Hens, M-C.; Giguere, C-E.; Godbout, R.; Grou, C.; Guay, S.; Guillem, F.; Hachimi-Idrissi, N.; Herry, C.; Hodgins, S.; Homayoun, S.; Jemel, B.; Joyal, C.; Kouassi, E.; Labelle, R.; Lafortune, D.; Lahaie, M.; Lahlafi, S.; Lalonde, P.; Landry, P.; Lapaige, V.; Larocque, G.; Larue, C.; Lavoie, M.; Leclerc, J-J.; Lecomte, T.; Lecours, C.; Leduc, L.; Lelan, M-F.; Lemieux, A.; Lesage, A.; Letarte, A.; Lepage, J.; Levesque, A.; Lipp, O.; Luck, D.; Lupien, S.; Lusignan, F-A.; Lusignan, R.; Luyet, A.J.; Lynhiavu, A.; Melun, J-P.; Morin, C.; Nicole, L.; Noel, F.; Normandeau, L.; OConnor, K.; Ouellette, C.; Parent, V.; Parizeau, M-H.; Pelletier, J-F.; Pelletier, J.; Pelletier, M.; Plusquellec, P.; Poirier, D.; Potvin, S.; Prevost, G.; Prevost, M-J.; Racicot, P.; Racine-Gagne, M-F.; Renaud, P.; Ricard, N.; Rivet, S.; Rolland, M.; Sasseville, M.; Safadi, G.; Smith, S.; Smolla, N.; Stip, E.; Teitelbaum, J.; Thibault, A.; Thibault, L.; Thibault, S.; Thomas, F.; Todorov, C.; Tourjman, V.; Tranulis, C.; Trudeau, S.; Trudel, G.; Vacri, N.; Valiquette, L.; Vanier, C.; Villeneuve, K.; Villeneuve, M.; Vincent, P.; Wolfe, M.; Xiong, L.; Zizzi, A.; Campbell, M.; Turecki, G.; Mechawar, N.; Menard, C. Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue. Nat. Commun., 2022, 13(1), 164. doi: 10.1038/s41467-021-27604-x PMID: 35013188
- Bollinger, J.L.; Salinas, I.; Fender, E.; Sengelaub, D.R.; Wellman, C.L. Gonadal hormones differentially regulate sex‐specific stress effects on glia in the medial prefrontal cortex. J. Neuroendocrinol., 2019, 31(8), e12762. doi: 10.1111/jne.12762 PMID: 31228875
- Van Camp, N.; Lavisse, S.; Roost, P.; Gubinelli, F.; Hillmer, A.; Boutin, H. TSPO imaging in animal models of brain diseases. Eur. J. Nucl. Med. Mol. Imaging, 2021, 49(1), 77-109. doi: 10.1007/s00259-021-05379-z PMID: 34245328
- Tsyglakova, M.; Huskey, A.M.; Hurst, E.H.; Telep, N.M.; Wilding, M.C.; Babington, M.E.; Rainville, J.R.; Hodes, G.E. Sex and region-specific effects of variable stress on microglia morphology. Brain, Behav. Immun. Health, 2021, 18, 100378. doi: 10.1016/j.bbih.2021.100378 PMID: 34820640
- Keselman, A.; Heller, N. Estrogen signaling modulates allergic inflammation and contributes to sex differences in asthma. Front. Immunol., 2015, 6, 568. doi: 10.3389/fimmu.2015.00568 PMID: 26635789
- Molero, L.; García-Durán, M.; Diaz-Recasens, J.; Rico, L.; Casado, S.; López-Farré, A. Expression of estrogen receptor subtypes and neuronal nitric oxide synthase in neutrophils from women and men Regulation by estrogen. Cardiovasc. Res., 2002, 56(1), 43-51. doi: 10.1016/S0008-6363(02)00505-9 PMID: 12237165
- Zierau, O.; Zenclussen, A.C.; Jensen, F. Role of female sex hormones, estradiol and progesterone, in mast cell behavior. Front. Immunol., 2012, 3, 169. doi: 10.3389/fimmu.2012.00169 PMID: 22723800
- Rainville, J.R.; Tsyglakova, M.; Hodes, G.E. Deciphering sex differences in the immune system and depression. Front. Neuroendocrinol., 2018, 50, 67-90. doi: 10.1016/j.yfrne.2017.12.004 PMID: 29288680
- Finnell, J.E.; Muniz, B.L.; Padi, A.R.; Lombard, C.M.; Moffitt, C.M.; Wood, C.S.; Wilson, L.B.; Reagan, L.P.; Wilson, M.A.; Wood, S.K. Essential role of ovarian hormones in susceptibility to the consequences of witnessing social defeat in female rats. Biol. Psychiatry, 2018, 84(5), 372-382. doi: 10.1016/j.biopsych.2018.01.013 PMID: 29544773
- Furman, D.; Hejblum, B.P.; Simon, N.; Jojic, V.; Dekker, C.L.; Thiébaut, R.; Tibshirani, R.J.; Davis, M.M. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc. Natl. Acad. Sci., 2014, 111(2), 869-874. doi: 10.1073/pnas.1321060111 PMID: 24367114
- McMurray, R.W.; Suwannaroj, S.; Ndebele, K.; Jenkins, J.K. Differential effects of sex steroids on T and B cells: modulation of cell cycle phase distribution, apoptosis and bcl-2 protein levels. Pathobiology, 2001, 69(1), 44-58. doi: 10.1159/000048757 PMID: 11641617
- Trigunaite, A.; Dimo, J.; Jørgensen, T.N. Suppressive effects of androgens on the immune system. Cell. Immunol., 2015, 294(2), 87-94. doi: 10.1016/j.cellimm.2015.02.004 PMID: 25708485
- Gaillard, R.C.; Spinedi, E. Sex- and stress-steroids interactions and the immune system: Evidence for a neuroendocrine-immunological sexual dimorphism. Domest. Anim. Endocrinol., 1998, 15(5), 345-352. doi: 10.1016/S0739-7240(98)00028-9 PMID: 9785038
- Dantzer, R.; Kelley, K.W. Stress and immunity: An integrated view of relationships between the brain and the immune system. Life Sci., 1989, 44(26), 1995-2008. doi: 10.1016/0024-3205(89)90345-7 PMID: 2568569
- Engler, H.; Benson, S.; Wegner, A.; Spreitzer, I.; Schedlowski, M.; Elsenbruch, S. Men and women differ in inflammatory and neuroendocrine responses to endotoxin but not in the severity of sickness symptoms. Brain Behav. Immun., 2016, 52, 18-26. doi: 10.1016/j.bbi.2015.08.013 PMID: 26291403
- Harden, K.P.; Wrzus, C.; Luong, G.; Grotzinger, A.; Bajbouj, M.; Rauers, A.; Wagner, G.G.; Riediger, M. Diurnal coupling between testosterone and cortisol from adolescence to older adulthood. Psychoneuroendocrinology, 2016, 73, 79-90. doi: 10.1016/j.psyneuen.2016.07.216 PMID: 27474909
- Andrews, G.; Bell, C.; Boyce, P.; Gale, C.; Lampe, L.; Marwat, O.; Rapee, R.; Wilkins, G. Royal australian and new zealand college of psychiatrists clinical practice guidelines for the treatment of panic disorder, social anxiety disorder and generalised anxiety disorder. Aust. N. Z. J. Psychiatry, 2018, 52(12), 1109-1172. doi: 10.1177/0004867418799453
- Zohar, J.; Stahl, S.; Moller, H.J.; Blier, P.; Kupfer, D.; Yamawaki, S.; Uchida, H.; Spedding, M.; Goodwin, G.M.; Nutt, D. A review of the current nomenclature for psychotropic agents and an introduction to the Neuroscience-based Nomenclature. Eur. Neuropsychopharmacol., 2015, 25(12), 2318-2325. doi: 10.1016/j.euroneuro.2015.08.019 PMID: 26527055
- Khan, A.; Brodhead, A.E.; Schwartz, K.A.; Kolts, R.L.; Brown, W.A. Sex differences in antidepressant response in recent antidepressant clinical trials. J. Clin. Psychopharmacol., 2005, 25(4), 318-324. doi: 10.1097/01.jcp.0000168879.03169.ce PMID: 16012273
- Kokras, N.; Dalla, C.; Papadopoulou-Daifoti, Z. Sex differences in pharmacokinetics of antidepressants. Expert Opin. Drug Metab. Toxicol., 2011, 7(2), 213-226. doi: 10.1517/17425255.2011.544250 PMID: 21192772
- Sramek, J.J.; Murphy, M.F.; Cutler, N.R. Sex differences in the psychopharmacological treatment of depression. Dialogues Clin. Neurosci., 2016, 18(4), 447-457. doi: 10.31887/DCNS.2016.18.4/ncutler PMID: 28179816
- Hutson, W.R.; Roehrkasse, R.L.; Wald, A. Influence of gender and menopause on gastric emptying and motility. Gastroenterology, 1989, 96(1), 11-17. doi: 10.1016/0016-5085(89)90758-0 PMID: 2909416
- Marazziti, D.; Baroni, S.; Picchetti, M.; Piccinni, A.; Carlini, M.; Vatteroni, E.; Falaschi, V.; Lombardi, A.; DellOsso, L. Pharmacokinetics and pharmacodinamics of psychotropic drugs: Effect of sex. CNS Spectr., 2013, 18(3), 118-127. doi: 10.1017/S1092852912001010 PMID: 23374978
- Nicolas, J.M.; Espie, P.; Molimard, M. Gender and interindividual variability in pharmacokinetics. Drug Metab. Rev., 2009, 41(3), 408-421. doi: 10.1080/10837450902891485 PMID: 19601720
- Kristensen, C.B. Imipramine serum protein binding in healthy subjects. Clin. Pharmacol. Ther., 1983, 34(5), 689-694. doi: 10.1038/clpt.1983.233 PMID: 6627829
- Anderson, G.D. Sex and racial differences in pharmacological response: where is the evidence? Pharmacogenetics, pharmacokinetics, and pharmacodynamics. J. Womens Health, 2005, 14(1), 19-29. doi: 10.1089/jwh.2005.14.19 PMID: 15692274
- Schwartz, J.B. The current state of knowledge on age, sex, and their interactions on clinical pharmacology. Clin. Pharmacol. Ther., 2007, 82(1), 87-96. doi: 10.1038/sj.clpt.6100226 PMID: 17495875
- Farkas, R.H.; Unger, E.F.; Temple, R. Zolpidem and driving impairment-identifying persons at risk. N. Engl. J. Med., 2013, 369(8), 689-691. doi: 10.1056/NEJMp1307972 PMID: 23923991
- Bigos, K.L.; Pollock, B.G.; Stankevich, B.A.; Bies, R.R. Sex differences in the pharmacokinetics and pharmacodynamics of antidepressants: An updated review. Gend. Med., 2009, 6(4), 522-543. doi: 10.1016/j.genm.2009.12.004 PMID: 20114004
- Berlanga, C.; Flores-Ramos, M. Different gender response to serotonergic and noradrenergic antidepressants. A comparative study of the efficacy of citalopram and reboxetine. J. Affect. Disord., 2006, 95(1-3), 119-123. doi: 10.1016/j.jad.2006.04.029 PMID: 16782204
- Kornstein, S.G.; Schatzberg, A.F.; Thase, M.E.; Yonkers, K.A.; McCullough, J.P.; Keitner, G.I.; Gelenberg, A.J.; Davis, S.M.; Harrison, W.M.; Keller, M.B. Gender differences in treatment response to sertraline versus imipramine in chronic depression. Am. J. Psychiatry, 2000, 157(9), 1445-1452. doi: 10.1176/appi.ajp.157.9.1445 PMID: 10964861
- Young, E.A.; Kornstein, S.G.; Marcus, S.M.; Harvey, A.T.; Warden, D.; Wisniewski, S.R.; Balasubramani, G.K.; Fava, M.; Trivedi, M.H.; John Rush, A. Sex differences in response to citalopram: A STAR∗D report. J. Psychiatr. Res., 2009, 43(5), 503-511. doi: 10.1016/j.jpsychires.2008.07.002 PMID: 18752809
- Parker, G.; Parker, K.; Austin, M.P.; Mitchell, P.; Brotchie, H. Gender differences in response to differing antidepressant drug classes: Two negative studies. Psychol. Med., 2003, 33(8), 1473-1477. doi: 10.1017/S0033291703007918 PMID: 14672256
- Kornstein, S.G.; Pedersen, R.D.; Holland, P.J.; Nemeroff, C.B.; Rothschild, A.J.; Thase, M.E.; Trivedi, M.H.; Ninan, P.T.; Keller, M.B. Influence of sex and menopausal status on response, remission, and recurrence in patients with recurrent major depressive disorder treated with venlafaxine extended release or fluoxetine: Analysis of data from the PREVENT study. J. Clin. Psychiatry, 2014, 75(1), 62-68. doi: 10.4088/JCP.12m07841 PMID: 24345717
- Thase, M.E.; Entsuah, R.; Cantillon, M.; Kornstein, S.G. Relative antidepressant efficacy of venlafaxine and SSRIs: sex-age interactions. J. Womens Health, 2005, 14(7), 609-616. doi: 10.1089/jwh.2005.14.609 PMID: 16181017
- Naito, S.; Sato, K.; Yoshida, K.; Higuchi, H.; Takahashi, H.; Kamata, M.; Ito, K.; Ohkubo, T.; Shimizu, T. Gender differences in the clinical effects of fluvoxamine and milnacipran in Japanese major depressive patients. Psychiatry Clin. Neurosci., 2007, 61(4), 421-427. doi: 10.1111/j.1440-1819.2007.01679.x PMID: 17610668
- Williams, A.V.; Trainor, B.C. The impact of sex as a biological variable in the search for novel antidepressants. Front. Neuroendocrinol., 2018, 50, 107-117. doi: 10.1016/j.yfrne.2018.05.003 PMID: 29859882
- Keating, C.; Tilbrook, A.; Kulkarni, J. Oestrogen: an overlooked mediator in the neuropsychopharmacology of treatment response? Int. J. Neuropsychopharmacol., 2011, 14(4), 553-566. doi: 10.1017/S1461145710000982 PMID: 20860875
- Schneider, L.S.; Small, G.W.; Clary, C.M. Estrogen replacement therapy and antidepressant response to sertraline in older depressed women. Am. J. Geriatr. Psychiatry, 2001, 9(4), 393-399. doi: 10.1097/00019442-200111000-00007 PMID: 11739065
- Schneider, L.S.; Small, G.W.; Hamilton, S.H.; Bystritsky, A.; Nemeroff, C.B.; Meyers, B.S. Estrogen replacement and response to fluoxetine in a multicenter geriatric depression trial. Am. J. Geriatr. Psychiatry, 1997, 5(2), 97-106. doi: 10.1097/00019442-199721520-00002 PMID: 9106373
- Stahl, S.M. Basic psychopharmacology of antidepressants, part 2: Estrogen as an adjunct to antidepressant treatment. J. Clin. Psychiatry, 1998, 59(S4), 15-24. PMID: 9554317
- Richardson, T.A.; Robinson, R.D. Menopause and depression: A review of psychologic function and sex steroid neurobiology during the menopause. Prim. Care Update Ob Gyns, 2000, 7(6), 215-223. doi: 10.1016/S1068-607X(00)00049-4 PMID: 11077233
- Shapira, B.; Oppenheim, G.; Zohar, J.; Segal, M.; Malach, D.; Belmaker, R.H. Lack of efficacy of estrogen supplementation to imipramine in resistant female depressives. Biol. Psychiatry, 1985, 20(5), 576-579. doi: 10.1016/0006-3223(85)90031-9 PMID: 2985131
- Amsterdam, J.; Garcia-España, F.; Fawcett, J.; Quitkin, F.; Reimherr, F.; Rosenbaum, J.; Beasley, C. Fluoxetine efficacy in menopausal women with and without estrogen replacement. J. Affect. Disord., 1999, 55(1), 11-17. doi: 10.1016/S0165-0327(98)00203-1 PMID: 10512601
- Frokjaer, V.G.; Pinborg, A.; Holst, K.K.; Overgaard, A.; Henningsson, S.; Heede, M.; Larsen, E.C.; Jensen, P.S.; Agn, M.; Nielsen, A.P.; Stenbæk, D.S.; da Cunha-Bang, S.; Lehel, S.; Siebner, H.R.; Mikkelsen, J.D.; Svarer, C.; Knudsen, G.M. Role of serotonin transporter changes in depressive responses to sex-steroid hormone manipulation: A positron emission tomography study. Biol. Psychiatry, 2015, 78(8), 534-543. doi: 10.1016/j.biopsych.2015.04.015 PMID: 26004162
- Kokras, N.; Dalla, C. Preclinical sex differences in depression and antidepressant response: Implications for clinical research. J. Neurosci. Res., 2017, 95(1-2), 731-736. doi: 10.1002/jnr.23861 PMID: 27870451
- Eid, R.S.; Gobinath, A.R.; Galea, L.A.M. Sex differences in depression: Insights from clinical and preclinical studies. Prog. Neurobiol., 2019, 176, 86-102. doi: 10.1016/j.pneurobio.2019.01.006 PMID: 30721749
- Kokras, N.; Antoniou, K.; Mikail, H.G.; Kafetzopoulos, V.; Papadopoulou-Daifoti, Z.; Dalla, C. Forced swim test: What about females? Neuropharmacology, 2015, 99, 408-421. doi: 10.1016/j.neuropharm.2015.03.016 PMID: 25839894
- Dalla, C.; Pitychoutis, P.M.; Kokras, N.; Papadopoulou-Daifoti, Z. Sex differences in animal models of depression and antidepressant response. Basic Clin. Pharmacol. Toxicol., 2010, 106(3), 226-233. doi: 10.1111/j.1742-7843.2009.00516.x PMID: 20050844
- Saland, S.K.; Duclot, F.; Kabbaj, M. Integrative analysis of sex differences in the rapid antidepressant effects of ketamine in preclinical models for individualized clinical outcomes. Curr. Opin. Behav. Sci., 2017, 14, 19-26. doi: 10.1016/j.cobeha.2016.11.002 PMID: 28584860
- Fernández-Guasti, A.; Olivares-Nazario, M.; Reyes, R.; Martínez-Mota, L. Sex and age differences in the antidepressant-like effect of fluoxetine in the forced swim test. Pharmacol. Biochem. Behav., 2017, 152, 81-89. doi: 10.1016/j.pbb.2016.01.011 PMID: 26807812
- Gómez, M.L.; Martínez-Mota, L.; Estrada-Camarena, E.; Fernández-Guasti, A. Influence of the brain sexual differentiation process on despair and antidepressant-like effect of fluoxetine in the rat forced swim test. Neuroscience, 2014, 261, 11-22. doi: 10.1016/j.neuroscience.2013.12.035 PMID: 24374081
- David, D.J.P.; Nic Dhonnchadha, B.Á.; Jolliet, P.; Hascoët, M.; Bourin, M. Are there gender differences in the temperature profile of mice after acute antidepressant administration and exposure to two animal models of depression? Behav. Brain Res., 2001, 119(2), 203-211. doi: 10.1016/S0166-4328(00)00351-X PMID: 11165336
- Melo, A.; Kokras, N.; Dalla, C.; Ferreira, C.; Ventura-Silva, A.P.; Sousa, N.; Pêgo, J.M. The positive effect on ketamine as a priming adjuvant in antidepressant treatment. Transl. Psychiatry, 2015, 5(5), e573-e573. doi: 10.1038/tp.2015.66 PMID: 26080090
- Pavlidi, P.; Megalokonomou, A.; Sofron, A.; Kokras, N.; Dalla, C. Pharmacology of ketamine and esketamine as rapid-acting antidepressants. Psychiatriki, 2021, 32(S1), 55-63.
- Carrier, N.; Kabbaj, M. Sex differences in the antidepressant-like effects of ketamine. Neuropharmacology, 2013, 70, 27-34. doi: 10.1016/j.neuropharm.2012.12.009 PMID: 23337256
- Sarkar, A.; Kabbaj, M. Sex differences in effects of ketamine on behavior, spine density, and synaptic proteins in socially isolated rats. Biol. Psychiatry, 2016, 80(6), 448-456. doi: 10.1016/j.biopsych.2015.12.025 PMID: 26957131
- Scacchi, R.; Gambina, G.; Broggio, E.; Corbo, R.M. Sex and ESR1 genotype may influence the response to treatment with donepezil and rivastigmine in patients with Alzheimers disease. Int. J. Geriatr. Psychiatry, 2014, 29(6), 610-615. doi: 10.1002/gps.4043 PMID: 24150894
- Mehta, N.; Rodrigues, C.; Lamba, M.; Wu, W.; Bronskill, S.E.; Herrmann, N.; Gill, S.S.; Chan, A.W.; Mason, R.; Day, S.; Gurwitz, J.H.; Rochon, P.A. Systematic review of sex‐specific reporting of data: Cholinesterase inhibitor example. J. Am. Geriatr. Soc., 2017, 65(10), 2213-2219. doi: 10.1111/jgs.15020 PMID: 28832937
- Marwaha, S.; Palmer, E.; Suppes, T.; Cons, E.; Young, A.H.; Upthegrove, R. Novel and emerging treatments for major depression. Lancet, 2023, 401(10371), 141-153. doi: 10.1016/S0140-6736(22)02080-3 PMID: 36535295
- Garakani, A.; Murrough, J.W.; Freire, R.C.; Thom, R.P.; Larkin, K.; Buono, F.D.; Iosifescu, D.V. Pharmacotherapy of anxiety disorders: Current and emerging treatment options. Front. Psychiatry, 2020, 11, 595584. doi: 10.3389/fpsyt.2020.595584 PMID: 33424664
- Sartori, S.B.; Singewald, N. Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders. Pharmacol. Ther., 2019, 204, 107402. doi: 10.1016/j.pharmthera.2019.107402 PMID: 31470029
- Gillies, G.E.; McArthur, S. Estrogen actions in the brain and the basis for differential action in men and women: A case for sex-specific medicines. Pharmacol. Rev., 2010, 62(2), 155-198. doi: 10.1124/pr.109.002071 PMID: 20392807
- Almeida, F.B.; Pinna, G.; Barros, H.M.T. The Role of HPA Axis and Allopregnanolone on the Neurobiology of Major Depressive Disorders and PTSD. Int. J. Mol. Sci., 2021, 22(11), 5495. doi: 10.3390/ijms22115495 PMID: 34071053
- Meltzer-Brody, S.; Colquhoun, H.; Riesenberg, R.; Epperson, C.N.; Deligiannidis, K.M.; Rubinow, D.R.; Li, H.; Sankoh, A.J.; Clemson, C.; Schacterle, A.; Jonas, J.; Kanes, S. Brexanolone injection in post-partum depression: Two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet, 2018, 392(10152), 1058-1070. doi: 10.1016/S0140-6736(18)31551-4 PMID: 30177236
- Arevalo, M.A.; Azcoitia, I.; Garcia-Segura, L.M. The neuroprotective actions of oestradiol and oestrogen receptors. Nat. Rev. Neurosci., 2015, 16(1), 17-29. doi: 10.1038/nrn3856 PMID: 25423896
- Srivastava, D.P.; Woolfrey, K.M.; Penzes, P. Insights into rapid modulation of neuroplasticity by brain estrogens. Pharmacol. Rev., 2013, 65(4), 1318-1350. doi: 10.1124/pr.111.005272 PMID: 24076546
- Pavlidi, P.; Kokras, N.; Dalla, C. Sex differences in depression and anxiety. Curr. Top. Behav. Neurosci., 2022, 62, 103-132. doi: 10.1007/7854_2022_375
- Handa, R.J.; Weiser, M.J. Gonadal steroid hormones and the hypothalamo-pituitary-adrenal axis. Front. Neuroendocrinol., 2014, 35(2), 197-220. doi: 10.1016/j.yfrne.2013.11.001 PMID: 24246855
- Juster, R.P.; Raymond, C.; Desrochers, A.B.; Bourdon, O.; Durand, N.; Wan, N.; Pruessner, J.C.; Lupien, S.J. Sex hormones adjust "sex-specific" reactive and diurnal cortisol profiles. Psychoneuroendocrinology, 2016, 63, 282-290. doi: 10.1016/j.psyneuen.2015.10.012 PMID: 26539966
- Balthazart, J.; Charlier, T.D.; Cornil, C.A.; Dickens, M.J.; Harada, N.; Konkle, A.T.M.; Voigt, C.; Ball, G.F. Sex differences in brain aromatase activity: genomic and non-genomic controls. Front. Endocrinol., 2011, 2, 34. doi: 10.3389/fendo.2011.00034 PMID: 22645508
- Kokras, N.; Pastromas, N.; Porto, T.H.; Kafetzopoulos, V.; Mavridis, T.; Dalla, C. Acute but not sustained aromatase inhibition displays antidepressant properties. Int. J. Neuropsychopharmacol., 2014, 17(8), 1307-1313. doi: 10.1017/S1461145714000212 PMID: 24674846
- Chaiton, J.A.; Wong, S.J.; Galea, L.A.M. Chronic aromatase inhibition increases ventral hippocampal neurogenesis in middle-aged female mice. Psychoneuroendocrinology, 2019, 106, 111-116. doi: 10.1016/j.psyneuen.2019.04.003 PMID: 30974324
- Dalla, C.; Antoniou, K.; Papadopoulou-Daifoti, Z.; Balthazart, J.; Bakker, J. Oestrogen-deficient female aromatase knockout (ArKO) mice exhibit depressive-like symptomatology. Eur. J. Neurosci., 2004, 20(1), 217-228. doi: 10.1111/j.1460-9568.2004.03443.x PMID: 15245494
- Alexander, A.; Irving, A.J.; Harvey, J. Emerging roles for the novel estrogen-sensing receptor GPER1 in the CNS. Neuropharmacology., 2017, 113((Pt B)), 652-660. doi: 10.1016/j.neuropharm.2016.07.003
- Tang, H.; Zhang, Q.; Yang, L.; Dong, Y.; Khan, M.; Yang, F.; Brann, D.W.; Wang, R. GPR30 mediates estrogen rapid signaling and neuroprotection. Mol. Cell. Endocrinol., 2014, 387(1-2), 52-58. doi: 10.1016/j.mce.2014.01.024 PMID: 24594140
- Yang, Z.D.; Yu, J.; Zhang, Q. Effects of raloxifene on cognition, mental health, sleep and sexual function in menopausal women: A systematic review of randomized controlled trials. Maturitas, 2013, 75(4), 341-348. doi: 10.1016/j.maturitas.2013.05.010 PMID: 23764354
- Solomon, M.B.; Herman, J.P. Sex differences in psychopathology: Of gonads, adrenals and mental illness. Physiol. Behav., 2009, 97(2), 250-258. doi: 10.1016/j.physbeh.2009.02.033 PMID: 19275906
- Carmassi, C.; Cordone, A.; DellOste, V.; Pedrinelli, V.; Pardini, F.; Simoncini, M.; DellOsso, L. Prescribing tamoxifen in patients with mood disorders. J. Clin. Psychopharmacol., 2021, 41(4), 450-460. doi: 10.1097/JCP.0000000000001412 PMID: 34166298
- Palacios, J.; Yildiz, A.; Young, A.H.; Taylor, M.J. Tamoxifen for bipolar disorder: Systematic review and meta-analysis. J. Psychopharmacol., 2019, 33(2), 177-184. doi: 10.1177/0269881118822167 PMID: 30741085
- Kastenberger, I.; Schwarzer, C. GPER1 (GPR30) knockout mice display reduced anxiety and altered stress response in a sex and paradigm dependent manner. Horm. Behav., 2014, 66(4), 628-636. doi: 10.1016/j.yhbeh.2014.09.001 PMID: 25236887
- Kastenberger, I.; Lutsch, C.; Schwarzer, C. Activation of the G-protein-coupled receptor GPR30 induces anxiogenic effects in mice, similar to oestradiol. Psychopharmacology (Berl.), 2012, 221(3), 527-535. doi: 10.1007/s00213-011-2599-3 PMID: 22143579
- Findikli, E.; Kurutas, E.B.; Camkurt, M.A.; Karaaslan, M.F.; Izci, F. Fındıklı, H.A.; Kardaş S.; Dag, B.; Altun, H. Increased serum g protein-coupled estrogen receptor 1 levels and its diagnostic value in drug naïve patients with major depressive disorder. Clin. Psychopharmacol. Neurosci., 2017, 15(4), 337-342. doi: 10.9758/cpn.2017.15.4.337 PMID: 29073745
- Miller, L.R.; Marks, C.; Becker, J.B.; Hurn, P.D.; Chen, W.J.; Woodruff, T.; McCarthy, M.M.; Sohrabji, F.; Schiebinger, L.; Wetherington, C.L.; Makris, S.; Arnold, A.P.; Einstein, G.; Miller, V.M.; Sandberg, K.; Maier, S.; Cornelison, T.L.; Clayton, J.A. Considering sex as a biological variable in preclinical research. FASEB J., 2017, 31(1), 29-34. doi: 10.1096/fj.201600781r PMID: 27682203
- Accounting for Neglected Factors and Applying Practical Solutions to Enhance Rigor and Reproducibility, 2023. Available from: https://www.preclinicaldataforum.org/addressing-sex-as-a-biological-variable-training/
- Clayton, J.A.; Collins, F.S. Policy: NIH to balance sex in cell and animal studies. Nature, 2014, 509(7500), 282-283. doi: 10.1038/509282a PMID: 24834516
- Pawluski, J.L.; Kokras, N.; Charlier, T.D.; Dalla, C. Sex matters in neuroscience and neuropsychopharmacology. Eur. J. Neurosci., 2020, 52(1), 2423-2428. doi: 10.1111/ejn.14880 PMID: 32578303
- Shansky, R.M. Are hormones a "female problem" for animal research? Science, 2019, 364(6443), 825-826. doi: 10.1126/science.aaw7570 PMID: 31147505
- Butlen-Ducuing, F.; Balkowiec-Iskra, E.; Dalla, C.; Slattery, D.A.; Ferretti, M.T.; Kokras, N.; Balabanov, P.; De Vries, C.; Mellino, S.; Chadha, S.A. Implications of sex-related differences in central nervous system disorders for drug research and development. Nat. Rev. Drug Discov., 2021, 20(12), 881-882. doi: 10.1038/d41573-021-00115-6 PMID: 34226696
- Bespalov, A.; Steckler, T. Lacking quality in research: Is behavioral neuroscience affected more than other areas of biomedical science? J. Neurosci. Methods, 2018, 300, 4-9. doi: 10.1016/j.jneumeth.2017.10.018 PMID: 29107620
- Bespalov, A.; Steckler, T.; Altevogt, B.; Koustova, E.; Skolnick, P.; Deaver, D.; Millan, M.J.; Bastlund, J.F.; Doller, D.; Witkin, J.; Moser, P.; ODonnell, P.; Ebert, U.; Geyer, M.A.; Prinssen, E.; Ballard, T.; Macleod, M. Failed trials for central nervous system disorders do not necessarily invalidate preclinical models and drug targets. Nat. Rev. Drug Discov., 2016, 15(7), 516. doi: 10.1038/nrd.2016.88 PMID: 27312728
- Hodes, G.E.; Kropp, D.R. Sex as a biological variable in stress and mood disorder research. Nat. Mental Health, 2023, 1(7), 453-461. doi: 10.1038/s44220-023-00083-3
Supplementary files
