Three Decades of Valproate: A Current Model for Studying Autism Spectrum Disorder
- Authors: Zarate-Lopez D.1, Torres-Chávez A.2, Gálvez-Contreras A.3, Gonzalez-Perez O.1
-
Affiliations:
- Laboratory of Neuroscience, School of Psychology, University of Colima
- Laboratory of Neuroscience, School of Psychology,, University of Colima
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara
- Issue: Vol 22, No 2 (2024)
- Pages: 260-289
- Section: Neurology
- URL: https://rjraap.com/1570-159X/article/view/644629
- DOI: https://doi.org/10.2174/1570159X22666231003121513
- ID: 644629
Cite item
Full Text
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with increased prevalence and incidence in recent decades. Its etiology remains largely unclear, but it seems to involve a strong genetic component and environmental factors that, in turn, induce epigenetic changes during embryonic and postnatal brain development. In recent decades, clinical studies have shown that inutero exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug, is an environmental factor associated with an increased risk of ASD. Subsequently, prenatal VPA exposure in rodents has been established as a reliable translational model to study the pathophysiology of ASD, which has helped demonstrate neurobiological changes in rodents, non-human primates, and brain organoids from human pluripotent stem cells. This evidence supports the notion that prenatal VPA exposure is a valid and current model to replicate an idiopathic ASD-like disorder in experimental animals. This review summarizes and describes the current features reported with this animal model of autism and the main neurobiological findings and correlates that help elucidate the pathophysiology of ASD. Finally, we discuss the general framework of the VPA model in comparison to other environmental and genetic ASD models.
About the authors
David Zarate-Lopez
Laboratory of Neuroscience, School of Psychology, University of Colima
Email: info@benthamscience.net
Ana Torres-Chávez
Laboratory of Neuroscience, School of Psychology,, University of Colima
Email: info@benthamscience.net
Alma Gálvez-Contreras
Department of Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara
Author for correspondence.
Email: info@benthamscience.net
Oscar Gonzalez-Perez
Laboratory of Neuroscience, School of Psychology, University of Colima
Author for correspondence.
Email: info@benthamscience.net
References
- Lord, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet, 2018, 392(10146), 508-520. doi: 10.1016/S0140-6736(18)31129-2 PMID: 30078460
- Li, Y.A.; Chen, Z.J.; Li, X.D.; Gu, M.H.; Xia, N.; Gong, C.; Zhou, Z.W.; Yasin, G.; Xie, H.Y.; Wei, X.P.; Liu, Y.L.; Han, X.H.; Lu, M.; Xu, J.; Huang, X.L. Epidemiology of autism spectrum disorders: Global burden of disease 2019 and bibliometric analysis of risk factors. Front Pediatr., 2022, 10, 972809. doi: 10.3389/fped.2022.972809 PMID: 36545666
- Sharma, S.R.; Gonda, X.; Tarazi, F.I. Autism spectrum disorder: Classification, diagnosis and therapy. Pharmacol. Ther., 2018, 190, 91-104. doi: 10.1016/j.pharmthera.2018.05.007 PMID: 29763648
- Bölte, S.; Girdler, S.; Marschik, P.B. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell. Mol. Life Sci., 2019, 76(7), 1275-1297. doi: 10.1007/s00018-018-2988-4 PMID: 30570672
- Lord, C.; Brugha, T.S.; Charman, T.; Cusack, J.; Dumas, G.; Frazier, T.; Jones, E.J.H.; Jones, R.M.; Pickles, A.; State, M.W.; Taylor, J.L.; Veenstra-VanderWeele, J. Autism spectrum disorder. Nat. Rev. Dis. Primers, 2020, 6(1), 5. doi: 10.1038/s41572-019-0138-4 PMID: 31949163
- Tomson, T.; Battino, D.; Perucca, E. Valproic acid after five decades of use in epilepsy: time to reconsider the indications of a time-honoured drug. Lancet Neurol., 2016, 15(2), 210-218. doi: 10.1016/S1474-4422(15)00314-2 PMID: 26655849
- Johannessen, C.U.; Johannessen, S.I. Valproate: Past, present, and future. CNS Drug Rev., 2003, 9(2), 199-216. doi: 10.1111/j.1527-3458.2003.tb00249.x PMID: 12847559
- Rahman, M.; Nguyen, H. Valproic Acid., 2022. Available from:https://www.ncbi.nlm.nih.gov/books/NBK559112/
- Mohamed, Z.A.; Thokerunga, E.; Jimale, A.O.; Liu, Z.; Fan, J. Risk of autism spectrum disorder according to the dose and trimester of exposure to antiseizure medications: A systematic review and meta-analysis. Open J. Psychiatr., 2023, 13(2), 106-121. doi: 10.4236/ojpsych.2023.132011
- Sato, A.; Kotajima-Murakami, H.; Tanaka, M.; Katoh, Y.; Ikeda, K. Influence of prenatal drug exposure, maternal inflammation, and parental aging on the development of autism spectrum disorder. Front. Psychiatry, 2022, 13, 821455. doi: 10.3389/fpsyt.2022.821455 PMID: 35222122
- Cui, K.; Wang, Y.; Zhu, Y.; Tao, T.; Yin, F.; Guo, Y.; Liu, H.; Li, F.; Wang, P.; Chen, Y.; Qin, J. Neurodevelopmental impairment induced by prenatal valproic acid exposure shown with the human cortical organoid-on-a-chip model. Microsyst. Nanoeng., 2020, 6(1), 49. doi: 10.1038/s41378-020-0165-z PMID: 34567661
- Zang, Z.; Yin, H.; Du, Z.; Xie, R.; Yang, L.; Cai, Y.; Wang, L.; Zhang, D.; Li, X.; Liu, T.; Gong, H.; Gao, J.; Yang, H.; Warner, M.; Gustafsson, J.A.; Xu, H.; Fan, X. Valproic acid exposure decreases neurogenic potential of outer radial glia in human brain organoids. Front. Mol. Neurosci., 2022, 15, 1023765. doi: 10.3389/fnmol.2022.1023765 PMID: 36523605
- Meng, Q.; Zhang, W.; Wang, X.; Jiao, C.; Xu, S.; Liu, C.; Tang, B.; Chen, C. Human forebrain organoids reveal connections between valproic acid exposure and autism risk. Transl. Psychiatry, 2022, 12(1), 130. doi: 10.1038/s41398-022-01898-x PMID: 35351869
- Chang, Z.L. Sodium valproate and valproic acid. In: Analytical Profiles of Drug Substances; Elsevier, 1979; pp. 529-556.
- Ghodke-Puranik, Y.; Thorn, C.F.; Lamba, J.K.; Leeder, J.S.; Song, W.; Birnbaum, A.K.; Altman, R.B.; Klein, T.E. Valproic acid pathway. Pharmacogenet. Genomics, 2013, 23(4), 236-241. doi: 10.1097/FPC.0b013e32835ea0b2 PMID: 23407051
- Methaneethorn, J. A systematic review of population pharmacokinetics of valproic acid. Br. J. Clin. Pharmacol., 2018, 84(5), 816-834. doi: 10.1111/bcp.13510 PMID: 29328514
- Henry, T.R. The history of valproate in clinical neuroscience. Psychopharmacol. Bull., 2003, 37(S2), 5-16. PMID: 14624229
- Romoli, M.; Mazzocchetti, P.; DAlonzo, R.; Siliquini, S.; Rinaldi, V.E.; Verrotti, A.; Calabresi, P.; Costa, C. Valproic acid and epilepsy: From molecular mechanisms to clinical evidences. Curr. Neuropharmacol., 2019, 17(10), 926-946. doi: 10.2174/1570159X17666181227165722 PMID: 30592252
- Carli, M.; Weiss, F.; Grenno, G.; Ponzini, S.; Kolachalam, S.; Vaglini, F.; Viaggi, C.; Pardini, C.; Tidona, S.; Longoni, B.; Maggio, R.; Scarselli, M. Pharmacological strategies for bipolar disorders in acute phases and chronic management with a special focus on lithium, valproic acid, and atypical antipsychotics. Curr. Neuropharmacol., 2023, 21(4), 935-950. doi: 10.2174/1570159X21666230224102318 PMID: 36825703
- Yurekli, V.A.; Akhan, G.; Kutluhan, S.; Uzar, E.; Koyuncuoglu, H.R.; Gultekin, F. The effect of sodium valproate on chronic daily headache and its subgroups. J. Headache Pain, 2008, 9(1), 37-41. doi: 10.1007/s10194-008-0002-5 PMID: 18231713
- Wang, F.; Zhang, H.; Wang, L.; Cao, Y.; He, Q. Intravenous sodium valproate for acute migraine in the emergency department: A meta‐analysis. Acta Neurol. Scand., 2020, 142(6), 521-530. doi: 10.1111/ane.13325 PMID: 32740903
- Wang, Y.; Xia, J.; Helfer, B.; Li, C.; Leucht, S. Valproate for schizophrenia. Cochrane Database Syst. Rev., 2016, 11(11), CD004028. PMID: 27884042
- Nau, H.; Rating, D.; Koch, S.; Häuser, I.; Helge, H. Valproic acid and its metabolites: placental transfer, neonatal pharmacokinetics, transfer via mothers milk and clinical status in neonates of epileptic mothers. J. Pharmacol. Exp. Ther., 1981, 219(3), 768-777. PMID: 6795343
- Jeong, E.J.; Yu, W.J.; Kim, C.Y.; Chung, M.K. Placenta transfer and toxicokinetics of valproic acid in pregnant cynomolgus monkeys. Toxicol. Res., 2010, 26(4), 275-283. doi: 10.5487/TR.2010.26.4.275 PMID: 24278535
- Lee, J.H.; Yu, W.J.; Jeong, E.J.; Chung, M.K. Milk transfer and toxicokinetics of valproic Acid in lactating cynomolgus monkeys. Toxicol. Res., 2013, 29(1), 53-60. doi: 10.5487/TR.2013.29.1.053 PMID: 24278629
- Genton, P.; Semah, F.; Trinka, E. Valproic acid in epilepsy: Pregnancy-related issues. Drug Saf., 2006, 29(1), 1-21. doi: 10.2165/00002018-200629010-00001 PMID: 16454531
- Williams, G.; King, J.; Cunningham, M.; Stephan, M.; Kerr, B.; Hersh, J.H. Fetal valproate syndrome and autism: Additional evidence of an association. Dev. Med. Child Neurol., 2001, 43(3), 202-206. doi: 10.1111/j.1469-8749.2001.tb00188.x PMID: 11263692
- Rasalam, A.D.; Hailey, H.; Williams, J.H.G.; Moore, S.J.; Turnpenny, P.D.; Lloyd, D.J.; Dean, J.C.S. Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Dev. Med. Child Neurol., 2005, 47(8), 551-555. doi: 10.1017/S0012162205001076 PMID: 16108456
- Ornoy, A. Valproic acid in pregnancy: How much are we endangering the embryo and fetus? Reprod. Toxicol., 2009, 28(1), 1-10. doi: 10.1016/j.reprotox.2009.02.014 PMID: 19490988
- Harden, C.L. In utero valproate exposure and autism: Long suspected, finally proven. Epilepsy Curr., 2013, 13(6), 282-284. doi: 10.5698/1535-7597-13.6.282 PMID: 24348128
- Christensen, J.; Grønborg, T.K.; Sørensen, M.J.; Schendel, D.; Parner, E.T.; Pedersen, L.H.; Vestergaard, M. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA, 2013, 309(16), 1696-1703. doi: 10.1001/jama.2013.2270 PMID: 23613074
- Elger, C.E. Is valproate contraindicated in young women with epilepsy? No. Epileptology, 2013, 1(1), 43-45. doi: 10.1016/j.epilep.2013.01.002
- Macfarlane, A.; Greenhalgh, T. Sodium valproate in pregnancy: What are the risks and should we use a shared decision-making approach? BMC Pregnancy Childbirth, 2018, 18(1), 200. doi: 10.1186/s12884-018-1842-x PMID: 29859057
- Thisted, E.; Ebbesen, F. Malformations, withdrawal manifestations, and hypoglycaemia after exposure to valproate in utero. Arch. Dis. Child., 1993, 69, 288-291. doi: 10.1136/adc.69.3_Spec_No.288
- Wiedemann, K.; Stüber, T.; Rehn, M.; Frieauff, E. Fetal valproate syndrome - still a problem today! Z. Geburtshilfe Neonatol., 2017, 221(5), 243-246. doi: 10.1055/s-0043-107619 PMID: 29073690
- Kulkarni, M.L.; Zaheeruddin, M.; Shenoy, N.; Vani, H.N. Fetal valproate syndrome. Indian J. Pediatr., 2006, 73(10), 937-939. doi: 10.1007/BF02859291 PMID: 17090909
- Chandane, P.; Shah, I. Fetal valproate syndrome. Indian J. Hum. Genet., 2014, 20(2), 187-188. doi: 10.4103/0971-6866.142898 PMID: 25400349
- Zaki, S.A.; Phulsundar, A.; Shanbag, P.; Mauskar, A. Fetal valproate syndrome in a 2-month-old male infant. Ann. Saudi Med., 2010, 30(3), 233-235. doi: 10.4103/0256-4947.62839 PMID: 20427941
- Wood, A.G.; Nadebaum, C.; Anderson, V.; Reutens, D.; Barton, S.; OBrien, T.J.; Vajda, F. Prospective assessment of autism traits in children exposed to antiepileptic drugs during pregnancy. Epilepsia, 2015, 56(7), 1047-1055. doi: 10.1111/epi.13007 PMID: 25963613
- Cummings, C.; Stewart, M.; Stevenson, M.; Morrow, J.; Nelson, J. Neurodevelopment of children exposed in utero to lamotrigine, sodium valproate and carbamazepine. Arch. Dis. Child., 2011, 96(7), 643-647. doi: 10.1136/adc.2009.176990 PMID: 21415043
- Shallcross, R.; Bromley, R.L.; Irwin, B.; Bonnett, L.J.; Morrow, J.; Baker, G.A. Child development following in utero exposure: Levetiracetam vs sodium valproate. Neurology, 2011, 76(4), 383-389. doi: 10.1212/WNL.0b013e3182088297 PMID: 21263139
- Meador, K.J.; Baker, G.A.; Browning, N.; Clayton-Smith, J.; Combs-Cantrell, D.T.; Cohen, M.; Kalayjian, L.A.; Kanner, A.; Liporace, J.D.; Pennell, P.B.; Privitera, M.; Loring, D.W. Cognitive function at 3 years of age after fetal exposure to antiepileptic drugs. N. Engl. J. Med., 2009, 360(16), 1597-1605. doi: 10.1056/NEJMoa0803531 PMID: 19369666
- Nadebaum, C.; Anderson, V.; Vajda, F.; Reutens, D.; Barton, S.; Wood, A. The Australian brain and cognition and antiepileptic drugs study: IQ in school-aged children exposed to sodium valproate and polytherapy. J. Int. Neuropsychol. Soc., 2011, 17(1), 133-142. doi: 10.1017/S1355617710001359 PMID: 21092354
- Nadebaum, C.; Anderson, V.A.; Vajda, F.; Reutens, D.C.; Barton, S.; Wood, A.G. Language skills of school-aged children prenatally exposed to antiepileptic drugs. Neurology, 2011, 76(8), 719-726. doi: 10.1212/WNL.0b013e31820d62c7 PMID: 21339499
- Goyal, M.; Gupta, A.; Sharma, M.; Mathur, P.; Bansal, N. Fetal valproate syndrome with limb defects: An Indian case report. Case Rep. Pediatr., 2016, 2016, 1-4. doi: 10.1155/2016/3495910 PMID: 28003925
- Tomson, T.; Battino, D.; Bonizzoni, E.; Craig, J.; Lindhout, D.; Sabers, A.; Perucca, E.; Vajda, F. Dose-dependent risk of malformations with antiepileptic drugs: An analysis of data from the EURAP epilepsy and pregnancy registry. Lancet Neurol., 2011, 10(7), 609-617. doi: 10.1016/S1474-4422(11)70107-7 PMID: 21652013
- Jentink, J.; Dolk, H.; Loane, MA.; Morris, JK.; Wellesley, D.; Garne, E. Intrauterine exposure to carbamazepine and specific congenital malformations: Systematic review and case-control study. BMJ, 2010, 341, c6581-c6581. doi: 10.1136/bmj.c6581
- Stadelmaier, R.; Nasri, H.; Deutsch, C.K.; Bauman, M.; Hunt, A.; Stodgell, C.J.; Adams, J.; Holmes, L.B. Exposure to sodium valproate during pregnancy: Facial Features and Signs of Autism. Birth Defects Res., 2017, 109(14), 1134-1143. doi: 10.1002/bdr2.1052 PMID: 28635121
- Donovan, M.F.; Cascella, M. Embryology, Weeks 6-8.StatPearls; StatPearls Publishing: Treasure Island, FL, 2023.
- ORahilly, R.; Müller, F. Developmental stages in human embryos: Revised and new measurements. Cells Tissues Organs, 2010, 192(2), 73-84. doi: 10.1159/000289817 PMID: 20185898
- Sass, L.; Urhoj, S.K.; Kjærgaard, J.; Dreier, J.W.; Strandberg-Larsen, K.; Nybo Andersen, A.M. Fever in pregnancy and the risk of congenital malformations: A cohort study. BMC Pregnancy Childbirth, 2017, 17(1), 413. doi: 10.1186/s12884-017-1585-0 PMID: 29221468
- Romøren, M.; Lindbaek, M.; Nordeng, H. Pregnancy outcome after gestational exposure to erythromycin - a population-based register study from Norway. Br. J. Clin. Pharmacol., 2012, 74(6), 1053-1062. doi: 10.1111/j.1365-2125.2012.04286.x PMID: 22463376
- Sun, L.; Xi, Y.; Wen, X.; Zou, W. Use of metoclopramide in the first trimester and risk of major congenital malformations: A systematic review and meta-analysis. PLoS One, 2021, 16(9), e0257584. doi: 10.1371/journal.pone.0257584
- Christianson, A.L.; Chester, N.; Kromberg, J.G.R. Fetal valproate syndrome: Clinical and neuro-developmental features in two sibling pairs. Dev. Med. Child Neurol., 1994, 36(4), 361-369. doi: 10.1111/j.1469-8749.1994.tb11858.x PMID: 7512516
- Laegreid, L.; Kyllerman, M.; Hedner, T.; Hagberg, B.; Viggedahl, G. Benzodiazepine amplification of valproate teratogenic effects in children of mothers with absence epilepsy. Neuropediatrics, 1993, 24(2), 88-92. doi: 10.1055/s-2008-1071520 PMID: 7687042
- Williams, P.G.; Hersh, J.H. A male with fetal valproate syndrome and autism. Dev. Med. Child Neurol., 1997, 39(9), 632-634. doi: 10.1111/j.1469-8749.1997.tb07500.x PMID: 9344057
- Bromley, R.L.; Mawer, G.; Clayton-Smith, J.; Baker, G.A. Autism spectrum disorders following in utero exposure to antiepileptic drugs. Neurology, 2008, 71(23), 1923-1924. doi: 10.1212/01.wnl.0000339399.64213.1a PMID: 19047565
- Moore, S.J.; Turnpenny, P.; Quinn, A.; Glover, S.; Lloyd, D.J.; Montgomery, T.; Dean, J.C. A clinical study of 57 children with fetal anticonvulsant syndromes. J. Med. Genet., 2000, 37(7), 489-497. doi: 10.1136/jmg.37.7.489 PMID: 10882750
- Dean, J.C.S.; Hailey, H.; Moore, S.J.; Lloyd, D.J.; Turnpenny, P.D.; Little, J. Long term health and neurodevelopment in children exposed to antiepileptic drugs before birth. J. Med. Genet., 2002, 39(4), 251-259. doi: 10.1136/jmg.39.4.251 PMID: 11950853
- Bromley, R.L.; Mawer, G.E.; Briggs, M.; Cheyne, C.; Clayton-Smith, J.; García-Fiñana, M.; Kneen, R.; Lucas, S.B.; Shallcross, R.; Baker, G.A.; Baker, G.; Briggs, M.; Bromley, R.; Clayton-Smith, J.; Dixon, P.; Fryer, A.; Gummery, A.; Kneen, R.; Kerr, L.; Lucas, S.; Mawer, G.; Shallcross, R. The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs. J. Neurol. Neurosurg. Psychiatry, 2013, 84(6), 637-643. doi: 10.1136/jnnp-2012-304270 PMID: 23370617
- Petersen, I.; Collings, S.L.; McCrea, R.L.; Nazareth, I.; Osborn, D.P.; Cowen, P.J.; Sammon, C.J. Antiepileptic drugs prescribed in pregnancy and prevalence of major congenital malformations: Comparative prevalence studies. Clin. Epidemiol., 2017, 9, 95-103. doi: 10.2147/CLEP.S118336 PMID: 28243149
- Hisle-Gorman, E.; Susi, A.; Stokes, T.; Gorman, G.; Erdie-Lalena, C.; Nylund, C.M. Prenatal, perinatal, and neonatal risk factors of autism spectrum disorder. Pediatr. Res., 2018, 84(2), 190-198. doi: 10.1038/pr.2018.23 PMID: 29538366
- Crawley, J.N. Translational animal models of autism and neurodevelopmental disorders. Dialogues Clin. Neurosci., 2012, 14(3), 293-305. doi: 10.31887/DCNS.2012.14.3/jcrawley PMID: 23226954
- Bauman, M.D.; Crawley, J.N.; Berman, R.F. Autism: Animal Models, 1st ed; John Wiley & Sons, Ltd., 2010.
- Belzung, C.; Lemoine, M. Criteria of validity for animal models of psychiatric disorders: Focus on anxiety disorders and depression. Biol. Mood Anxiety Disord., 2011, 1(1), 9. doi: 10.1186/2045-5380-1-9 PMID: 22738250
- American Psychiatric AssociationDiagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision; American Psychiatric Association: Washington, DC, 2022.
- Mabunga, D.F.N.; Gonzales, E.L.T.; Kim, J.; Kim, K.C.; Shin, C.Y. Exploring the validity of valproic acid animal model of autism. Exp. Neurobiol., 2015, 24(4), 285-300. doi: 10.5607/en.2015.24.4.285 PMID: 26713077
- Rodier, P.M.; Ingram, J.L.; Tisdale, B.; Nelson, S.; Romano, J. Embryological origin for autism: Developmental anomalies of the cranial nerve motor nuclei. J. Comp. Neurol., 1996, 370(2), 247-261. doi: 10.1002/(SICI)1096-9861(19960624)370:23.0.CO;2-2 PMID: 8808733
- Tartaglione, A.M.; Schiavi, S.; Calamandrei, G.; Trezza, V. Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder. Neuropharmacology, 2019, 159, 107477. doi: 10.1016/j.neuropharm.2018.12.024 PMID: 30639388
- Nicolini, C.; Fahnestock, M. The valproic acid-induced rodent model of autism. Exp. Neurol., 2018, 299(Pt A), 217-227. doi: 10.1016/j.expneurol.2017.04.017 PMID: 28472621
- Ranger, P.; Ellenbroek, B.A. Perinatal influences of valproate on brain and behaviour: An animal model for autism. In: Neurotoxin Modeling of Brain DisordersLife-long Outcomes in Behavioral Teratology; Kostrzewa, R.M.; Archer, A., Eds.; Springer International Publishing: Cham, 2015; pp. 363-386.
- Roullet, F.I.; Lai, J.K.Y.; Foster, J.A. In utero exposure to valproic acid and autism A current review of clinical and animal studies. Neurotoxicol. Teratol., 2013, 36, 47-56. doi: 10.1016/j.ntt.2013.01.004 PMID: 23395807
- Kim, K.C.; Kim, P.; Go, H.S.; Choi, C.S.; Yang, S.I.; Cheong, J.H.; Shin, C.Y.; Ko, K.H. The critical period of valproate exposure to induce autistic symptoms in SpragueDawley rats. Toxicol. Lett., 2011, 201(2), 137-142. doi: 10.1016/j.toxlet.2010.12.018 PMID: 21195144
- Yochum, C.L.; Dowling, P.; Reuhl, K.R.; Wagner, G.C.; Ming, X. VPA-induced apoptosis and behavioral deficits in neonatal mice. Brain Res., 2008, 1203, 126-132. doi: 10.1016/j.brainres.2008.01.055 PMID: 18316065
- Chomiak, T.; Karnik, V.; Block, E.; Hu, B. Altering the trajectory of early postnatal cortical development can lead to structural and behavioural features of autism. BMC Neurosci., 2010, 11(1), 102. doi: 10.1186/1471-2202-11-102 PMID: 20723245
- Reynolds, S.; Millette, A.; Devine, D.P. Sensory and motor characterization in the postnatal valproate rat model of autism. Dev. Neurosci., 2012, 34(2-3), 258-267. doi: 10.1159/000336646 PMID: 22627078
- Wagner, G.C.; Reuhl, K.R.; Cheh, M.; McRae, P.; Halladay, A.K. A new neurobehavioral model of autism in mice: Pre- and postnatal exposure to sodium valproate. J. Autism Dev. Disord., 2006, 36(6), 779-793. doi: 10.1007/s10803-006-0117-y PMID: 16609825
- Oguchi-Katayama, A.; Monma, A.; Sekino, Y.; Moriguchi, T.; Sato, K. Comparative gene expression analysis of the amygdala in autistic rat models produced by pre- and post-natal exposures to valproic acid. J. Toxicol. Sci., 2013, 38(3), 391-402. doi: 10.2131/jts.38.391 PMID: 23665938
- Larner, O.; Roberts, J.; Twiss, J.; Freeman, L. A Need for consistency in behavioral phenotyping for ASD: Analysis of the valproic acid model. Rossignol D; Treat, A.R., Ed.; , 2021, pp. 1-10.
- Chaliha, D.; Albrecht, M.; Vaccarezza, M.; Takechi, R.; Lam, V.; Al-Salami, H.; Mamo, J. A systematic review of the valproic-acid-induced rodent model of autism. Dev. Neurosci., 2020, 42(1), 12-48. doi: 10.1159/000509109 PMID: 32810856
- Juliandi, B.; Tanemura, K.; Igarashi, K.; Tominaga, T.; Furukawa, Y.; Otsuka, M.; Moriyama, N.; Ikegami, D.; Abematsu, M.; Sanosaka, T.; Tsujimura, K.; Narita, M.; Kanno, J.; Nakashima, K. Reduced adult hippocampal neurogenesis and cognitive impairments following prenatal treatment of the antiepileptic drug valproic acid. Stem Cell Reports, 2015, 5(6), 996-1009. doi: 10.1016/j.stemcr.2015.10.012 PMID: 26677766
- Main, S.L.; Kulesza, R.J. Repeated prenatal exposure to valproic acid results in cerebellar hypoplasia and ataxia. Neuroscience, 2017, 340, 34-47. doi: 10.1016/j.neuroscience.2016.10.052 PMID: 27984183
- Cartocci, V.; Catallo, M.; Tempestilli, M.; Segatto, M.; Pfrieger, F.W.; Bronzuoli, M.R.; Scuderi, C.; Servadio, M.; Trezza, V.; Pallottini, V. Altered brain cholesterol/isoprenoid metabolism in a rat model of autism spectrum disorders. Neuroscience, 2018, 372, 27-37. doi: 10.1016/j.neuroscience.2017.12.053 PMID: 29309878
- Cezar, LC; Kirsten, TB; da Fonseca, CCN; de Lima, APN; Bernardi, MM; Felicio, LF Zinc as a therapy in a rat model of autism prenatally induced by valproic acid. Prog. Neuropsychopharmacol. Biol. Psychiatry., 2018, 84(Pt A), 173-180. doi: 10.1016/j.pnpbp.2018.02.008
- Dai, Y.C.; Zhang, H.F.; Schön, M.; Böckers, T.M.; Han, S.P.; Han, J.S.; Zhang, R. Neonatal oxytocin treatment ameliorates autistic-like behaviors and oxytocin deficiency in valproic acid-induced rat model of autism. Front. Cell. Neurosci., 2018, 12, 355. doi: 10.3389/fncel.2018.00355 PMID: 30356897
- Felix-Ortiz, A.C.; Febo, M. Gestational valproate alters BOLD activation in response to complex social and primary sensory stimuli. PLoS One, 2012, 7(5), e37313. doi: 10.1371/journal.pone.0037313 PMID: 22615973
- Moldrich, R.X.; Leanage, G.; She, D.; Dolan-Evans, E.; Nelson, M.; Reza, N.; Reutens, D.C. Inhibition of histone deacetylase in utero causes sociability deficits in postnatal mice. Behav. Brain Res., 2013, 257, 253-264. doi: 10.1016/j.bbr.2013.09.049 PMID: 24103642
- Kuo, H.Y.; Liu, F.C. Valproic acid induces aberrant development of striatal compartments and corticostriatal pathways in a mouse model of autism spectrum disorder. FASEB J., 2017, 31(10), 4458-4471. doi: 10.1096/fj.201700054R PMID: 28687613
- Melancia, F.; Schiavi, S.; Servadio, M.; Cartocci, V.; Campolongo, P.; Palmery, M.; Pallottini, V.; Trezza, V. Sex-specific autistic endophenotypes induced by prenatal exposure to valproic acid involve anandamide signalling. Br. J. Pharmacol., 2018, 175(18), 3699-3712. doi: 10.1111/bph.14435 PMID: 29968249
- Servadio, M.; Manduca, A.; Melancia, F.; Leboffe, L.; Schiavi, S.; Campolongo, P.; Palmery, M.; Ascenzi, P.; di Masi, A.; Trezza, V. Impaired repair of DNA damage is associated with autistic-like traits in rats prenatally exposed to valproic acid. Eur. Neuropsychopharmacol., 2018, 28(1), 85-96. doi: 10.1016/j.euroneuro.2017.11.014 PMID: 29174949
- Tsuji, C.; Fujisaku, T.; Tsuji, T. Oxytocin ameliorates maternal separation‐induced ultrasonic vocalisation calls in mouse pups prenatally exposed to valproic acid. J. Neuroendocrinol., 2020, 32(4), e12850. doi: 10.1111/jne.12850 PMID: 32321197
- Tyzio, R.; Nardou, R.; Ferrari, D.C.; Tsintsadze, T.; Shahrokhi, A.; Eftekhari, S.; Khalilov, I.; Tsintsadze, V.; Brouchoud, C.; Chazal, G.; Lemonnier, E.; Lozovaya, N.; Burnashev, N.; Ben-Ari, Y. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science, 2014, 343(6171), 675-679. doi: 10.1126/science.1247190 PMID: 24503856
- Zhang, J.; Liu, L.M.; Ni, J.F. Rapamycin modulated brain-derived neurotrophic factor and B-cell lymphoma 2 to mitigate autism spectrum disorder in rats. Neuropsychiatr. Dis. Treat., 2017, 13, 835-842. doi: 10.2147/NDT.S125088 PMID: 28360521
- Kim, P.; Park, J.H.; Kwon, K.J.; Kim, K.C.; Kim, H.J.; Lee, J.M.; Kim, H.Y.; Han, S.H.; Shin, C.Y. Effects of Korean red ginseng extracts on neural tube defects and impairment of social interaction induced by prenatal exposure to valproic acid. Food Chem. Toxicol., 2013, 51, 288-296. doi: 10.1016/j.fct.2012.10.011 PMID: 23104247
- Kim, K.C.; Kim, P.; Go, H.S.; Choi, C.S.; Park, J.H.; Kim, H.J.; Jeon, S.J.; dela Pena, I.C.; Han, S.H.; Cheong, J.H.; Ryu, J.H.; Shin, C.Y. Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. J. Neurochem., 2013, 124(6), 832-843. doi: 10.1111/jnc.12147 PMID: 23311691
- Zhao, G.; Gao, J.; Liang, S.; Wang, X.; Sun, C.; Xia, W.; Hao, Y.; Li, X.; Cao, Y.; Wu, L. Study of the serum levels of polyunsaturated fatty acids and the expression of related liver metabolic enzymes in a rat valproate‐induced autism model. Int. J. Dev. Neurosci., 2015, 44(1), 14-21. doi: 10.1016/j.ijdevneu.2015.04.350 PMID: 25916973
- Cho, H.; Kim, C.H.; Knight, E.Q.; Oh, H.W.; Park, B.; Kim, D.G.; Park, H.J. Changes in brain metabolic connectivity underlie autistic-like social deficits in a rat model of autism spectrum disorder. Sci. Rep., 2017, 7(1), 13213. doi: 10.1038/s41598-017-13642-3 PMID: 29038507
- Wu, H.; Wang, X.; Gao, J.; Liang, S.; Hao, Y.; Sun, C.; Xia, W.; Cao, Y.; Wu, L. Fingolimod (FTY720) attenuates social deficits, learning and memory impairments, neuronal loss and neuroinflammation in the rat model of autism. Life Sci., 2017, 173, 43-54. doi: 10.1016/j.lfs.2017.01.012 PMID: 28161158
- Al-Amin, M.M.; Rahman, M.M.; Khan, F.R.; Zaman, F.; Mahmud Reza, H. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism. Behav. Brain Res., 2015, 286, 112-121. doi: 10.1016/j.bbr.2015.02.041 PMID: 25732953
- Bambini-Junior, V.; Zanatta, G.; Della, F.N.G.; Mueller de Melo, G.; Michels, M.; Fontes-Dutra, M.; Nogueira Freire, V.; Riesgo, R.; Gottfried, C. Resveratrol prevents social deficits in animal model of autism induced by valproic acid. Neurosci. Lett., 2014, 583, 176-181. doi: 10.1016/j.neulet.2014.09.039 PMID: 25263788
- Campolongo, M.; Kazlauskas, N.; Falasco, G.; Urrutia, L.; Salgueiro, N.; Höcht, C.; Depino, A.M. Sociability deficits after prenatal exposure to valproic acid are rescued by early social enrichment. Mol. Autism, 2018, 9(1), 36. doi: 10.1186/s13229-018-0221-9 PMID: 29946415
- Chau, D.K.F.; Choi, A.Y.T.; Yang, W.; Leung, W.N.; Chan, C.W. Downregulation of glutamatergic and GABAergic proteins in valproric acid associated social impairment during adolescence in mice. Behav. Brain Res., 2017, 316, 255-260. doi: 10.1016/j.bbr.2016.09.003 PMID: 27614006
- Dai, X.; Yin, Y.; Qin, L. Valproic acid exposure decreases the mRNA stability of Bcl-2 via up-regulating miR-34a in the cerebellum of rat. Neurosci. Lett., 2017, 657, 159-165. doi: 10.1016/j.neulet.2017.08.018 PMID: 28803955
- Eissa, N.; Jayaprakash, P.; Azimullah, S.; Ojha, S.K.; Al-Houqani, M.; Jalal, F.Y.; Łażewska, D.; Kieć-Kononowicz, K.; Sadek, B. The histamine H3R antagonist DL77 attenuates autistic behaviors in a prenatal valproic acid-induced mouse model of autism. Sci. Rep., 2018, 8(1), 13077. doi: 10.1038/s41598-018-31385-7 PMID: 30166610
- Gao, J.; Wu, H.; Cao, Y.; Liang, S.; Sun, C.; Wang, P.; Wang, J.; Sun, H.; Wu, L. Maternal DHA supplementation protects rat offspring against impairment of learning and memory following prenatal exposure to valproic acid. J. Nutr. Biochem., 2016, 35, 87-95. doi: 10.1016/j.jnutbio.2016.07.003 PMID: 27469996
- Hirsch, M.M.; Deckmann, I.; Santos-Terra, J.; Staevie, G.Z.; Fontes-Dutra, M.; Carello-Collar, G.; Körbes-Rockenbach, M.; Brum Schwingel, G.; Bauer-Negrini, G.; Rabelo, B.; Gonçalves, M.C.B.; Corrêa-Velloso, J.; Naaldijk, Y.; Castillo, A.R.G.; Schneider, T.; Bambini-Junior, V.; Ulrich, H.; Gottfried, C. Effects of single-dose antipurinergic therapy on behavioral and molecular alterations in the valproic acid-induced animal model of autism. Neuropharmacology, 2020, 167, 107930. doi: 10.1016/j.neuropharm.2019.107930 PMID: 31904357
- Hou, Q.; Wang, Y.; Li, Y.; Chen, D.; Yang, F.; Wang, S. A developmental study of abnormal behaviors and altered gabaergic signaling in the vpa-treated rat model of autism. Front. Behav. Neurosci., 2018, 12, 182. doi: 10.3389/fnbeh.2018.00182 PMID: 30186123
- Kerr, D.M.; Downey, L.; Conboy, M.; Finn, D.P.; Roche, M. Alterations in the endocannabinoid system in the rat valproic acid model of autism. Behav. Brain Res., 2013, 249, 124-132. doi: 10.1016/j.bbr.2013.04.043 PMID: 23643692
- Khalaj, R.; Hajizadeh Moghaddam, A.; Zare, M. Hesperetin and it nanocrystals ameliorate social behavior deficits and oxido‐inflammatory stress in rat model of autism. Int. J. Dev. Neurosci., 2018, 69(1), 80-87. doi: 10.1016/j.ijdevneu.2018.06.009 PMID: 29966739
- Kim, J.W.; Seung, H.; Kim, K.C.; Gonzales, E.L.T.; Oh, H.A.; Yang, S.M.; Ko, M.J.; Han, S.H.; Banerjee, S.; Shin, C.Y. Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism. Neuropharmacology, 2017, 113(Pt A), 71-81. doi: 10.1016/j.neuropharm.2016.09.014 PMID: 27638451
- Matsuo, K.; Yabuki, Y.; Fukunaga, K. 5-aminolevulinic acid inhibits oxidative stress and ameliorates autistic-like behaviors in prenatal valproic acid-exposed rats. Neuropharmacology, 2020, 168, 107975. doi: 10.1016/j.neuropharm.2020.107975 PMID: 31991146
- Qin, L.; Dai, X.; Yin, Y. Valproic acid exposure sequentially activates Wnt and mTOR pathways in rats. Mol. Cell. Neurosci., 2016, 75, 27-35. doi: 10.1016/j.mcn.2016.06.004 PMID: 27343825
- Rajizadeh, M.A.; Afarinesh, M.R.; Zarif, M.; Mirasadi, A.; Esmaeilpour, K. Does caffeine therapy improve cognitive impairments in valproic acid rat model of autism? Toxin Rev., 2021, 40(4), 654-664. doi: 10.1080/15569543.2019.1680563
- Servadio, M.; Melancia, F.; Cartocci, V.; Pallottini, V.; Trezza, V. Role of the endocannabinoid system in the altered social behavior observed in the rat valproic acid model of autism. Eur. Neuropsychopharmacol., 2016, 26, S269-S270. doi: 10.1016/S0924-977X(16)31152-X
- tefánik, P.; Olexová, L.; Krková, L. Increased sociability and gene expression of oxytocin and its receptor in the brains of rats affected prenatally by valproic acid. Pharmacol. Biochem. Behav., 2015, 131, 42-50. doi: 10.1016/j.pbb.2015.01.021 PMID: 25662821
- Wu, H.F.; Chen, P.S.; Chen, Y.J.; Lee, C.W.; Chen, I.T.; Lin, H.C. Alleviation of N-Methyl-d-aspartate receptor-dependent long-term depression via regulation of the glycogen synthase kinase-3β pathway in the amygdala of a valproic acid-induced animal model of autism. Mol. Neurobiol., 2017, 54(7), 5264-5276. doi: 10.1007/s12035-016-0074-1 PMID: 27578017
- Zamberletti, E.; Gabaglio, M.; Woolley-Roberts, M.; Bingham, S.; Rubino, T.; Parolaro, D. Cannabidivarin treatment ameliorates autism-like behaviors and restores hippocampal endocannabinoid system and glia alterations induced by prenatal valproic acid exposure in rats. Front. Cell. Neurosci., 2019, 13, 367. doi: 10.3389/fncel.2019.00367 PMID: 31447649
- Zhang, R.; Zhou, J.; Ren, J.; Sun, S.; Di, Y.; Wang, H.; An, X.; Zhang, K.; Zhang, J.; Qian, Z.; Shi, M.; Qiao, Y.; Ren, W.; Tian, Y. Transcriptional and splicing dysregulation in the prefrontal cortex in valproic acid rat model of autism. Reprod. Toxicol., 2018, 77, 53-61. doi: 10.1016/j.reprotox.2018.01.008 PMID: 29427782
- Zhang, Y.; Xiang, Z.; Jia, Y.; He, X.; Wang, L.; Cui, W. The notch signaling pathway inhibitor dapt alleviates autism-like behavior, autophagy and dendritic spine density abnormalities in a valproic acid-induced animal model of autism. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 94, 109644. doi: 10.1016/j.pnpbp.2019.109644 PMID: 31075347
- Schiavi, S.; Iezzi, D.; Manduca, A.; Leone, S.; Melancia, F.; Carbone, C.; Petrella, M.; Mannaioni, G.; Masi, A.; Trezza, V. Reward-related behavioral, neurochemical and electrophysiological changes in a rat model of autism based on prenatal exposure to valproic acid. Front. Cell. Neurosci., 2019, 13, 479. doi: 10.3389/fncel.2019.00479 PMID: 31708750
- Hajisoltani, R.; Karimi, S.A.; Rahdar, M.; Davoudi, S.; Borjkhani, M.; Hosseinmardi, N.; Behzadi, G.; Janahmadi, M. Hyperexcitability of hippocampal CA1 pyramidal neurons in male offspring of a rat model of autism spectrum disorder (ASD) induced by prenatal exposure to valproic acid: A possible involvement of Ih channel current. Brain Res., 2019, 1708, 188-199. doi: 10.1016/j.brainres.2018.12.011 PMID: 30537517
- Kim, K.C.; Lee, D.K.; Go, H.S.; Kim, P.; Choi, C.S.; Kim, J.W.; Jeon, S.J.; Song, M.R.; Shin, C.Y. Pax6-dependent cortical glutamatergic neuronal differentiation regulates autism-like behavior in prenatally valproic acid-exposed rat offspring. Mol. Neurobiol., 2014, 49(1), 512-528. doi: 10.1007/s12035-013-8535-2 PMID: 24030726
- Wu, H.F.; Chen, Y.J.; Chu, M.C.; Hsu, Y.T.; Lu, T.Y.; Chen, I.T.; Chen, P.; Lin, H.C. Deep brain stimulation modified autism-like deficits via the serotonin system in a valproic acid-induced rat model. Int. J. Mol. Sci., 2018, 19(9), 2840. doi: 10.3390/ijms19092840 PMID: 30235871
- Schneider, T.; Turczak, J.; Przewłocki, R. Environmental enrichment reverses behavioral alterations in rats prenatally exposed to valproic acid: Issues for a therapeutic approach in autism. Neuropsychopharmacology, 2006, 31(1), 36-46. doi: 10.1038/sj.npp.1300767 PMID: 15920505
- Degroote, S.; Hunting, D.; Sébire, G.; Takser, L. Autistic-like traits in Lewis rats exposed perinatally to a mixture of common endocrine disruptors. Endocr. Disruptors, 2014, 2(1), e976123. doi: 10.4161/23273747.2014.976123
- Ahn, Y.; Narous, M.; Tobias, R.; Rho, J.M.; Mychasiuk, R. The ketogenic diet modifies social and metabolic alterations identified in the prenatal valproic acid model of autism spectrum disorder. Dev. Neurosci., 2014, 36(5), 371-380. doi: 10.1159/000362645 PMID: 25011527
- Codagnone, M.G.; Podestá, M.F.; Uccelli, N.A.; Reinés, A. Differential local connectivity and neuroinflammation profiles in the medial prefrontal cortex and hippocampus in the valproic acid rat model of autism. Dev. Neurosci., 2015, 37(3), 215-231. doi: 10.1159/000375489 PMID: 25895486
- Du, L.; Zhao, G.; Duan, Z.; Li, F. Behavioral improvements in a valproic acid rat model of autism following vitamin D supplementation. Psychiatry Res., 2017, 253, 28-32. doi: 10.1016/j.psychres.2017.03.003 PMID: 28324861
- Edalatmanesh, M.A.; Nikfarjam, H.; Vafaee, F.; Moghadas, M. Increased hippocampal cell density and enhanced spatial memory in the valproic acid rat model of autism. Brain Res., 2013, 1526, 15-25. doi: 10.1016/j.brainres.2013.06.024 PMID: 23806776
- Kataoka, S.; Takuma, K.; Hara, Y.; Maeda, Y.; Ago, Y.; Matsuda, T. Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid. Int. J. Neuropsychopharmacol., 2013, 16(1), 91-103. doi: 10.1017/S1461145711001714 PMID: 22093185
- Lin, H.C.; Gean, P.W.; Wang, C.C.; Chan, Y.H.; Chen, P.S. The amygdala excitatory/inhibitory balance in a valproate-induced rat autism model. PLoS ONE., 2013, 8(1), e55248.
- Markram, K.; Rinaldi, T.; Mendola, D.L.; Sandi, C.; Markram, H. Abnormal fear conditioning and amygdala processing in an animal model of autism. Neuropsychopharmacology, 2008, 33(4), 901-912. doi: 10.1038/sj.npp.1301453 PMID: 17507914
- Olde Loohuis, N.F.M.; Martens, G.J.M.; van Bokhoven, H.; Kaplan, B.B.; Homberg, J.R.; Aschrafi, A. Altered expression of circadian rhythm and extracellular matrix genes in the medial prefrontal cortex of a valproic acid rat model of autism. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 77, 128-132. doi: 10.1016/j.pnpbp.2017.04.009 PMID: 28408291
- Sandhya, T.; Sowjanya, J.; Veeresh, B. Bacopa monniera (L.) Wettst ameliorates behavioral alterations and oxidative markers in sodium valproate induced autism in rats. Neurochem. Res., 2012, 37(5), 1121-1131. doi: 10.1007/s11064-012-0717-1 PMID: 22322665
- Schneider, T.; Przewłocki, R. Behavioral alterations in rats prenatally exposed to valproic acid: Animal model of autism. Neuropsychopharmacology, 2005, 30(1), 80-89. doi: 10.1038/sj.npp.1300518 PMID: 15238991
- Wang, C.C.; Lin, H.C.; Chan, Y.H.; Gean, P.W.; Yang, Y.K.; Chen, P.S. 5-HT1A-receptor agonist modified amygdala activity and amygdala-associated social behavior in a valproate-induced rat autism model. Int. J. Neuropsychopharmacol., 2013, 16(9), 2027-2039. doi: 10.1017/S1461145713000473 PMID: 23823694
- Yamaguchi, H.; Hara, Y.; Ago, Y.; Takano, E.; Hasebe, S.; Nakazawa, T.; Hashimoto, H.; Matsuda, T.; Takuma, K. Environmental enrichment attenuates behavioral abnormalities in valproic acid-exposed autism model mice. Behav. Brain Res., 2017, 333, 67-73. doi: 10.1016/j.bbr.2017.06.035 PMID: 28655565
- Bringas, M.E.; Carvajal-Flores, F.N.; López-Ramírez, T.A.; Atzori, M.; Flores, G. Rearrangement of the dendritic morphology in limbic regions and altered exploratory behavior in a rat model of autism spectrum disorder. Neuroscience, 2013, 241, 170-187. doi: 10.1016/j.neuroscience.2013.03.030 PMID: 23535253
- Choi, C.S.; Hong, M.; Kim, K.C.; Kim, J.W.; Yang, S.M.; Seung, H.; Ko, M.J.; Choi, D.H.; You, J.S.; Shin, C.Y.; Bahn, G.H. Effects of atomoxetine on hyper-locomotive activity of the prenatally valproate-exposed rat offspring. Biomol. Ther., 2014, 22(5), 406-413. doi: 10.4062/biomolther.2014.027 PMID: 25414770
- Olexová, L.; tefánik, P.; Krková, L. Increased anxiety-like behaviour and altered GABAergic system in the amygdala and cerebellum of VPA rats An animal model of autism. Neurosci. Lett., 2016, 629, 9-14. doi: 10.1016/j.neulet.2016.06.035 PMID: 27353514
- Zhang, Y.; Cui, W.; Zhai, Q.; Zhang, T.; Wen, X. N-acetylcysteine ameliorates repetitive/stereotypic behavior due to its antioxidant properties without activation of the canonical Wnt pathway in a valproic acid-induced rat model of autism. Mol. Med. Rep., 2017, 16(2), 2233-2240. doi: 10.3892/mmr.2017.6787 PMID: 28627665
- Wu, H.F.; Chen, P.S.; Hsu, Y.T.; Lee, C.W.; Wang, T.F.; Chen, Y.J.; Lin, H.C. D-cycloserine ameliorates autism-like deficits by removing glua2-containing AMPA receptors in a valproic acid-induced rat model. Mol. Neurobiol., 2018, 55(6), 4811-4824. doi: 10.1007/s12035-017-0685-1 PMID: 28733898
- Al Sagheer, T.; Haida, O.; Balbous, A.; Francheteau, M.; Matas, E.; Fernagut, P.O.; Jaber, M. Motor impairments correlate with social deficits and restricted neuronal loss in an environmental model of autism. Int. J. Neuropsychopharmacol., 2018, 21(9), 871-882. doi: 10.1093/ijnp/pyy043 PMID: 29762671
- Kerr, DM; Gilmartin, A; Roche, M Pharmacological inhibition of fatty acid amide hydrolase attenuates social behavioural deficits in male rats prenatally exposed to valproic acid. Pharmacol. Res., 2016, 113(Pt A), 228-235. doi: 10.1016/j.phrs.2016.08.033
- Bambini-Junior, V.; Rodrigues, L.; Behr, G.A.; Moreira, J.C.F.; Riesgo, R.; Gottfried, C. Animal model of autism induced by prenatal exposure to valproate: Behavioral changes and liver parameters. Brain Res., 2011, 1408, 8-16. doi: 10.1016/j.brainres.2011.06.015 PMID: 21767826
- Gobshtis, N.; Tfilin, M.; Wolfson, M.; Fraifeld, V.E.; Turgeman, G. Transplantation of mesenchymal stem cells reverses behavioural deficits and impaired neurogenesis caused by prenatal exposure to valproic acid. Oncotarget, 2017, 8(11), 17443-17452. doi: 10.18632/oncotarget.15245 PMID: 28407680
- Guo, Q.; Yin, X.; Qiao, M.; Jia, Y.; Chen, D.; Shao, J.; Lebaron, T.W.; Gao, Y.; Shi, H.; Jia, B. Hydrogen-rich water ameliorates autistic-like behavioral abnormalities in valproic acid-treated adolescent mice offspring. Front. Behav. Neurosci., 2018, 12, 170. doi: 10.3389/fnbeh.2018.00170 PMID: 30127728
- Huang, F.; Chen, X.; Jiang, X.; Niu, J.; Cui, C.; Chen, Z.; Sun, J. Betaine ameliorates prenatal valproic‐acid‐induced autism‐like behavioral abnormalities in mice by promoting homocysteine metabolism. Psychiatry Clin. Neurosci., 2019, 73(6), 317-322. doi: 10.1111/pcn.12833 PMID: 30821067
- Kazlauskas, N.; Seiffe, A.; Campolongo, M.; Zappala, C.; Depino, A.M. Sex-specific effects of prenatal valproic acid exposure on sociability and neuroinflammation: Relevance for susceptibility and resilience in autism. Psychoneuroendocrinology, 2019, 110, 104441. doi: 10.1016/j.psyneuen.2019.104441 PMID: 31541913
- Kumar, H.; Sharma, B. Memantine ameliorates autistic behavior, biochemistry & blood brain barrier impairments in rats. Brain Res. Bull., 2016, 124, 27-39. doi: 10.1016/j.brainresbull.2016.03.013 PMID: 27034117
- Kumar, H.; Sharma, B. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats. Brain Res., 2016, 1630, 83-97. doi: 10.1016/j.brainres.2015.10.052 PMID: 26551768
- Kumar, H.; Sharma, B.M.; Sharma, B. Benefits of agomelatine in behavioral, neurochemical and blood brain barrier alterations in prenatal valproic acid induced autism spectrum disorder. Neurochem. Int., 2015, 91, 34-45. doi: 10.1016/j.neuint.2015.10.007 PMID: 26498253
- Lim, J.S.; Lim, M.Y.; Choi, Y.; Ko, G. Modeling environmental risk factors of autism in mice induces IBD-related gut microbial dysbiosis and hyperserotonemia. Mol. Brain, 2017, 10(1), 14. doi: 10.1186/s13041-017-0292-0 PMID: 28427452
- Lucchina, L.; Depino, A.M. Altered peripheral and central inflammatory responses in a mouse model of autism. Autism Res., 2014, 7(2), 273-289. doi: 10.1002/aur.1338 PMID: 24124122
- Mirza, R.; Sharma, B. Beneficial effects of pioglitazone, a selective peroxisome proliferator‐activated receptor‐γ agonist in prenatal valproic acid‐induced behavioral and biochemical autistic like features in Wistar rats. Int. J. Dev. Neurosci., 2019, 76(1), 6-16. doi: 10.1016/j.ijdevneu.2019.05.006 PMID: 31128204
- Mirza, R.; Sharma, B. Benefits of Fenofibrate in prenatal valproic acid-induced autism spectrum disorder related phenotype in rats. Brain Res. Bull., 2019, 147, 36-46. doi: 10.1016/j.brainresbull.2019.02.003 PMID: 30769127
- Mohammadi, S.; Asadi-Shekaari, M.; Basiri, M.; Parvan, M.; Shabani, M.; Nozari, M. Improvement of autistic-like behaviors in adult rats prenatally exposed to valproic acid through early suppression of NMDA receptor function. Psychopharmacology, 2020, 237(1), 199-208. doi: 10.1007/s00213-019-05357-2 PMID: 31595334
- Wang, Y.; Zhao, S.; Liu, X.; Zheng, Y.; Li, L.; Meng, S. Oxytocin improves animal behaviors and ameliorates oxidative stress and inflammation in autistic mice. Biomed. Pharmacother., 2018, 107, 262-269. doi: 10.1016/j.biopha.2018.07.148 PMID: 30098544
- Wang, J.; Feng, S.; Li, M.; Liu, Y.; Yan, J.; Tang, Y.; Du, D.; Chen, F. Increased expression of Kv10.2 in the hippocampus attenuates valproic acid-induced autism-like behaviors in rats. Neurochem. Res., 2019, 44(12), 2796-2808. doi: 10.1007/s11064-019-02903-4 PMID: 31728858
- Tian, Y.; Yabuki, Y.; Moriguchi, S.; Fukunaga, K.; Mao, P.J.; Hong, L.J.; Lu, Y.M.; Wang, R.; Ahmed, M.M.; Liao, M.H.; Huang, J.Y.; Zhang, R.T.; Zhou, T.Y.; Long, S.; Han, F. Melatonin reverses the decreases in hippocampal protein serine/threonine kinases observed in an animal model of autism. J. Pineal Res., 2014, 56(1), 1-11. doi: 10.1111/jpi.12081 PMID: 23952810
- Hirsch, M.M.; Deckmann, I.; Fontes-Dutra, M.; Bauer-Negrini, G.; Nunes, G.D.F.; Nunes, W.; Rabelo, B.; Riesgo, R.; Margis, R.; Bambini-Junior, V.; Gottfried, C. Data on social transmission of food preference in a model of autism induced by valproic acid and translational analysis of circulating microRNA. Data Brief, 2018, 18, 1433-1440. doi: 10.1016/j.dib.2018.04.047 PMID: 29904648
- Hara, Y.; Ago, Y.; Taruta, A.; Hasebe, S.; Kawase, H.; Tanabe, W.; Tsukada, S.; Nakazawa, T.; Hashimoto, H.; Matsuda, T.; Takuma, K. Risperidone and aripiprazole alleviate prenatal valproic acidinduced abnormalities in behaviors and dendritic spine density in mice. Psychopharmacology., 2017, 234(21), 3217-3228. doi: 10.1007/s00213-017-4703-9 PMID: 28798977
- Cuevas-Olguin, R.; Roychowdhury, S.; Banerjee, A.; Garcia-Oscos, F.; Esquivel-Rendon, E.; Bringas, M.E.; Kilgard, M.P.; Flores, G.; Atzori, M. Cerebrolysin prevents deficits in social behavior, repetitive conduct, and synaptic inhibition in a rat model of autism. J. Neurosci. Res., 2017, 95(12), 2456-2468. doi: 10.1002/jnr.24072 PMID: 28609577
- Hara, Y.; Ago, Y.; Higuchi, M.; Hasebe, S.; Nakazawa, T.; Hashimoto, H.; Matsuda, T.; Takuma, K. Oxytocin attenuates deficits in social interaction but not recognition memory in a prenatal valproic acid-induced mouse model of autism. Horm. Behav., 2017, 96, 130-136. doi: 10.1016/j.yhbeh.2017.09.013 PMID: 28942000
- Hara, Y.; Ago, Y.; Taruta, A.; Katashiba, K.; Hasebe, S.; Takano, E.; Onaka, Y.; Hashimoto, H.; Matsuda, T.; Takuma, K. Improvement by methylphenidate and atomoxetine of social interaction deficits and recognition memory impairment in a mouse model of valproic acid-induced autism. Autism Res., 2016, 9(9), 926-939. doi: 10.1002/aur.1596 PMID: 26714434
- Kawase, H.; Ago, Y.; Naito, M.; Higuchi, M.; Hara, Y.; Hasebe, S.; Tsukada, S.; Kasai, A.; Nakazawa, T.; Mishina, T.; Kouji, H.; Takuma, K.; Hashimoto, H. mS-11, a mimetic of the mSin3-binding helix in NRSF, ameliorates social interaction deficits in a prenatal valproic acid-induced autism mouse model. Pharmacol. Biochem. Behav., 2019, 176, 1-5. doi: 10.1016/j.pbb.2018.11.003 PMID: 30419271
- Kotajima-Murakami, H.; Kobayashi, T.; Kashii, H.; Sato, A.; Hagino, Y.; Tanaka, M.; Nishito, Y.; Takamatsu, Y.; Uchino, S.; Ikeda, K. Effects of rapamycin on social interaction deficits and gene expression in mice exposed to valproic acid in utero. Mol. Brain, 2019, 12(1), 3. doi: 10.1186/s13041-018-0423-2 PMID: 30621732
- Matsuo, K.; Yabuki, Y.; Fukunaga, K. 493. Improvement of social interaction and cognition by oxytocin for autism-like behaviors in valproic acid-exposed rats. Biol. Psychiatry, 2017, 81(10), S200-S201. doi: 10.1016/j.biopsych.2017.02.1101
- Olde Loohuis, N.F.M.; Kole, K.; Glennon, J.C.; Karel, P.; Van der Borg, G.; Van Gemert, Y.; Van den Bosch, D.; Meinhardt, J.; Kos, A.; Shahabipour, F.; Tiesinga, P.; van Bokhoven, H.; Martens, G.J.M.; Kaplan, B.B.; Homberg, J.R.; Aschrafi, A. Elevated microRNA-181c and microRNA-30d levels in the enlarged amygdala of the valproic acid rat model of autism. Neurobiol. Dis., 2015, 80, 42-53. doi: 10.1016/j.nbd.2015.05.006 PMID: 25986729
- Wang, X.; Tao, J.; Qiao, Y.; Luo, S.; Zhao, Z.; Gao, Y.; Guo, J.; Kong, J.; Chen, C.; Ge, L.; Zhang, B.; Guo, P.; Liu, L.; Song, Y. Gastrodin rescues autistic-like phenotypes in valproic acid-induced animal model. Front. Neurol., 2018, 9, 1052. doi: 10.3389/fneur.2018.01052 PMID: 30581411
- Zhang, Y.; Yang, C.; Yuan, G.; Wang, Z.; Cui, W.; Li, R. Sulindac attenuates valproic acid-induced oxidative stress levels in primary cultured cortical neurons and ameliorates repetitive/stereotypic-like movement disorders in Wistar rats prenatally exposed to valproic acid. Int. J. Mol. Med., 2015, 35(1), 263-270. doi: 10.3892/ijmm.2014.1996 PMID: 25384498
- Eissa, N.; Azimullah, S.; Jayaprakash, P.; Jayaraj, R.L.; Reiner, D.; Ojha, S.K.; Beiram, R.; Stark, H.; Łażewska, D.; Kieć-Kononowicz, K.; Sadek, B. The dual-active histamine H3 receptor antagonist and acetylcholine esterase inhibitor E100 ameliorates stereotyped repetitive behavior and neuroinflammmation in sodium valproate induced autism in mice. Chem. Biol. Interact., 2019, 312, 108775. doi: 10.1016/j.cbi.2019.108775 PMID: 31369746
- Hara, Y.; Takuma, K.; Takano, E.; Katashiba, K.; Taruta, A.; Higashino, K.; Hashimoto, H.; Ago, Y.; Matsuda, T. Reduced prefrontal dopaminergic activity in valproic acid-treated mouse autism model. Behav. Brain Res., 2015, 289, 39-47. doi: 10.1016/j.bbr.2015.04.022 PMID: 25907743
- Zhang, Y.; Sun, Y.; Wang, F.; Wang, Z.; Peng, Y.; Li, R. Downregulating the canonical Wnt/β-catenin signaling pathway attenuates the susceptibility to autism-like phenotypes by decreasing oxidative stress. Neurochem. Res., 2012, 37(7), 1409-1419. doi: 10.1007/s11064-012-0724-2 PMID: 22374471
- Anshu, K.; Nair, A.K.; Kumaresan, U.D.; Kutty, B.M.; Srinath, S.; Laxmi, T.R. Altered attentional processing in male and female rats in a prenatal valproic acid exposure model of autism spectrum disorder. Autism Res., 2017, 10(12), 1929-1944. doi: 10.1002/aur.1852 PMID: 28851114
- Favre, M.; ô, R.; La Mendola, D.; Meystre, J.; Christodoulou, D.; Cochrane, M.J.; Markram, H.; Markram, K. Predictable enriched environment prevents development of hyper-emotionality in the VPA rat model of autism. Front. Neurosci., 2015, 9(MAR), 127. doi: 10.3389/fnins.2015.00127 PMID: 26089770
- Foley, A.G.; Gannon, S.; Rombach-Mullan, N.; Prendergast, A.; Barry, C.; Cassidy, A.W.; Regan, C.M. Class I histone deacetylase inhibition ameliorates social cognition and cell adhesion molecule plasticity deficits in a rodent model of autism spectrum disorder. Neuropharmacology, 2012, 63(4), 750-760. doi: 10.1016/j.neuropharm.2012.05.042 PMID: 22683514
- Foley, A.G.; Cassidy, A.W.; Regan, C.M. Pentyl-4-yn-VPA, a histone deacetylase inhibitor, ameliorates deficits in social behavior and cognition in a rodent model of autism spectrum disorders. Eur. J. Pharmacol., 2014, 727(1), 80-86. doi: 10.1016/j.ejphar.2014.01.050 PMID: 24486700
- Win-Shwe, T.T.; Nway, N.C.; Imai, M.; Lwin, T.T.; Mar, O.; Watanabe, H. Social behavior, neuroimmune markers and glutamic acid decarboxylase levels in a rat model of valproic acid-induced autism. J. Toxicol. Sci., 2018, 43(11), 631-643. doi: 10.2131/jts.43.631 PMID: 30404997
- Schneider, T.; Roman, A.; Basta-Kaim, A.; Kubera, M.; Budziszewska, B.; Schneider, K.; Przewłocki, R. Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology, 2008, 33(6), 728-740. doi: 10.1016/j.psyneuen.2008.02.011 PMID: 18396377
- Banerjee, A.; Engineer, C.T.; Sauls, B.L.; Morales, A.A.; Kilgard, M.P.; Ploski, J.E. Abnormal emotional learning in a rat model of autism exposed to valproic acid in utero. Front. Behav. Neurosci., 2014, 8(387), 387. doi: 10.3389/fnbeh.2014.00387 PMID: 25429264
- Kumaravel, P.; Melchias, G.; Vasanth, N.; Manivasagam, T. Epigallocatechin gallate attenuates behavioral defects in sodium valproate induced autism rat model. Res. J. Pharm. Technol., 2017, 10(5), 1477. doi: 10.5958/0974-360X.2017.00260.8
- Song, T.J.; Lan, X.Y.; Wei, M.P.; Zhai, F.J.; Boeckers, T.M.; Wang, J.N.; Yuan, S.; Jin, M.Y.; Xie, Y.F.; Dang, W.W.; Zhang, C.; Schön, M.; Song, P.W.; Qiu, M.H.; Song, Y.Y.; Han, S.P.; Han, J.S.; Zhang, R. Altered behaviors and impaired synaptic function in a novel rat model with a complete shank3 deletion. Front. Cell. Neurosci., 2019, 13, 111. doi: 10.3389/fncel.2019.00111 PMID: 30971895
- Watanabe, S.; Kurotani, T.; Oga, T.; Noguchi, J.; Isoda, R.; Nakagami, A.; Sakai, K.; Nakagaki, K.; Sumida, K.; Hoshino, K.; Saito, K.; Miyawaki, I.; Sekiguchi, M.; Wada, K.; Minamimoto, T.; Ichinohe, N. Functional and molecular characterization of a non-human primate model of autism spectrum disorder shows similarity with the human disease. Nat. Commun., 2021, 12(1), 5388. doi: 10.1038/s41467-021-25487-6 PMID: 34526497
- Zhao, H.; Wang, Q.; Yan, T.; Zhang, Y.; Xu, H.; Yu, H.; Tu, Z.; Guo, X.; Jiang, Y.; Li, X.; Zhou, H.; Zhang, Y.Q. Maternal valproic acid exposure leads to neurogenesis defects and autism-like behaviors in non-human primates. Transl. Psychiatry, 2019, 9(1), 267. doi: 10.1038/s41398-019-0608-1 PMID: 31636273
- Yasue, M.; Nakagami, A.; Banno, T.; Nakagaki, K.; Ichinohe, N.; Kawai, N. Indifference of marmosets with prenatal valproate exposure to third-party non-reciprocal interactions with otherwise avoided non-reciprocal individuals. Behav. Brain Res., 2015, 292, 323-326. doi: 10.1016/j.bbr.2015.06.006 PMID: 26133500
- Sgadò, P.; Rosa-Salva, O.; Versace, E.; Vallortigara, G. Embryonic exposure to valproic acid impairs social predispositions of newly-hatched chicks. Sci. Rep., 2018, 8(1), 5919. doi: 10.1038/s41598-018-24202-8 PMID: 29650996
- Lorenzi, E.; Pross, A.; Rosa-Salva, O.; Versace, E.; Sgadò, P.; Vallortigara, G. Embryonic exposure to valproic acid affects social predispositions for dynamic cues of animate motion in newly-hatched chicks. Front. Physiol., 2019, 10, 501. doi: 10.3389/fphys.2019.00501 PMID: 31114510
- Adiletta, A.; Pedrana, S.; Rosa-Salva, O.; Sgadò, P. Spontaneous visual preference for face-like stimuli is impaired in newly-hatched domestic chicks exposed to valproic acid during embryogenesis. Front. Behav. Neurosci., 2021, 15, 733140. doi: 10.3389/fnbeh.2021.733140 PMID: 34858146
- Matsushima, T.; Miura, M.; Patzke, N.; Toji, N.; Wada, K.; Ogura, Y. Fetal blockade of nicotinic acetylcholine transmission causes autism-like impairment of biological motion preference in the neonatal chick. Cereb. Cortex, 2022, tgac041. doi: 10.1093/texcom/tgac041
- Nishigori, H.; Kagami, K.; Takahashi, A.; Tezuka, Y.; Sanbe, A.; Nishigori, H. Impaired social behavior in chicks exposed to sodium valproate during the last week of embryogenesis. Psychopharmacology, 2013, 227(3), 393-402. doi: 10.1007/s00213-013-2979-y PMID: 23371491
- Zachar, G.; Tóth, A.S.; Gerecsei, L.I.; Zsebők, S.; Ádám, Á.; Csillag, A. Valproate exposure in ovo attenuates the acquisition of social preferences of young post-hatch domestic chicks. Front. Physiol., 2019, 10, 881. doi: 10.3389/fphys.2019.00881 PMID: 31379596
- Chen, J.; Lei, L.; Tian, L.; Hou, F.; Roper, C.; Ge, X.; Zhao, Y.; Chen, Y.; Dong, Q.; Tanguay, R.L.; Huang, C. Developmental and behavioral alterations in zebrafish embryonically exposed to valproic acid (VPA): An aquatic model for autism. Neurotoxicol. Teratol., 2018, 66, 8-16. doi: 10.1016/j.ntt.2018.01.002 PMID: 29309833
- Dwivedi, S.; Medishetti, R.; Rani, R.; Sevilimedu, A.; Kulkarni, P.; Yogeeswari, P. Larval zebrafish model for studying the effects of valproic acid on neurodevelopment: An approach towards modeling autism. J. Pharmacol. Toxicol. Methods, 2019, 95, 56-65. doi: 10.1016/j.vascn.2018.11.006 PMID: 30500431
- Zimmermann, F.F.; Gaspary, K.V.; Leite, C.E.; De Paula, C.G.; Bonan, C.D. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): A developmental behavior analysis. Neurotoxicol. Teratol., 2015, 52(Pt A), 36-41. doi: 10.1016/j.ntt.2015.10.002 PMID: 26477937
- Baronio, D.; Puttonen, H.A.J.; Sundvik, M.; Semenova, S.; Lehtonen, E.; Panula, P. Embryonic exposure to valproic acid affects the histaminergic system and the social behaviour of adult zebrafish (Danio rerio). Br. J. Pharmacol., 2018, 175(5), 797-809. doi: 10.1111/bph.14124 PMID: 29235100
- Bell, M.R. Comparing postnatal development of gonadal hormones and associated social behaviors in rats, mice, and humans. Endocrinology, 2018, 159(7), 2596-2613. doi: 10.1210/en.2018-00220 PMID: 29767714
- Carter, M. Animal behavior. In: Guide to Research Techniques in Neuroscience; Elsevier, 2015; pp. 39-71. doi: 10.1016/B978-0-12-800511-8.00002-2
- Rudie, J.D.; Brown, J.A.; Beck-Pancer, D.; Hernandez, L.M.; Dennis, E.L.; Thompson, P.M.; Bookheimer, S.Y.; Dapretto, M. Altered functional and structural brain network organization in autism. Neuroimage Clin., 2013, 2, 79-94. doi: 10.1016/j.nicl.2012.11.006 PMID: 24179761
- Zhao, Y.; Chen, H.; Li, Y.; Lv, J.; Jiang, X.; Ge, F.; Zhang, T.; Zhang, S.; Ge, B.; Lyu, C.; Zhao, S.; Han, J.; Guo, L.; Liu, T. Connectome-scale group-wise consistent resting-state network analysis in autism spectrum disorder. Neuroimage Clin., 2016, 12, 23-33. doi: 10.1016/j.nicl.2016.06.004 PMID: 27358766
- Guo, X.; Duan, X.; Chen, H.; He, C.; Xiao, J.; Han, S.; Fan, Y.S.; Guo, J.; Chen, H. Altered inter‐ and intrahemispheric functional connectivity dynamics in autistic children. Hum. Brain Mapp., 2020, 41(2), 419-428. doi: 10.1002/hbm.24812 PMID: 31600014
- Uzunova, G.; Pallanti, S.; Hollander, E. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. World J. Biol. Psychiatry, 2016, 17(3), 174-186. doi: 10.3109/15622975.2015.1085597 PMID: 26469219
- Hampson, D.R.; Blatt, G.J. Autism spectrum disorders and neuropathology of the cerebellum. Front. Neurosci., 2015, 9, 420. doi: 10.3389/fnins.2015.00420 PMID: 26594141
- DMello, A.M.; Crocetti, D.; Mostofsky, S.H.; Stoodley, C.J. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. Neuroimage Clin., 2015, 7, 631-639. doi: 10.1016/j.nicl.2015.02.007 PMID: 25844317
- Hanaie, R.; Mohri, I.; Kagitani-Shimono, K.; Tachibana, M.; Azuma, J.; Matsuzaki, J.; Watanabe, Y.; Fujita, N.; Taniike, M. Altered microstructural connectivity of the superior cerebellar peduncle is related to motor dysfunction in children with autistic spectrum disorders. Cerebellum, 2013, 12(5), 645-656. doi: 10.1007/s12311-013-0475-x PMID: 23564050
- Bauman, M.L.; Kemper, T.L. Neuroanatomic observations of the brain in autism: A review and future directions. Int. J. Dev. Neurosci., 2005, 23(2-3), 183-187. doi: 10.1016/j.ijdevneu.2004.09.006 PMID: 15749244
- Pang, Y.; Fan, L-W. Dysregulation of neurogenesis by neuroinflammation: key differences in neurodevelopmental and neurological disorders. Neural Regen. Res., 2017, 12(3), 366-371. doi: 10.4103/1673-5374.202926 PMID: 28469641
- Subramanian, M.; Timmerman, C.K.; Schwartz, J.L.; Pham, D.L.; Meffert, M.K. Characterizing autism spectrum disorders by key biochemical pathways. Front. Neurosci., 2015, 9, 313. doi: 10.3389/fnins.2015.00313 PMID: 26483618
- Chen, O.; Tahmazian, I.; Ferrara, H.J.; Hu, B.; Chomiak, T. The early overgrowth theory of autism spectrum disorder: Insight into convergent mechanisms from valproic acid exposure and translational models. In: Progress in Molecular Biology and Translational Science; Elsevier, 2020; pp. 275-300.
- Libero, L.E.; DeRamus, T.P.; Lahti, A.C.; Deshpande, G.; Kana, R.K. Multimodal neuroimaging based classification of autism spectrum disorder using anatomical, neurochemical, and white matter correlates. Cortex, 2015, 66, 46-59. doi: 10.1016/j.cortex.2015.02.008 PMID: 25797658
- Mraz, K.D.; Green, J.; Dumont-Mathieu, T.; Makin, S.; Fein, D. Correlates of head circumference growth in infants later diagnosed with autism spectrum disorders. J. Child Neurol., 2007, 22(6), 700-713. doi: 10.1177/0883073807304005 PMID: 17641255
- Lainhart, J.; Piven, J.; Wzorek, M.; Landa, R.; Santangelo, S.L.; Coon, H.; Folstein, S. Macrocephaly in children and adults with autism. J. Am. Acad. Child Adolesc. Psychiatry, 1997, 36(2), 282-290. doi: 10.1097/00004583-199702000-00019 PMID: 9031582
- Sacco, R.; Gabriele, S.; Persico, A.M. Head circumference and brain size in autism spectrum disorder: A systematic review and meta-analysis. Psychiatry Res. Neuroimaging, 2015, 234(2), 239-251. doi: 10.1016/j.pscychresns.2015.08.016 PMID: 26456415
- Nordahl, C.W.; Braunschweig, D.; Iosif, A.M.; Lee, A.; Rogers, S.; Ashwood, P.; Amaral, D.G.; Van de Water, J. Maternal autoantibodies are associated with abnormal brain enlargement in a subgroup of children with autism spectrum disorder. Brain Behav. Immun., 2013, 30, 61-65. doi: 10.1016/j.bbi.2013.01.084 PMID: 23395715
- Surén, P.; Stoltenberg, C.; Bresnahan, M.; Hirtz, D.; Lie, K.K.; Lipkin, W.I.; Magnus, P.; Reichborn-Kjennerud, T.; Schjølberg, S.; Susser, E.; Øyen, A.S.; Li, L.; Hornig, M. Early growth patterns in children with autism. Epidemiology, 2013, 24(5), 660-670. doi: 10.1097/EDE.0b013e31829e1d45 PMID: 23867813
- Lainhart, J.E.; Bigler, E.D.; Bocian, M.; Coon, H.; Dinh, E.; Dawson, G.; Deutsch, C.K.; Dunn, M.; Estes, A.; Tager-Flusberg, H.; Folstein, S.; Hepburn, S.; Hyman, S.; McMahon, W.; Minshew, N.; Munson, J.; Osann, K.; Ozonoff, S.; Rodier, P.; Rogers, S.; Sigman, M.; Spence, M.A.; Stodgell, C.J.; Volkmar, F. Head circumference and height in autism: A study by the collaborative program of excellence in autism. Am. J. Med. Genet. A., 2006, 140A(21), 2257-2274. doi: 10.1002/ajmg.a.31465 PMID: 17022081
- Courchesne, E.; Mouton, P.R.; Calhoun, M.E.; Semendeferi, K.; Ahrens-Barbeau, C.; Hallet, M.J.; Barnes, C.C.; Pierce, K. Neuron number and size in prefrontal cortex of children with autism. JAMA, 2011, 306(18), 2001-2010. doi: 10.1001/jama.2011.1638 PMID: 22068992
- Marchetto, M.C.; Belinson, H.; Tian, Y.; Freitas, B.C.; Fu, C.; Vadodaria, K.C.; Beltrao-Braga, P.C.; Trujillo, C.A.; Mendes, A.P.D.; Padmanabhan, K.; Nunez, Y.; Ou, J.; Ghosh, H.; Wright, R.; Brennand, K.J.; Pierce, K.; Eichenfield, L.; Pramparo, T.; Eyler, L.T.; Barnes, C.C.; Courchesne, E.; Geschwind, D.H.; Gage, F.H.; Wynshaw-Boris, A.; Muotri, A.R. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol. Psychiatry, 2017, 22(6), 820-835. doi: 10.1038/mp.2016.95 PMID: 27378147
- Hutsler, J.J.; Love, T.; Zhang, H. Histological and magnetic resonance imaging assessment of cortical layering and thickness in autism spectrum disorders. Biol. Psychiatry, 2007, 61(4), 449-457. doi: 10.1016/j.biopsych.2006.01.015 PMID: 16580643
- Wegiel, J.; Kuchna, I.; Nowicki, K.; Imaki, H.; Wegiel, J.; Marchi, E.; Ma, S.Y.; Chauhan, A.; Chauhan, V.; Bobrowicz, T.W.; de Leon, M.; Louis, L.A.S.; Cohen, I.L.; London, E.; Brown, W.T.; Wisniewski, T. The neuropathology of autism: Defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol., 2010, 119(6), 755-770. doi: 10.1007/s00401-010-0655-4 PMID: 20198484
- Hsieh, J.; Nakashima, K.; Kuwabara, T.; Mejia, E.; Gage, F.H. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc. Natl. Acad. Sci., 2004, 101(47), 16659-16664. doi: 10.1073/pnas.0407643101 PMID: 15537713
- Go, H.S.; Kim, K.C.; Choi, C.S.; Jeon, S.J.; Kwon, K.J.; Han, S.H.; Lee, J.; Cheong, J.H.; Ryu, J.H.; Kim, C.H.; Ko, K.H.; Shin, C.Y. Prenatal exposure to valproic acid increases the neural progenitor cell pool and induces macrocephaly in rat brain via a mechanism involving the GSK-3β/β-catenin pathway. Neuropharmacology, 2012, 63(6), 1028-1041. doi: 10.1016/j.neuropharm.2012.07.028 PMID: 22841957
- Bicker, F.; Nardi, L.; Maier, J.; Vasic, V.; Schmeisser, M.J. Criss‐crossing autism spectrum disorder and adult neurogenesis. J. Neurochem., 2021, 159(3), 452-478. doi: 10.1111/jnc.15501 PMID: 34478569
- Gilbert, J.; Man, H.Y. Fundamental elements in autism: From neurogenesis and neurite growth to synaptic plasticity. Front. Cell. Neurosci., 2017, 11, 359. doi: 10.3389/fncel.2017.00359 PMID: 29209173
- Watanabe, Y.; Murakami, T.; Kawashima, M.; Hasegawa-Baba, Y.; Mizukami, S.; Imatanaka, N.; Akahori, Y.; Yoshida, T.; Shibutani, M. Maternal exposure to valproic acid primarily targets interneurons followed by late effects on neurogenesis in the hippocampal dentate gyrus in rat offspring. Neurotox. Res., 2017, 31(1), 46-62. doi: 10.1007/s12640-016-9660-2 PMID: 27566479
- Ingram, J.L.; Peckham, S.M.; Tisdale, B.; Rodier, P.M. Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicol. Teratol., 2000, 22(3), 319-324. doi: 10.1016/S0892-0362(99)00083-5 PMID: 10840175
- Mowery, T.M.; Wilson, S.M.; Kostylev, P.V.; Dina, B.; Buchholz, J.B.; Prieto, A.L.; Garraghty, P.E. Embryological exposure to valproic acid disrupts morphology of the deep cerebellar nuclei in a sexually dimorphic way. Int. J. Dev. Neurosci., 2015, 40(1), 15-23. doi: 10.1016/j.ijdevneu.2014.10.003 PMID: 25447790
- Wang, R.; Tan, J.; Guo, J.; Zheng, Y.; Han, Q.; So, K.F.; Yu, J.; Zhang, L. Aberrant development and synaptic transmission of cerebellar cortex in a VPA induced mouse autism model. Front. Cell. Neurosci., 2018, 12, 500. doi: 10.3389/fncel.2018.00500 PMID: 30622458
- Gogolla, N.; LeBlanc, J.J.; Quast, K.B.; Südhof, T.C.; Fagiolini, M.; Hensch, T.K. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J. Neurodev. Disord., 2009, 1(2), 172-181. doi: 10.1007/s11689-009-9023-x PMID: 20664807
- Hara, Y.; Maeda, Y.; Kataoka, S.; Ago, Y.; Takuma, K.; Matsuda, T. Effect of prenatal valproic acid exposure on cortical morphology in female mice. J. Pharmacol. Sci., 2012, 118(4), 543-546. doi: 10.1254/jphs.12025SC PMID: 22447305
- Fujimura, K.; Mitsuhashi, T.; Shibata, S.; Shimozato, S.; Takahashi, T. In utero exposure to valproic acid induces neocortical dysgenesis via dysregulation of neural progenitor cell proliferation/differentiation. J. Neurosci., 2016, 36(42), 10908-10919. doi: 10.1523/JNEUROSCI.0229-16.2016 PMID: 27798144
- Dixon, S.C.; Calder, B.J.; Lilya, S.M.; Davies, B.M.; Martin, A.; Peterson, M.; Hansen, J.M.; Suli, A. Valproic acid affects neurogenesis during early optic tectum development in zebrafish. Biol. Open, 2023, 12(1), bio059567. doi: 10.1242/bio.059567 PMID: 36537579
- Dozawa, M.; Kono, H.; Sato, Y.; Ito, Y.; Tanaka, H.; Ohshima, T. Valproic acid, a histone deacetylase inhibitor, regulates cell proliferation in the adult zebrafish optic tectum. Dev. Dyn., 2014, 243(11), 1401-1415. doi: 10.1002/dvdy.24173 PMID: 25091230
- Chen, A.; Wang, M.; Xu, C.; Zhao, Y.; Xian, P.; Li, Y.; Zheng, W.; Yi, X.; Wu, S.; Wang, Y. Glycolysis mediates neuron specific histone acetylation in valproic acid-induced human excitatory neuron differentiation. Front. Mol. Neurosci., 2023, 16, 1151162. doi: 10.3389/fnmol.2023.1151162 PMID: 37089691
- Wang, H. Modeling neurological diseases with human brain organoids. Front. Synaptic Neurosci., 2018, 10, 15. doi: 10.3389/fnsyn.2018.00015 PMID: 29937727
- Trujillo, C.A.; Muotri, A.R. Brain Organoids and the Study of Neurodevelopment. Trends Mol. Med., 2018, 24(12), 982-990. doi: 10.1016/j.molmed.2018.09.005 PMID: 30377071
- Hansen, A.H.; Hippenmeyer, S. Non-cell-autonomous mechanisms in radial projection neuron migration in the developing cerebral cortex. Front. Cell Dev. Biol., 2020, 8, 574382. doi: 10.3389/fcell.2020.574382 PMID: 33102480
- Gao, P.; Sultan, K.T.; Zhang, X.J.; Shi, S.H. Lineage-dependent circuit assembly in the neocortex. Development, 2013, 140(13), 2645-2655. doi: 10.1242/dev.087668 PMID: 23757410
- Stoner, R.; Chow, M.L.; Boyle, M.P.; Sunkin, S.M.; Mouton, P.R.; Roy, S.; Wynshaw-Boris, A.; Colamarino, S.A.; Lein, E.S.; Courchesne, E. Patches of disorganization in the neocortex of children with autism. N. Engl. J. Med., 2014, 370(13), 1209-1219. doi: 10.1056/NEJMoa1307491 PMID: 24670167
- Bailey, A.; Luthert, P.; Dean, A.; Harding, B.; Janota, I.; Montgomery, M.; Rutter, M.; Lantos, P. A clinicopathological study of autism. Brain, 1998, 121(5), 889-905. doi: 10.1093/brain/121.5.889 PMID: 9619192
- Kemper, T.L.; Bauman, M. Neuropathology of infantile autism. J. Neuropathol. Exp. Neurol., 1998, 57(7), 645-652. doi: 10.1097/00005072-199807000-00001 PMID: 9690668
- Simms, M.L.; Kemper, T.L.; Timbie, C.M.; Bauman, M.L.; Blatt, G.J. The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathol., 2009, 118(5), 673-684. doi: 10.1007/s00401-009-0568-2 PMID: 19590881
- Goldowitz, D.; Hamre, K. The cells and molecules that make a cerebellum. Trends Neurosci., 1998, 21(9), 375-382. doi: 10.1016/S0166-2236(98)01313-7 PMID: 9735945
- Sakai, A.; Matsuda, T.; Doi, H.; Nagaishi, Y.; Kato, K.; Nakashima, K. Ectopic neurogenesis induced by prenatal antiepileptic drug exposure augments seizure susceptibility in adult mice. Proc. Natl. Acad. Sci., 2018, 115(16), 4270-4275. doi: 10.1073/pnas.1716479115 PMID: 29610328
- Choe, Y.; Pleasure, S.J. Wnt signaling regulates intermediate precursor production in the postnatal dentate gyrus by regulating CXCR4 expression. Dev. Neurosci., 2012, 34(6), 502-514. doi: 10.1159/000345353 PMID: 23257686
- Schultheiß, C.; Abe, P.; Hoffmann, F.; Mueller, W.; Kreuder, A.E.; Schütz, D.; Haege, S.; Redecker, C.; Keiner, S.; Kannan, S.; Claasen, J.H.; Pfrieger, F.W.; Stumm, R. CXCR4 prevents dispersion of granule neuron precursors in the adult dentate gyrus. Hippocampus, 2013, 23(12), 1345-1358. doi: 10.1002/hipo.22180 PMID: 23929505
- Tsai, L.K.; Leng, Y.; Wang, Z.; Leeds, P.; Chuang, D.M. The mood stabilizers valproic acid and lithium enhance mesenchymal stem cell migration via distinct mechanisms. Neuropsychopharmacology, 2010, 35(11), 2225-2237. doi: 10.1038/npp.2010.97 PMID: 20613717
- Peñagarikano, O.; Geschwind, D.H. What does CNTNAP2 reveal about autism spectrum disorder? Trends Mol. Med., 2012, 18(3), 156-163. doi: 10.1016/j.molmed.2012.01.003 PMID: 22365836
- Tahirovic, S.; Bradke, F. Neuronal polarity. Cold Spring Harb. Perspect. Biol., 2009, 1(3), a001644-a001644. doi: 10.1101/cshperspect.a001644 PMID: 20066106
- Migliore, M.; Shepherd, G.M. An integrated approach to classifying neuronal phenotypes. Nat. Rev. Neurosci., 2005, 6(10), 810-818. doi: 10.1038/nrn1769 PMID: 16276357
- Sporns, O. Structure and function of complex brain networks. Dialogues Clin. Neurosci., 2013, 15(3), 247-262. doi: 10.31887/DCNS.2013.15.3/osporns PMID: 24174898
- Azmitia, E.C.; Singh, J.S.; Hou, X.P.; Wegiel, J. Dystrophic serotonin axons in postmortem brains from young autism patients. Anat. Rec., 2011, 294(10), 1653-1662. doi: 10.1002/ar.21243 PMID: 21901837
- Azmitia, E.C.; Singh, J.S.; Whitaker-Azmitia, P.M. Increased serotonin axons (immunoreactive to 5-HT transporter) in postmortem brains from young autism donors. Neuropharmacology, 2011, 60(7-8), 1347-1354. doi: 10.1016/j.neuropharm.2011.02.002 PMID: 21329710
- Casanova, M.F.; Buxhoeveden, D.P.; Switala, A.E.; Roy, E. Minicolumnar pathology in autism. Neurology, 2002, 58(3), 428-432. doi: 10.1212/WNL.58.3.428 PMID: 11839843
- Raymond, G.V.; Bauman, M.L.; Kemper, T.L. Hippocampus in autism: A Golgi analysis. Acta Neuropathol., 1995, 91(1), 117-119. doi: 10.1007/s004010050401 PMID: 8773156
- Mukaetova-Ladinska, E.B.; Arnold, H.; Jaros, E.; Perry, R.; Perry, E. Depletion of MAP2 expression and laminar cytoarchitectonic changes in dorsolateral prefrontal cortex in adult autistic individuals. Neuropathol. Appl. Neurobiol., 2004, 30(6), 615-623. doi: 10.1111/j.1365-2990.2004.00574.x PMID: 15541002
- Hutsler, J.J.; Zhang, H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res., 2010, 1309, 83-94. doi: 10.1016/j.brainres.2009.09.120 PMID: 19896929
- Martínez-Cerdeño, V.; Camacho, J.; Fox, E.; Miller, E.; Ariza, J.; Kienzle, D.; Plank, K.; Noctor, S.C.; Van de Water, J. Prenatal exposure to autism-specific maternal autoantibodies alters proliferation of cortical neural precursor cells, enlarges brain, and increases neuronal size in adult animals. Cereb. Cortex, 2016, 26(1), 374-383. doi: 10.1093/cercor/bhu291 PMID: 25535268
- Snow, W.M.; Hartle, K.; Ivanco, T.L. Altered morphology of motor cortex neurons in the VPA rat model of autism. Dev. Psychobiol., 2008, 50(7), 633-639. doi: 10.1002/dev.20337 PMID: 18985861
- Mychasiuk, R.; Richards, S.; Nakahashi, A.; Kolb, B.; Gibb, R. Effects of rat prenatal exposure to valproic acid on behaviour and neuro-anatomy. Dev. Neurosci., 2012, 34(2-3), 268-276. doi: 10.1159/000341786 PMID: 22890088
- Muhsen, M.; Youngs, J.; Riu, A.; Gustafsson, J.Å.; Kondamadugu, V.S.; Garyfalidis, E.; Bondesson, M. Folic acid supplementation rescues valproic acid‐induced developmental neurotoxicity and behavioral alterations in zebrafish embryos. Epilepsia, 2021, 62(7), 1689-1700. doi: 10.1111/epi.16915 PMID: 33997963
- Jacob, J.; Ribes, V.; Moore, S.; Constable, SC.; Sasai, N.; Gerety, SS. Valproic acid silencing of ascl1b/ascl1 results in the failure of serotonergic differentiation in a zebrafish model of fetal valproate syndrome. Dis. Model. Mech., 2013, 7(1), 107-117.
- Kawanai, T.; Ago, Y.; Watanabe, R.; Inoue, A.; Taruta, A.; Onaka, Y.; Hasebe, S.; Hashimoto, H.; Matsuda, T.; Takuma, K. Prenatal exposure to histone deacetylase inhibitors affects gene expression of autism-related molecules and delays neuronal maturation. Neurochem. Res., 2016, 41(10), 2574-2584. doi: 10.1007/s11064-016-1969-y PMID: 27300699
- Lee, E.; Lee, J.; Kim, E. Excitation/inhibition imbalance in animal models of autism spectrum disorders. Biol. Psychiatry, 2017, 81(10), 838-847. doi: 10.1016/j.biopsych.2016.05.011 PMID: 27450033
- Rubenstein, J.L.R.; Merzenich, M.M. Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav., 2003, 2(5), 255-267. doi: 10.1034/j.1601-183X.2003.00037.x PMID: 14606691
- Tong, F.; Meng, M.; Blake, R. Neural bases of binocular rivalry. Trends Cogn. Sci., 2006, 10(11), 502-511. doi: 10.1016/j.tics.2006.09.003 PMID: 16997612
- van Loon, A.M.; Knapen, T.; Scholte, H.S.; St John-Saaltink, E.; Donner, T.H.; Lamme, V.A.F. GABA shapes the dynamics of bistable perception. Curr. Biol., 2013, 23(9), 823-827. doi: 10.1016/j.cub.2013.03.067 PMID: 23602476
- Choi, Y.B.; Mentch, J.; Haskins, A.J.; Van Wicklin, C.; Robertson, C.E. Visual processing in genetic conditions linked to autism: A behavioral study of binocular rivalry in individuals with 16p11.2 deletions and age‐matched controls. Autism Res., 2023, 16(4), 831-840. doi: 10.1002/aur.2901 PMID: 36751102
- Robertson, C.E.; Ratai, E.M.; Kanwisher, N. Reduced GABAergic action in the autistic brain. Curr. Biol., 2016, 26(1), 80-85. doi: 10.1016/j.cub.2015.11.019 PMID: 26711497
- Casanova, M. Cortical organization. Transl. Neurosci., 2010, 1(1), 62-71. doi: 10.2478/v10134-010-0002-2 PMID: 22754693
- Casanova, M.F.; El-Baz, A.; Switala, A. Laws of conservation as related to brain growth, aging, and evolution: Symmetry of the minicolumn. Front. Neuroanat., 2011, 5, 66. doi: 10.3389/fnana.2011.00066 PMID: 22207838
- Casanova, M.F.; Van Kooten, I.A.J.; Switala, A.E.; Van Engeland, H.; Heinsen, H.; Steinbusch, H.W.M.; Hof, P.R.; Trippe, J.; Stone, J.; Schmitz, C. Minicolumnar abnormalities in autism. Acta Neuropathol., 2006, 112(3), 287-303. doi: 10.1007/s00401-006-0085-5 PMID: 16819561
- McKavanagh, R.; Buckley, E.; Chance, S.A. Wider minicolumns in autism: A neural basis for altered processing? Brain, 2015, 138(7), 2034-2045. doi: 10.1093/brain/awv110 PMID: 25935724
- Sapey-Triomphe, L.A.; Lamberton, F.; Sonié, S.; Mattout, J.; Schmitz, C. Tactile hypersensitivity and GABA concentration in the sensorimotor cortex of adults with autism. Autism Res., 2019, 12(4), 562-575. doi: 10.1002/aur.2073 PMID: 30632707
- Kolodny, T.; Schallmo, M.P.; Gerdts, J.; Edden, R.A.E.; Bernier, R.A.; Murray, S.O. Concentrations of cortical GABA and glutamate in young adults with autism spectrum disorder. Autism Res., 2020, 13(7), 1111-1129. doi: 10.1002/aur.2300 PMID: 32297709
- Oblak, A.L.; Gibbs, T.T.; Blatt, G.J. Decreased GABAB receptors in the cingulate cortex and fusiform gyrus in Autism: Decreased GABAB receptors in autism. J. Neurochem., 2010, 114(5), 1414-1423.
- Oblak, A.; Gibbs, T.T.; Blatt, G.J. Decreased GABA A receptors and benzodiazepine binding sites in the anterior cingulate cortex in autism. Autism Res., 2009, 2(4), 205-219. doi: 10.1002/aur.88 PMID: 19650112
- Yip, J.; Soghomonian, J.J.; Blatt, G.J. Decreased GAD65 mRNA levels in select subpopulations of neurons in the cerebellar dentate nuclei in autism: An in situ hybridization study. Autism Res., 2009, 2(1), 50-59. doi: 10.1002/aur.62 PMID: 19358307
- Yip, J.; Soghomonian, J.J.; Blatt, G.J. IncreasedGAD67 mRNA expression in cerebellar interneurons in autism: Implications for Purkinje cell dysfunction. J. Neurosci. Res., 2008, 86(3), 525-530. doi: 10.1002/jnr.21520 PMID: 17918742
- Yip, J.; Soghomonian, J.J.; Blatt, G.J. Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol., 2007, 113(5), 559-568. doi: 10.1007/s00401-006-0176-3 PMID: 17235515
- Zhao, H.; Mao, X.; Zhu, C.; Zou, X.; Peng, F.; Yang, W.; Li, B.; Li, G.; Ge, T.; Cui, R. GABAergic system dysfunction in autism spectrum disorders. Front. Cell Dev. Biol., 2022, 9, 781327. doi: 10.3389/fcell.2021.781327 PMID: 35198562
- Nelson, S.B.; Valakh, V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron, 2015, 87(4), 684-698. doi: 10.1016/j.neuron.2015.07.033 PMID: 26291155
- Martin, H.G.S.; Manzoni, O.J. Late onset deficits in synaptic plasticity in the valproic acid rat model of autism. Front. Cell. Neurosci., 2014, 8, 23. doi: 10.3389/fncel.2014.00023 PMID: 24550781
- Iijima, Y.; Behr, K.; Iijima, T.; Biemans, B.; Bischofberger, J.; Scheiffele, P. Distinct defects in synaptic differentiation of neocortical neurons in response to prenatal valproate exposure. Sci. Rep., 2016, 6(1), 27400. doi: 10.1038/srep27400 PMID: 27264355
- Kim, J.W.; Park, K.; Kang, R.J.; Gonzales, E.L.T.; Kim, D.G.; Oh, H.A.; Seung, H.; Ko, M.J.; Kwon, K.J.; Kim, K.C.; Lee, S.H.; Chung, C.; Shin, C.Y. Pharmacological modulation of AMPA receptor rescues social impairments in animal models of autism. Neuropsychopharmacology, 2019, 44(2), 314-323. doi: 10.1038/s41386-018-0098-5 PMID: 29899405
- Brumback, A.C.; Ellwood, I.T.; Kjaerby, C.; Iafrati, J.; Robinson, S.; Lee, A.T.; Patel, T.; Nagaraj, S.; Davatolhagh, F.; Sohal, V.S. Identifying specific prefrontal neurons that contribute to autism-associated abnormalities in physiology and social behavior. Mol. Psychiatry, 2018, 23(10), 2078-2089. doi: 10.1038/mp.2017.213 PMID: 29112191
- Rinaldi, T.; Kulangara, K.; Antoniello, K.; Markram, H. Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proc. Natl. Acad. Sci. USA, 2007, 104(33), 13501-13506. doi: 10.1073/pnas.0704391104 PMID: 17675408
- Rinaldi, T.; Perrodin, C.; Markram, H. Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic acid animal model of autism. Front. Neural Circuits, 2008, 2, 4. doi: 10.3389/neuro.04.004.2008 PMID: 18989389
- Rinaldi, T.; Silberberg, G.; Markram, H. Hyperconnectivity of local neocortical microcircuitry induced by prenatal exposure to valproic acid. Cereb. Cortex, 2008, 18(4), 763-770. doi: 10.1093/cercor/bhm117 PMID: 17638926
- Banerjee, A.; García-Oscos, F.; Roychowdhury, S.; Galindo, L.C.; Hall, S.; Kilgard, M.P.; Atzori, M. Impairment of cortical GABAergic synaptic transmission in an environmental rat model of autism. Int. J. Neuropsychopharmacol., 2013, 16(6), 1309-1318. doi: 10.1017/S1461145712001216 PMID: 23228615
- Qi, C.; Chen, A.; Mao, H.; Hu, E.; Ge, J.; Ma, G.; Ren, K.; Xue, Q.; Wang, W.; Wu, S. Excitatory and inhibitory synaptic imbalance caused by brain-derived neurotrophic factor deficits during development in a valproic acid mouse model of autism. Front. Mol. Neurosci., 2022, 15, 860275. doi: 10.3389/fnmol.2022.860275 PMID: 35465089
- Bradl, M.; Lassmann, H. Oligodendrocytes: Biology and pathology. Acta Neuropathol., 2010, 119(1), 37-53. doi: 10.1007/s00401-009-0601-5 PMID: 19847447
- Kuhn, S.; Gritti, L.; Crooks, D.; Dombrowski, Y. Oligodendrocytes in development, myelin generation and beyond. Cells, 2019, 8(11), 1424. doi: 10.3390/cells8111424 PMID: 31726662
- Jakovcevski, I.; Filipovic, R.; Mo, Z.; Rakic, S.; Zecevic, N. Oligodendrocyte development and the onset of myelination in the human fetal brain. Front. Neuroanat., 2009, 3, 5. doi: 10.3389/neuro.05.005.2009 PMID: 19521542
- Ackerman, S.D.; Monk, K.R. The scales and tales of myelination: Using zebrafish and mouse to study myelinating glia. Brain Res., 2016, 1641(Pt A), 79-91. doi: 10.1016/j.brainres.2015.10.011 PMID: 26498880
- Travers, B.G.; Adluru, N.; Ennis, C.; Tromp, D.P.M.; Destiche, D.; Doran, S.; Bigler, E.D.; Lange, N.; Lainhart, J.E.; Alexander, A.L. Diffusion tensor imaging in autism spectrum disorder: a review. Autism Res., 2012, 5(5), 289-313. doi: 10.1002/aur.1243 PMID: 22786754
- Chauhan, A.; Chauhan, V. Oxidative stress in autism. Pathophysiology, 2006, 13(3), 171-181. doi: 10.1016/j.pathophys.2006.05.007 PMID: 16766163
- Ameis, S.H.; Lerch, J.P.; Taylor, M.J.; Lee, W.; Viviano, J.D.; Pipitone, J.; Nazeri, A.; Croarkin, P.E.; Voineskos, A.N.; Lai, M.C.; Crosbie, J.; Brian, J.; Soreni, N.; Schachar, R.; Szatmari, P.; Arnold, P.D.; Anagnostou, E. A diffusion tensor imaging study in children with adhd, autism spectrum disorder, OCD, and matched controls: Distinct and non-distinct white matter disruption and dimensional brain-behavior relationships. Am. J. Psychiatry, 2016, 173(12), 1213-1222. doi: 10.1176/appi.ajp.2016.15111435 PMID: 27363509
- Graciarena, M.; Seiffe, A.; Nait-Oumesmar, B.; Depino, A.M. Hypomyelination and oligodendroglial alterations in a mouse model of autism spectrum disorder. Front. Cell. Neurosci., 2019, 12, 517. doi: 10.3389/fncel.2018.00517 PMID: 30687009
- Courchesne, E.; Karns, C.M.; Davis, H.R.; Ziccardi, R.; Carper, R.A.; Tigue, Z.D.; Chisum, H.J.; Moses, P.; Pierce, K.; Lord, C.; Lincoln, A.J.; Pizzo, S.; Schreibman, L.; Haas, R.H.; Akshoomoff, N.A.; Courchesne, R.Y. Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 2001, 57(2), 245-254. doi: 10.1212/WNL.57.2.245 PMID: 11468308
- Dimond, D.; Schuetze, M.; Smith, R.E.; Dhollander, T.; Cho, I.; Vinette, S.; Ten Eycke, K.; Lebel, C.; McCrimmon, A.; Dewey, D.; Connelly, A.; Bray, S. Reduced white matter fiber density in autism spectrum disorder. Cereb. Cortex, 2019, 29(4), 1778-1788. doi: 10.1093/cercor/bhy348 PMID: 30668849
- Galvez-Contreras, A.Y.; Zarate-Lopez, D.; Torres-Chavez, A.L.; Gonzalez-Perez, O. Role of oligodendrocytes and myelin in the pathophysiology of autism spectrum disorder. Brain Sci., 2020, 10(12), 951. doi: 10.3390/brainsci10120951 PMID: 33302549
- Hong, S.J.; Hyung, B.; Paquola, C.; Bernhardt, B.C. The superficial white matter in autism and its role in connectivity anomalies and symptom severity. Cereb. Cortex, 2019, 29(10), 4415-4425. doi: 10.1093/cercor/bhy321 PMID: 30566613
- Carmody, D.P.; Lewis, M. Regional white matter development in children with autism spectrum disorders. Dev. Psychobiol., 2010, 52(8), 755-763. doi: 10.1002/dev.20471 PMID: 20564327
- Noriuchi, M.; Kikuchi, Y.; Yoshiura, T.; Kira, R.; Shigeto, H.; Hara, T.; Tobimatsu, S.; Kamio, Y. Altered white matter fractional anisotropy and social impairment in children with autism spectrum disorder. Brain Res., 2010, 1362, 141-149. doi: 10.1016/j.brainres.2010.09.051 PMID: 20858472
- Wolff, J.J.; Gerig, G.; Lewis, J.D.; Soda, T.; Styner, M.A.; Vachet, C.; Botteron, K.N.; Elison, J.T.; Dager, S.R.; Estes, A.M.; Hazlett, H.C.; Schultz, R.T.; Zwaigenbaum, L.; Piven, J. Altered corpus callosum morphology associated with autism over the first 2 years of life. Brain, 2015, 138(7), 2046-2058. doi: 10.1093/brain/awv118 PMID: 25937563
- Cheon, K.A.; Kim, Y.S.; Oh, S.H.; Park, S.Y.; Yoon, H.W.; Herrington, J.; Nair, A.; Koh, Y.J.; Jang, D.P.; Kim, Y.B.; Leventhal, B.L.; Cho, Z.H.; Castellanos, F.X.; Schultz, R.T. Involvement of the anterior thalamic radiation in boys with high functioning autism spectrum disorders: A Diffusion Tensor Imaging study. Brain Res., 2011, 1417(12), 77-86. doi: 10.1016/j.brainres.2011.08.020 PMID: 21890117
- Kumar, A.; Sundaram, S.K.; Sivaswamy, L.; Behen, M.E.; Makki, M.I.; Ager, J.; Janisse, J.; Chugani, H.T.; Chugani, D.C. Alterations in frontal lobe tracts and corpus callosum in young children with autism spectrum disorder. Cereb. Cortex, 2010, 20(9), 2103-2113. doi: 10.1093/cercor/bhp278 PMID: 20019145
- Ikuta, T.; Shafritz, K.M.; Bregman, J.; Peters, B.D.; Gruner, P.; Malhotra, A.K.; Szeszko, P.R. Abnormal cingulum bundle development in autism: A probabilistic tractography study. Psychiatry Res. Neuroimaging, 2014, 221(1), 63-68. doi: 10.1016/j.pscychresns.2013.08.002 PMID: 24231056
- Nair, A.; Treiber, J.M.; Shukla, D.K.; Shih, P.; Müller, R.A. Impaired thalamocortical connectivity in autism spectrum disorder: A study of functional and anatomical connectivity. Brain, 2013, 136(6), 1942-1955. doi: 10.1093/brain/awt079 PMID: 23739917
- Bronzuoli, M.R.; Facchinetti, R.; Ingrassia, D.; Sarvadio, M.; Schiavi, S.; Steardo, L.; Verkhratsky, A.; Trezza, V.; Scuderi, C. Neuroglia in the autistic brain: Evidence from a preclinical model. Mol. Autism, 2018, 9(1), 66. doi: 10.1186/s13229-018-0254-0 PMID: 30603062
- Uccelli, N.A.; Codagnone, M.G.; Traetta, M.E.; Levanovich, N.; Rosato Siri, M.V.; Urrutia, L.; Falasco, G.; Vázquez, S.; Pasquini, J.M.; Reinés, A.G. Neurobiological substrates underlying corpus callosum hypoconnectivity and brain metabolic patterns in the valproic acid rat model of autism spectrum disorder. J. Neurochem., 2021, 159(1), 128-144. doi: 10.1111/jnc.15444 PMID: 34081798
- Zhou, B.; Yan, X.; Yang, L.; Zheng, X.; Chen, Y.; Liu, Y.; Ren, Y.; Peng, J.; Zhang, Y.; Huang, J.; Tang, L.; Wen, M. Effects of arginine vasopressin on the transcriptome of prefrontal cortex in autistic rat model. J. Cell. Mol. Med., 2022, 26(21), 5493-5505. doi: 10.1111/jcmm.17578 PMID: 36239083
- Marie, C.; Clavairoly, A.; Frah, M.; Hmidan, H.; Yan, J.; Zhao, C.; Van Steenwinckel, J.; Daveau, R.; Zalc, B.; Hassan, B.; Thomas, J.L.; Gressens, P.; Ravassard, P.; Moszer, I.; Martin, D.M.; Lu, Q.R.; Parras, C. Oligodendrocyte precursor survival and differentiation requires chromatin remodeling by Chd7 and Chd8. Proc. Natl. Acad. Sci., 2018, 115(35), E8246-E8255. doi: 10.1073/pnas.1802620115 PMID: 30108144
- Hanafy, K.A.; Sloane, J.A. Regulation of remyelination in multiple sclerosis. FEBS Lett., 2011, 585(23), 3821-3828. doi: 10.1016/j.febslet.2011.03.048 PMID: 21443876
- Boulanger-Bertolus, J.; Pancaro, C.; Mashour, G.A. Increasing role of maternal immune activation in neurodevelopmental disorders. Front. Behav. Neurosci., 2018, 12, 230. doi: 10.3389/fnbeh.2018.00230 PMID: 30344483
- Zawadzka, A.; Cieślik, M.; Adamczyk, A. The role of maternal immune activation in the pathogenesis of autism: A review of the evidence, proposed mechanisms and implications for treatment. Int. J. Mol. Sci., 2021, 22(21), 11516. doi: 10.3390/ijms222111516 PMID: 34768946
- Rose, S.; Melnyk, S.; Pavliv, O.; Bai, S.; Nick, T.G.; Frye, R.E.; James, S.J. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl. Psychiatry, 2012, 2(7), e134-e134. doi: 10.1038/tp.2012.61 PMID: 22781167
- Yockey, L.J.; Iwasaki, A. Interferons and proinflammatory cytokines in pregnancy and fetal development. Immunity, 2018, 49(3), 397-412. doi: 10.1016/j.immuni.2018.07.017 PMID: 30231982
- Fox, E.; Amaral, D.; Van de Water, J. Maternal and fetal antibrain antibodies in development and disease. Dev. Neurobiol., 2012, 72(10), 1327-1334. doi: 10.1002/dneu.22052 PMID: 22911883
- Heuer, L.; Braunschweig, D.; Ashwood, P.; Van de Water, J.; Campbell, D.B. Association of a MET genetic variant with autism-associated maternal autoantibodies to fetal brain proteins and cytokine expression. Transl. Psychiatry, 2011, 1(10), e48-e48. doi: 10.1038/tp.2011.48 PMID: 22833194
- Bilbo, S.D. Block, C.L.; Bolton, J.L.; Hanamsagar, R.; Tran, P.K. Beyond infection - Maternal immune activation by environmental factors, microglial development, and relevance for autism spectrum disorders. Exp. Neurol., 2018, 299(Pt A), pp. 241-251. doi: 10.1016/j.expneurol.2017.07.002 PMID: 28698032
- Stubbs, E.G.; Crawford, M.L.; Burger, D.R.; Vandenbark, A.A. Depressed lymphocyte responsiveness in autistic children. J. Autism Child. Schizophr., 1977, 7(1), 49-55. doi: 10.1007/BF01531114 PMID: 139400
- Burger, R.A.; Warren, R.P. Possible immunogenetic basis for autism. Ment. Retard. Dev. Disabil. Res. Rev., 1998, 4(2), 137-141. doi: 10.1002/(SICI)1098-2779(1998)4:23.0.CO;2-W
- Croonenberghs, J.; Bosmans, E.; Deboutte, D.; Kenis, G.; Maes, M. Activation of the inflammatory response system in autism. Neuropsychobiology, 2002, 45(1), 1-6. doi: 10.1159/000048665 PMID: 11803234
- Molloy, C.; Morrow, A.; Meinzenderr, J.; Schleifer, K.; Dienger, K.; Manningcourtney, P.; Altaye, M.; Willskarp, M. Elevated cytokine levels in children with autism spectrum disorder. J. Neuroimmunol., 2006, 172(1-2), 198-205. doi: 10.1016/j.jneuroim.2005.11.007 PMID: 16360218
- Jyonouchi, H.; Sun, S.; Le, H. Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. J. Neuroimmunol., 2001, 120(1-2), 170-179. doi: 10.1016/S0165-5728(01)00421-0 PMID: 11694332
- Vargas, D.L.; Nascimbene, C.; Krishnan, C.; Zimmerman, A.W.; Pardo, C.A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol., 2005, 57(1), 67-81. doi: 10.1002/ana.20315 PMID: 15546155
- Morgan, J.T.; Chana, G.; Pardo, C.A.; Achim, C.; Semendeferi, K.; Buckwalter, J.; Courchesne, E.; Everall, I.P. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol. Psychiatry, 2010, 68(4), 368-376. doi: 10.1016/j.biopsych.2010.05.024 PMID: 20674603
- McDougle, C.J.; Landino, S.M.; Vahabzadeh, A.; ORourke, J.; Zurcher, N.R.; Finger, B.C.; Palumbo, M.L.; Helt, J.; Mullett, J.E.; Hooker, J.M.; Carlezon, W.A., Jr Toward an immune-mediated subtype of autism spectrum disorder. Brain Res., 2015, 1617, 72-92. doi: 10.1016/j.brainres.2014.09.048 PMID: 25445995
- Suzuki, K.; Sugihara, G.; Ouchi, Y.; Nakamura, K.; Futatsubashi, M.; Takebayashi, K.; Yoshihara, Y.; Omata, K.; Matsumoto, K.; Tsuchiya, K.J.; Iwata, Y.; Tsujii, M.; Sugiyama, T.; Mori, N. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry, 2013, 70(1), 49-58. doi: 10.1001/jamapsychiatry.2013.272 PMID: 23404112
- Oskvig, D.B.; Elkahloun, A.G.; Johnson, K.R.; Phillips, T.M.; Herkenham, M. Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response. Brain Behav. Immun., 2012, 26(4), 623-634. doi: 10.1016/j.bbi.2012.01.015 PMID: 22310921
- Shook, L.L.; Fourman, L.T.; Edlow, A.G. Immune responses to sARS-CoV-2 in pregnancy: Implications for the health of the next generation. J. Immunol., 2022, 209(8), 1465-1473. doi: 10.4049/jimmunol.2200414 PMID: 36192115
- Pangrazzi, L.; Balasco, L.; Bozzi, Y. Oxidative stress and immune system dysfunction in autism spectrum disorders. Int. J. Mol. Sci., 2020, 21(9), 3293. doi: 10.3390/ijms21093293 PMID: 32384730
- Kazlauskas, N.; Campolongo, M.; Lucchina, L.; Zappala, C.; Depino, A.M. Postnatal behavioral and inflammatory alterations in female pups prenatally exposed to valproic acid. Psychoneuroendocrinology, 2016, 72, 11-21. doi: 10.1016/j.psyneuen.2016.06.001 PMID: 27337090
- Gąssowska-Dobrowolska, M.; Cieślik, M.; Czapski, G.A.; Jęśko, H.; Frontczak-Baniewicz, M.; Gewartowska, M.; Dominiak, A.; Polowy, R.; Filipkowski, R.K.; Babiec, L.; Adamczyk, A. Prenatal exposure to valproic acid affects microglia and synaptic ultrastructure in a brain-region-specific manner in young-adult male rats: relevance to autism spectrum disorders. Int. J. Mol. Sci., 2020, 21(10), 3576. doi: 10.3390/ijms21103576 PMID: 32443651
- Luo, L.; Chen, J.; Wu, Q.; Yuan, B.; Hu, C.; Yang, T.; Wei, H.; Li, T. Prenatally VPA exposure is likely to cause autistic-like behavior in the rats offspring via TREM2 down-regulation to affect the microglial activation and synapse alterations. Environ. Toxicol. Pharmacol., 2023, 99, 104090. doi: 10.1016/j.etap.2023.104090 PMID: 36870407
- Triyasakorn, K.; Ubah, U.D.B.; Roan, B.; Conlin, M.; Aho, K.; Awale, P.S. The antiepileptic drug and toxic teratogen valproic acid alters microglia in an environmental mouse model of autism. Toxics, 2022, 10(7), 379. doi: 10.3390/toxics10070379 PMID: 35878284
- Dhabhar, F.S. Enhancing versus suppressive effects of stress on immune function: Implications for immunoprotection and immunopathology. Neuroimmunomodulation, 2009, 16(5), 300-317. doi: 10.1159/000216188 PMID: 19571591
- Sweeten, T.L.; Posey, D.J.; Shankar, S.; McDougle, C.J. High nitric oxide production in autistic disorder: A possible role for interferon-γ. Biol. Psychiatry, 2004, 55(4), 434-437. doi: 10.1016/j.biopsych.2003.09.001 PMID: 14960298
- Wu, C.; Li, A.; Leng, Y.; Li, Y.; Kang, J. Histone deacetylase inhibition by sodium valproate regulates polarization of macrophage subsets. DNA Cell Biol., 2012, 31(4), 592-599. doi: 10.1089/dna.2011.1401 PMID: 22054065
- Zhang, Z.; Zhang, Z.Y.; Wu, Y.; Schluesener, H.J. Valproic acid ameliorates inflammation in experimental autoimmune encephalomyelitis rats. Neuroscience, 2012, 221, 140-150. doi: 10.1016/j.neuroscience.2012.07.013 PMID: 22800566
- Chen, S.; Ye, J.; Chen, X.; Shi, J.; Wu, W.; Lin, W.; Lin, W.; Li, Y.; Fu, H.; Li, S. Valproic acid attenuates traumatic spinal cord injury-induced inflammation via STAT1 and NF-κB pathway dependent of HDAC3. J. Neuroinflammation, 2018, 15(1), 150. doi: 10.1186/s12974-018-1193-6 PMID: 29776446
- Ubah, U.D.B.; Triyasakorn, K.; Roan, B.; Conlin, M.; Lai, J.C.K.; Awale, P.S. Pan HDACi valproic acid and trichostatin a show apparently contrasting inflammatory responses in cultured J774A.1 macrophages. Epigenomes, 2022, 6(4), 38. doi: 10.3390/epigenomes6040038 PMID: 36412793
- Noriega, D.B.; Savelkoul, H.F.J. Immune dysregulation in autism spectrum disorder. Eur. J. Pediatr., 2014, 173(1), 33-43. doi: 10.1007/s00431-013-2183-4 PMID: 24297668
- Deckmann, I.; Santos-Terra, J.; Fontes-Dutra, M.; Körbes-Rockenbach, M.; Bauer-Negrini, G.; Schwingel, G.B.; Riesgo, R.; Bambini-Junior, V.; Gottfried, C. Resveratrol prevents brain edema, bloodbrain barrier permeability, and altered aquaporin profile in autism animal model. Int. J. Dev. Neurosci., 2021, 81(7), 579-604. doi: 10.1002/jdn.10137 PMID: 34196408
- Gurvich, N.; Tsygankova, O.M.; Meinkoth, J.L.; Klein, P.S. Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res., 2004, 64(3), 1079-1086. doi: 10.1158/0008-5472.CAN-03-0799 PMID: 14871841
- Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov., 2006, 5(9), 769-784. doi: 10.1038/nrd2133 PMID: 16955068
- Kostrouchová, M.; Kostrouch, Z.; Kostrouchová, M. Valproic acid, a molecular lead to multiple regulatory pathways. Folia Biol., 2007, 53(2), 37-49. PMID: 17448293
- Ganai, S.A.; Malli Kalladi, S.; Mahadevan, V. HDAC inhibition through valproic acid modulates the methylation profiles in human embryonic kidney cells. J. Biomol. Struct. Dyn., 2015, 33(6), 1185-1197. doi: 10.1080/07391102.2014.938247 PMID: 25012937
- Blaheta, R.A.; Nau, H.; Michaelis, M.; Cinatl, J., Jr Valproate and valproate-analogues: Potent tools to fight against cancer. Curr. Med. Chem., 2002, 9(15), 1417-1433. doi: 10.2174/0929867023369763 PMID: 12173980
- Yoon, S.; Choi, J.; Lee, W.; Do, J. Genetic and epigenetic etiology underlying autism spectrum disorder. J. Clin. Med., 2020, 9(4), 966. doi: 10.3390/jcm9040966 PMID: 32244359
- Volmar, C.H.; Wahlestedt, C. Histone deacetylases (HDACs) and brain function. Neuroepigenetics, 2015, 1, 20-27. doi: 10.1016/j.nepig.2014.10.002
- Krämer, O.H.; Zhu, P.; Ostendorff, H.P.; Golebiewski, M.; Tiefenbach, J.; Peters, M.A.; Brill, B.; Groner, B.; Bach, I.; Heinzel, T.; Göttlicher, M. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J., 2003, 22(13), 3411-3420. doi: 10.1093/emboj/cdg315 PMID: 12840003
- Kouzarides, T. Chromatin modifications and their function. Cell, 2007, 128(4), 693-705. doi: 10.1016/j.cell.2007.02.005 PMID: 17320507
- Hezroni, H.; Sailaja, B.S.; Meshorer, E. Pluripotency-related, valproic acid (VPA)-induced genome-wide histone H3 lysine 9 (H3K9) acetylation patterns in embryonic stem cells. J. Biol. Chem., 2011, 286(41), 35977-35988. doi: 10.1074/jbc.M111.266254 PMID: 21849501
- Lee, JH; Hart, SRL; Skalnik, DG Histone deacetylase activity is required for embryonic stem cell differentiation. genesis., 2004, 38(1), 32-38.
- Qiao, Y.; Wang, R.; Yang, X.; Tang, K.; Jing, N. Dual roles of histone H3 lysine 9 acetylation in human embryonic stem cell pluripotency and neural differentiation. J. Biol. Chem., 2015, 290(4), 2508-2520. doi: 10.1074/jbc.M114.603761 PMID: 25519907
- Gandhi, S.; Mitterhoff, R.; Rapoport, R.; Farago, M.; Greenberg, A.; Hodge, L.; Eden, S.; Benner, C.; Goren, A.; Simon, I. Mitotic H3K9ac is controlled by phase-specific activity of HDAC2, HDAC3, and SIRT1. Life Sci. Alliance, 2022, 5(10), e202201433. doi: 10.26508/lsa.202201433 PMID: 35981887
- Lagger, G.; OCarroll, D.; Rembold, M.; Khier, H.; Tischler, J.; Weitzer, G.; Schuettengruber, B.; Hauser, C.; Brunmeir, R.; Jenuwein, T.; Seiser, C. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J., 2002, 21(11), 2672-2681. doi: 10.1093/emboj/21.11.2672 PMID: 12032080
- Kim, K.C.; Choi, C.S.; Gonzales, E.L.T.; Mabunga, D.F.N.; Lee, S.H.; Jeon, S.J.; Hwangbo, R.; Hong, M.; Ryu, J.H.; Han, S.H.; Bahn, G.H.; Shin, C.Y. Valproic acid induces telomerase reverse transcriptase expression during cortical development. Exp. Neurobiol., 2017, 26(5), 252-265. doi: 10.5607/en.2017.26.5.252 PMID: 29093634
- Tung, E.W.Y.; Winn, L.M. Epigenetic modifications in valproic acid-induced teratogenesis. Toxicol. Appl. Pharmacol., 2010, 248(3), 201-209. doi: 10.1016/j.taap.2010.08.001 PMID: 20705080
- Wang, Z.; Xu, L.; Zhu, X.; Cui, W.; Sun, Y.; Nishijo, H.; Peng, Y.; Li, R. Demethylation of specific Wnt/β-catenin pathway genes and its upregulation in rat brain induced by prenatal valproate exposure. Anat. Rec., 2010, 293(11), 1947-1953. doi: 10.1002/ar.21232 PMID: 20734317
- He, Y.; Mei, H.; Yu, H.; Sun, S.; Ni, W.; Li, H. Role of histone deacetylase activity in the developing lateral line neuromast of zebrafish larvae. Exp. Mol. Med., 2014, 46(5), e94-e94. doi: 10.1038/emm.2014.18 PMID: 24810423
- Leung, C.S.; Rosenzweig, S.J.; Yoon, B.; Marinelli, N.A.; Hollingsworth, E.W.; Maguire, A.M.; Cowen, M.H.; Schmidt, M.; Imitola, J.; Gamsiz Uzun, E.D.; Lizarraga, S.B. Dysregulation of the chromatin environment leads to differential alternative splicing as a mechanism of disease in a human model of autism spectrum disorder. Hum. Mol. Genet., 2023, 32(10), 1634-1646. doi: 10.1093/hmg/ddad002 PMID: 36621967
- Boudadi, E.; Stower, H.; Halsall, J.A.; Rutledge, C.E.; Leeb, M.; Wutz, A.; ONeill, L.P.; Nightingale, K.P.; Turner, B.M. The histone deacetylase inhibitor sodium valproate causes limited transcriptional change in mouse embryonic stem cells but selectively overrides Polycomb-mediated Hoxb silencing. Epigenetics Chromatin, 2013, 6(1), 11. doi: 10.1186/1756-8935-6-11 PMID: 23634885
- Guerra, M.; Medici, V.; Weatheritt, R.; Corvino, V.; Palacios, D.; Geloso, M.C.; Farini, D.; Sette, C. Fetal exposure to valproic acid dysregulates the expression of autism-linked genes in the developing cerebellum. Transl. Psychiatry, 2023, 13(1), 114. doi: 10.1038/s41398-023-02391-9 PMID: 37019889
- Hara, Y.; Ago, Y.; Takano, E.; Hasebe, S.; Nakazawa, T.; Hashimoto, H.; Matsuda, T.; Takuma, K. Prenatal exposure to valproic acid increases miR-132 levels in the mouse embryonic brain. Mol. Autism, 2017, 8(1), 33. doi: 10.1186/s13229-017-0149-5 PMID: 28670439
- Jung, G.A.; Yoon, J.Y.; Moon, B.S.; Yang, D.H.; Kim, H.Y.; Lee, S.H.; Bryja, V.; Arenas, E.; Choi, K.Y. Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-Ras-ERK-p21Cip/WAF1 pathway. BMC Cell Biol., 2008, 9(1), 66. doi: 10.1186/1471-2121-9-66 PMID: 19068119
- Basu, S.N.; Kollu, R.; Banerjee-Basu, S. AutDB: a gene reference resource for autism research. Nucleic Acids Res., 2009, 37(Database issue), D832-D836. doi: 10.1093/nar/gkn835 PMID: 19015121
- Baumann, C.; Zhang, X.; Zhu, L.; Fan, Y.; De La Fuente, R. Changes in chromatin accessibility landscape and histone H3 core acetylation during valproic acid-induced differentiation of embryonic stem cells. Epigenetics Chromatin, 2021, 14(1), 58. doi: 10.1186/s13072-021-00432-5 PMID: 34955095
- Yuan, J.; Pu, M.; Zhang, Z.; Lou, Z. Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle, 2009, 8(11), 1747-1753. doi: 10.4161/cc.8.11.8620 PMID: 19411844
- Tessarz, P.; Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol., 2014, 15(11), 703-708. doi: 10.1038/nrm3890 PMID: 25315270
- Xie, W.; Song, C.; Young, N.L.; Sperling, A.S.; Xu, F.; Sridharan, R.; Conway, A.E.; Garcia, B.A.; Plath, K.; Clark, A.T.; Grunstein, M. Histone h3 lysine 56 acetylation is linked to the core transcriptional network in human embryonic stem cells. Mol. Cell, 2009, 33(4), 417-427. doi: 10.1016/j.molcel.2009.02.004 PMID: 19250903
- Osumi, N.; Shinohara, H.; Numayama-Tsuruta, K.; Maekawa, M. Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells, 2008, 26(7), 1663-1672. doi: 10.1634/stemcells.2007-0884 PMID: 18467663
- Duan, D.; Fu, Y.; Paxinos, G.; Watson, C. Spatiotemporal expression patterns of Pax6 in the brain of embryonic, newborn, and adult mice. Brain Struct. Funct., 2013, 218(2), 353-372. doi: 10.1007/s00429-012-0397-2 PMID: 22354470
- Kroll, T.T.; OLeary, D.D.M. Ventralized dorsal telencephalic progenitors in Pax6 mutant mice generate GABA interneurons of a lateral ganglionic eminence fate. Proc. Natl. Acad. Sci., 2005, 102(20), 7374-7379. doi: 10.1073/pnas.0500819102 PMID: 15878992
- Sansom, S.N.; Griffiths, D.S.; Faedo, A.; Kleinjan, D.J.; Ruan, Y.; Smith, J. The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genet., 2009, 5(6), e1000511. doi: 10.1371/journal.pgen.1000511
- Yuan, X.; Dai, M.; Xu, D. TERT promoter mutations and GABP transcription factors in carcinogenesis: More foes than friends. Cancer Lett., 2020, 493, 1-9. doi: 10.1016/j.canlet.2020.07.003 PMID: 32768523
- Tan, Y.; Xue, Y.; Song, C.; Grunstein, M. Acetylated histone H3K56 interacts with Oct4 to promote mouse embryonic stem cell pluripotency. Proc. Natl. Acad. Sci., 2013, 110(28), 11493-11498. doi: 10.1073/pnas.1309914110 PMID: 23798425
- Ye, F.; Chen, Y.; Hoang, T.; Montgomery, R.L.; Zhao, X.; Bu, H.; Hu, T.; Taketo, M.M.; van Es, J.H.; Clevers, H.; Hsieh, J.; Bassel-Duby, R.; Olson, E.N.; Lu, Q.R. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the β-catenin-TCF interaction. Nat. Neurosci., 2009, 12(7), 829-838. doi: 10.1038/nn.2333 PMID: 19503085
- Jamadagni, P.; Breuer, M.; Schmeisser, K.; Cardinal, T.; Kassa, B.; Parker, J.A.; Pilon, N.; Samarut, E.; Patten, S.A. Chromatin remodeller CHD7 is required for GABAergic neuron development by promoting PAQR3 expression. EMBO Rep., 2021, 22(6), e50958. doi: 10.15252/embr.202050958 PMID: 33900016
- Mello, M.L.S. Sodium Valproate-Induced Chromatin Remodeling. Front. Cell Dev. Biol., 2021, 9, 645518. doi: 10.3389/fcell.2021.645518 PMID: 33959607
- Simonini, M.V.; Camargo, L.M.; Dong, E.; Maloku, E.; Veldic, M.; Costa, E.; Guidotti, A. The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases. Proc. Natl. Acad. Sci., 2006, 103(5), 1587-1592. doi: 10.1073/pnas.0510341103 PMID: 16432198
- Dong, E.; Guidotti, A.; Grayson, D.R.; Costa, E. Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc. Natl. Acad. Sci., 2007, 104(11), 4676-4681. doi: 10.1073/pnas.0700529104 PMID: 17360583
- Tremolizzo, L.; Carboni, G.; Ruzicka, W.B.; Mitchell, C.P.; Sugaya, I.; Tueting, P.; Sharma, R.; Grayson, D.R.; Costa, E.; Guidotti, A. An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc. Natl. Acad. Sci., 2002, 99(26), 17095-17100. doi: 10.1073/pnas.262658999 PMID: 12481028
- Rocha, M.A.; Veronezi, G.M.B.; Felisbino, M.B.; Gatti, M.S.V.; Tamashiro, W.M.S.C.; Mello, M.L.S. Sodium valproate and 5-aza-2′-deoxycytidine differentially modulate DNA demethylation in G1 phase-arrested and proliferative HeLa cells. Sci. Rep., 2019, 9(1), 18236. doi: 10.1038/s41598-019-54848-x PMID: 31796828
- Marchion, D.C.; Bicaku, E.; Daud, A.I.; Sullivan, D.M.; Munster, P.N. Valproic acid alters chromatin structure by regulation of chromatin modulation proteins. Cancer Res., 2005, 65(9), 3815-3822. doi: 10.1158/0008-5472.CAN-04-2478 PMID: 15867379
- Palsamy, P.; Bidasee, K.R.; Shinohara, T. Valproic acid suppresses Nrf2/Keap1 dependent antioxidant protection through induction of endoplasmic reticulum stress and Keap1 promoter DNA demethylation in human lens epithelial cells. Exp. Eye Res., 2014, 121, 26-34. doi: 10.1016/j.exer.2014.01.021 PMID: 24525405
- Detich, N.; Bovenzi, V.; Szyf, M. Valproate induces replication-independent active DNA demethylation. J. Biol. Chem., 2003, 278(30), 27586-27592. doi: 10.1074/jbc.M303740200 PMID: 12748177
- Milutinovic, S.; DAlessio, A.C.; Detich, N.; Szyf, M. Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes. Carcinogenesis, 2007, 28(3), 560-571. doi: 10.1093/carcin/bgl167 PMID: 17012225
- Dong, E.; Chen, Y.; Gavin, D.P.; Grayson, D.R.; Guidotti, A. Valproate induces DNA demethylation in nuclear extracts from adult mouse brain. Epigenetics, 2010, 5(8), 730-735. doi: 10.4161/epi.5.8.13053 PMID: 20716949
- Tan, N.N.; Tang, H.L.; Lin, G.W.; Chen, Y.H.; Lu, P.; Li, H.J.; Gao, M.M.; Zhao, Q.H.; Yi, Y.H.; Liao, W.P.; Long, Y.S. Epigenetic downregulation of scn3a expression by valproate: A possible role in its anticonvulsant activity. Mol. Neurobiol., 2017, 54(4), 2831-2842. doi: 10.1007/s12035-016-9871-9 PMID: 27013471
- Park, J.; Lee, K.; Kim, K.; Yi, S.J. The role of histone modifications: From neurodevelopment to neurodiseases. Signal Transduct. Target. Ther., 2022, 7(1), 217. doi: 10.1038/s41392-022-01078-9 PMID: 35794091
- Göttlicher, M.; Minucci, S.; Zhu, P.; Krämer, O.H.; Schimpf, A.; Giavara, S.; Sleeman, J.P.; Lo Coco, F.; Nervi, C.; Pelicci, P.G.; Heinzel, T. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J., 2001, 20(24), 6969-6978. doi: 10.1093/emboj/20.24.6969 PMID: 11742974
- Emmett, M.J.; Lazar, M.A. Integrative regulation of physiology by histone deacetylase 3. Nat. Rev. Mol. Cell Biol., 2019, 20(2), 102-115. doi: 10.1038/s41580-018-0076-0 PMID: 30390028
- Hayakawa, T.; Nakayama, J. Physiological roles of class I HDAC complex and histone demethylase. J. Biomed. Biotechnol., 2011, 2011, 1-10. doi: 10.1155/2011/129383
- Mello, M.L.S.; Rocha, M.A.; de Campos, V.B. Sodium valproate modulates the methylation status of lysine residues 4, 9 and 27 in histone H3 of HeLa cells. Curr. Mol. Pharmacol., 2023, 16(2), 197-210. doi: 10.2174/1874467215666220316110405 PMID: 35297358
- Marinova, Z.; Leng, Y.; Leeds, P.; Chuang, D.M. Histone deacetylase inhibition alters histone methylation associated with heat shock protein 70 promoter modifications in astrocytes and neurons. Neuropharmacology, 2011, 60(7-8), 1109-1115. doi: 10.1016/j.neuropharm.2010.09.022 PMID: 20888352
- Nightingale, K.P.; Gendreizig, S.; White, D.A.; Bradbury, C.; Hollfelder, F.; Turner, B.M. Cross-talk between histone modifications in response to histone deacetylase inhibitors: MLL4 links histone H3 acetylation and histone H3K4 methylation. J. Biol. Chem., 2007, 282(7), 4408-4416. doi: 10.1074/jbc.M606773200 PMID: 17166833
- Rahhal, R.; Seto, E. Emerging roles of histone modifications and HDACs in RNA splicing. Nucleic Acids Res., 2019, 47(10), 4911-4926. doi: 10.1093/nar/gkz292 PMID: 31162605
- Hnilicová, J.; Hozeifi, S.; Duková, E.; Icha, J.; Tománková, T.; Staněk, D. Histone deacetylase activity modulates alternative splicing. PLoS One, 2011, 6(2), e16727. doi: 10.1371/journal.pone.0016727
- Su, C.H. D, D.; Tarn, W.Y. Alternative splicing in neurogenesis and brain development. Front. Mol. Biosci., 2018, 5, 12. doi: 10.3389/fmolb.2018.00012 PMID: 29484299
- Engal, E.; Baker, M.; Salton, M. The chromatin roots of abnormal splicing in autism. Trends Genet., 2022, 38(9), 892-894. doi: 10.1016/j.tig.2022.06.001 PMID: 35750536
- Sun, W.; Poschmann, J.; Cruz-Herrera del Rosario, R.; Parikshak, N.N.; Hajan, H.S.; Kumar, V.; Ramasamy, R.; Belgard, T.G.; Elanggovan, B.; Wong, C.C.Y.; Mill, J.; Geschwind, D.H.; Prabhakar, S. Histone acetylome-wide association study of autism spectrum disorder. Cell, 2016, 167(5), 1385-1397.e11. doi: 10.1016/j.cell.2016.10.031 PMID: 27863250
- Elgamal, M.; Moustafa, Y.; Ali, A.; El-Sayed, N.; Khodeer, D. Mechanisms of valproic acid-induced autism: Canonical wnt-β- catenin pathway. Records of Pharmaceutical and Biomedical Sciences, 2023, 7(3), 51-62. doi: 10.21608/rpbs.2023.189540.1205
- Mulligan, K.A.; Cheyette, B.N.R. Wnt signaling in vertebrate neural development and function. J. Neuroimmune Pharmacol., 2012, 7(4), 774-787. doi: 10.1007/s11481-012-9404-x PMID: 23015196
- Rosso, S.B.; Inestrosa, N.C. WNT signaling in neuronal maturation and synaptogenesis. Front. Cell. Neurosci., 2013, 7, 103. doi: 10.3389/fncel.2013.00103 PMID: 23847469
- Kwan, V.; Unda, B.K.; Singh, K.K. Wnt signaling networks in autism spectrum disorder and intellectual disability. J. Neurodev. Disord., 2016, 8(1), 45. doi: 10.1186/s11689-016-9176-3 PMID: 27980692
- Phiel, C.J.; Zhang, F.; Huang, E.Y.; Guenther, M.G.; Lazar, M.A.; Klein, P.S. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem., 2001, 276(39), 36734-36741. doi: 10.1074/jbc.M101287200 PMID: 11473107
- Takai, N.; Desmond, J.C.; Kumagai, T.; Gui, D.; Said, J.W.; Whittaker, S.; Miyakawa, I.; Koeffler, H.P. Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells. Clin. Cancer Res., 2004, 10(3), 1141-1149. doi: 10.1158/1078-0432.CCR-03-0100 PMID: 14871994
- Digel, W.; Lübbert, M. DNA methylation disturbances as novel therapeutic target in lung cancer: Preclinical and clinical results. Crit. Rev. Oncol. Hematol., 2005, 55(1), 1-11. doi: 10.1016/j.critrevonc.2005.02.002 PMID: 15886007
- Nie, X.; Liu, H.; Liu, L.; Wang, Y.D.; Chen, W.D. Emerging roles of Wnt ligands in human colorectal cancer. Front. Oncol., 2020, 10, 1341. doi: 10.3389/fonc.2020.01341 PMID: 32923386
- Kumar, S.; Reynolds, K.; Ji, Y.; Gu, R.; Rai, S.; Zhou, C.J. Impaired neurodevelopmental pathways in autism spectrum disorder: A review of signaling mechanisms and crosstalk. J. Neurodev. Disord., 2019, 11(1), 10. doi: 10.1186/s11689-019-9268-y PMID: 31202261
- Martin, P-M.; Yang, X.; Robin, N.; Lam, E.; Rabinowitz, J.S.; Erdman, C.A.; Quinn, J.; Weiss, L.A.; Hamilton, S.P.; Kwok, P-Y.; Moon, R.T.; Cheyette, B.N.R. A rare WNT1 missense variant overrepresented in ASD leads to increased Wnt signal pathway activation. Transl. Psychiatry, 2013, 3(9), e301-e301. doi: 10.1038/tp.2013.75 PMID: 24002087
- Wassink, T.H.; Piven, J.; Vieland, V.J.; Huang, J.; Swiderski, R.E.; Pietila, J.; Braun, T.; Beck, G.; Folstein, S.E.; Haines, J.L.; Sheffield, V.C. Evidence supporting WNT2 as an autism susceptibility gene. Am. J. Med. Genet., 2001, 105(5), 406-413. doi: 10.1002/ajmg.1401 PMID: 11449391
- Marui, T.; Funatogawa, I.; Koishi, S.; Yamamoto, K.; Matsumoto, H.; Hashimoto, O.; Jinde, S.; Nishida, H.; Sugiyama, T.; Kasai, K.; Watanabe, K.; Kano, Y.; Kato, N. Association between autism and variants in the wingless-type MMTV integration site family member 2 (WNT2) gene. Int. J. Neuropsychopharmacol., 2010, 13(4), 443-449. doi: 10.1017/S1461145709990903 PMID: 19895723
- Levy, D.; Ronemus, M.; Yamrom, B.; Lee, Y.; Leotta, A.; Kendall, J.; Marks, S.; Lakshmi, B.; Pai, D.; Ye, K.; Buja, A.; Krieger, A.; Yoon, S.; Troge, J.; Rodgers, L.; Iossifov, I.; Wigler, M. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron, 2011, 70(5), 886-897. doi: 10.1016/j.neuron.2011.05.015 PMID: 21658582
- Lin, P.I.; Chien, Y.L.; Wu, Y.Y.; Chen, C.H.; Gau, S.S.F.; Huang, Y.S.; Liu, S.K.; Tsai, W.C.; Chiu, Y.N. The WNT2 gene polymorphism associated with speech delay inherent to autism. Res. Dev. Disabil., 2012, 33(5), 1533-1540. doi: 10.1016/j.ridd.2012.03.004 PMID: 22522212
- Krumm, N.; ORoak, B.J.; Shendure, J.; Eichler, E.E. A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci., 2014, 37(2), 95-105. doi: 10.1016/j.tins.2013.11.005 PMID: 24387789
- Platt, R.J.; Zhou, Y.; Slaymaker, I.M.; Shetty, A.S.; Weisbach, N.R.; Kim, J.A.; Sharma, J.; Desai, M.; Sood, S.; Kempton, H.R.; Crabtree, G.R.; Feng, G.; Zhang, F. Chd8 mutation leads to autistic-like behaviors and impaired striatal circuits. Cell Rep., 2017, 19(2), 335-350. doi: 10.1016/j.celrep.2017.03.052 PMID: 28402856
- Thompson, B.A.; Tremblay, V.; Lin, G.; Bochar, D.A. CHD8 is an ATP-dependent chromatin remodeling factor that regulates β-catenin target genes. Mol. Cell. Biol., 2008, 28(12), 3894-3904. doi: 10.1128/MCB.00322-08 PMID: 18378692
- McBride, K.L.; Varga, E.A.; Pastore, M.T.; Prior, T.W.; Manickam, K.; Atkin, J.F.; Herman, G.E. Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly. Autism Res., 2010, 3(3), 137-141. doi: 10.1002/aur.132 PMID: 20533527
- Zhou, T.; He, X.; Cheng, R.; Zhang, B.; Zhang, R.R.; Chen, Y.; Takahashi, Y.; Murray, A.R.; Lee, K.; Gao, G.; Ma, J. Implication of dysregulation of the canonical wingless-type MMTV integration site (WNT) pathway in diabetic nephropathy. Diabetologia, 2012, 55(1), 255-266. doi: 10.1007/s00125-011-2314-2 PMID: 22016045
- DeSpenza, T., Jr; Carlson, M.; Panchagnula, S.; Robert, S.; Duy, P.Q.; Mermin-Bunnell, N.; Reeves, B.C.; Kundishora, A.; Elsamadicy, A.A.; Smith, H.; Ocken, J.; Alper, S.L.; Jin, S.C.; Hoffman, E.J.; Kahle, K.T. PTEN mutations in autism spectrum disorder and congenital hydrocephalus: developmental pleiotropy and therapeutic targets. Trends Neurosci., 2021, 44(12), 961-976. doi: 10.1016/j.tins.2021.08.007 PMID: 34625286
- Mahmood, U.; Ahn, S.; Yang, E.J.; Choi, M.; Kim, H.; Regan, P.; Cho, K.; Kim, H.S. Dendritic spine anomalies and PTEN alterations in a mouse model of VPA-induced autism spectrum disorder. Pharmacol. Res., 2018, 128, 110-121. doi: 10.1016/j.phrs.2017.08.006 PMID: 28823725
- Nicolini, C.; Ahn, Y.; Michalski, B.; Rho, J.M.; Fahnestock, M. Decreased mTOR signaling pathway in human idiopathic autism and in rats exposed to valproic acid. Acta Neuropathol. Commun., 2015, 3(1), 3. doi: 10.1186/s40478-015-0184-4 PMID: 25627160
- Yang, E.J.; Ahn, S.; Lee, K.; Mahmood, U.; Kim, H.S. Early behavioral abnormalities and perinatal alterations of PTEN/AKT pathway in valproic acid autism model mice. PLoS One, 2016, 11(4), e0153298. doi: 10.1371/journal.pone.0153298 PMID: 27071011
- Barrett, C.E.; Hennessey, T.M.; Gordon, K.M.; Ryan, S.J.; McNair, M.L.; Ressler, K.J.; Rainnie, D.G. Developmental disruption of amygdala transcriptome and socioemotional behavior in rats exposed to valproic acid prenatally. Mol. Autism, 2017, 8(1), 42. doi: 10.1186/s13229-017-0160-x PMID: 28775827
- Tung, E.W.Y.; Winn, L.M. Valproic acid increases formation of reactive oxygen species and induces apoptosis in postimplantation embryos: A role for oxidative stress in valproic acid-induced neural tube defects. Mol. Pharmacol., 2011, 80(6), 979-987. doi: 10.1124/mol.111.072314 PMID: 21868484
- Sztainberg, Y.; Zoghbi, H.Y. Lessons learned from studying syndromic autism spectrum disorders. Nat. Neurosci., 2016, 19(11), 1408-1417. doi: 10.1038/nn.4420 PMID: 27786181
- Varghese, M.; Keshav, N.; Jacot-Descombes, S.; Warda, T.; Wicinski, B. Dickstein, DL Autism spectrum disorder: Neuropathology and animal models. Acta Neuropathol., 2017, 134(4), 537-566. doi: 10.1007/s00401-017-1736-4
- Kim, K.C.; Gonzales, E.L.; Lázaro, M.T.; Choi, C.S.; Bahn, G.H.; Yoo, H.J.; Shin, C.Y. Clinical and neurobiological relevance of current animal models of autism spectrum disorders. Biomol. Ther., 2016, 24(3), 207-243. doi: 10.4062/biomolther.2016.061 PMID: 27133257
- Feil, R.; Fraga, M.F. Epigenetics and the environment: Emerging patterns and implications. Nat. Rev. Genet., 2012, 13(2), 97-109. doi: 10.1038/nrg3142 PMID: 22215131
- Good, K.V.; Vincent, J.B.; Ausió, J. MeCP2: The genetic driver of rett syndrome epigenetics. Front. Genet., 2021, 12, 620859. doi: 10.3389/fgene.2021.620859 PMID: 33552148
- Loke, Y.J.; Hannan, A.J.; Craig, J.M. The role of epigenetic change in autism spectrum disorders. Front. Neurol., 2015, 6, 107. doi: 10.3389/fneur.2015.00107 PMID: 26074864
- Balan, S.; Iwayama, Y.; Ohnishi, T.; Fukuda, M.; Shirai, A.; Yamada, A.; Weirich, S.; Schuhmacher, M.K.; Dileep, K.V.; Endo, T.; Hisano, Y.; Kotoshiba, K.; Toyota, T.; Otowa, T.; Kuwabara, H.; Tochigi, M.; Watanabe, A.; Ohba, H.; Maekawa, M.; Toyoshima, M.; Sasaki, T.; Nakamura, K.; Tsujii, M.; Matsuzaki, H.; Zhang, K.Y.J.; Jeltsch, A.; Shinkai, Y.; Yoshikawa, T. A loss-of-function variant in SUV39H2 identified in autism-spectrum disorder causes altered H3K9 trimethylation and dysregulation of protocadherin β-cluster genes in the developing brain. Mol. Psychiatry, 2021, 26(12), 7550-7559. doi: 10.1038/s41380-021-01199-7 PMID: 34262135
- Balemans, M.C.M.; Huibers, M.M.H.; Eikelenboom, N.W.D.; Kuipers, A.J.; van Summeren, R.C.J.; Pijpers, M.M.C.A.; Tachibana, M.; Shinkai, Y.; van Bokhoven, H.; Van der Zee, C.E.E.M. Reduced exploration, increased anxiety, and altered social behavior: Autistic-like features of euchromatin histone methyltransferase 1 heterozygous knockout mice. Behav. Brain Res., 2010, 208(1), 47-55. doi: 10.1016/j.bbr.2009.11.008 PMID: 19896504
- Chen, E.S.; Gigek, C.O.; Rosenfeld, J.A.; Diallo, A.B.; Maussion, G.; Chen, G.G.; Vaillancourt, K.; Lopez, J.P.; Crapper, L.; Poujol, R.; Shaffer, L.G.; Bourque, G.; Ernst, C. Molecular convergence of neurodevelopmental disorders. Am. J. Hum. Genet., 2014, 95(5), 490-508. doi: 10.1016/j.ajhg.2014.09.013 PMID: 25307298
- Lin, C.W.; Septyaningtrias, D.E.; Chao, H.W.; Konda, M.; Atarashi, K.; Takeshita, K.; Tamada, K.; Nomura, J.; Sasagawa, Y.; Tanaka, K.; Nikaido, I.; Honda, K.; McHugh, T.J.; Takumi, T. A common epigenetic mechanism across different cellular origins underlies systemic immune dysregulation in an idiopathic autism mouse model. Mol. Psychiatry, 2022, 27(8), 3343-3354. doi: 10.1038/s41380-022-01566-y PMID: 35491410
- Lin, C.W.; Ellegood, J.; Tamada, K.; Miura, I.; Konda, M.; Takeshita, K. An old model with new insights: Endogenous retroviruses drive the evolvement toward ASD susceptibility and hijack transcription machinery during development. Mol. Psychiatry., 2023. (Epub a head of print). doi: 10.1038/s41380-023-01999-z
- Tseng, C.E.J.; McDougle, C.J.; Hooker, J.M.; Zürcher, N.R. Epigenetics of autism spectrum disorder: Histone deacetylases. Biol. Psychiatry, 2022, 91(11), 922-933. doi: 10.1016/j.biopsych.2021.11.021 PMID: 35120709
- Cao, D.D.; Li, L.; Chan, W.Y. MicroRNAs: Key regulators in the central nervous system and their implication in neurological diseases. Int. J. Mol. Sci., 2016, 17(6), 842. doi: 10.3390/ijms17060842 PMID: 27240359
- Pejhan, S.; Del Bigio, M.R.; Rastegar, M. The MeCP2E1/E2-BDNF-miR132 homeostasis regulatory network is region-dependent in the human brain and is impaired in rett syndrome patients. Front. Cell Dev. Biol., 2020, 8, 763. doi: 10.3389/fcell.2020.00763 PMID: 32974336
- Brown, E.A.; Lautz, J.D.; Davis, T.R.; Gniffke, E.P.; VanSchoiack, A.A.W.; Neier, S.C.; Tashbook, N.; Nicolini, C.; Fahnestock, M.; Schrum, A.G.; Smith, S.E.P. Clustering the autisms using glutamate synapse protein interaction networks from cortical and hippocampal tissue of seven mouse models. Mol. Autism, 2018, 9(1), 48. doi: 10.1186/s13229-018-0229-1 PMID: 30237867
- Arakawa, H. From multisensory assessment to functional interpretation of social behavioral phenotype in transgenic mouse models for autism spectrum disorders. Front. Psychiatry, 2020, 11, 592408. doi: 10.3389/fpsyt.2020.592408 PMID: 33329141
- Puścian, A.; Lęski, S.; Górkiewicz, T.; Meyza, K.; Lipp, H.P.; Knapska, E. A novel automated behavioral test battery assessing cognitive rigidity in two genetic mouse models of autism. Front. Behav. Neurosci., 2014, 8, 140. PMID: 24808839
- Jabarin, R.; Netser, S.; Wagner, S. Beyond the three-chamber test: Toward a multimodal and objective assessment of social behavior in rodents. Mol. Autism, 2022, 13(1), 41. doi: 10.1186/s13229-022-00521-6 PMID: 36284353
- Argyropoulos, A.; Gilby, K.L.; Hill-Yardin, E.L. Studying autism in rodent models: reconciling endophenotypes with comorbidities. Front. Hum. Neurosci., 2013, 7, 417. doi: 10.3389/fnhum.2013.00417 PMID: 23898259
- Das, I.; Estevez, M.A.; Sarkar, A.A.; Banerjee-Basu, S. A multifaceted approach for analyzing complex phenotypic data in rodent models of autism. Mol. Autism, 2019, 10(1), 11. doi: 10.1186/s13229-019-0263-7 PMID: 30911366
- Halsall, J.A.; Turan, N.; Wiersma, M.; Turner, B.M. Cells adapt to the epigenomic disruption caused by histone deacetylase inhibitors through a coordinated, chromatin-mediated transcriptional response. Epigenetics Chromatin, 2015, 8(1), 29. doi: 10.1186/s13072-015-0021-9 PMID: 26380582
- Schaaf, C.P.; Zoghbi, H.Y. Solving the autism puzzle a few pieces at a time. Neuron, 2011, 70(5), 806-808. doi: 10.1016/j.neuron.2011.05.025 PMID: 21658575
Supplementary files
