Three Decades of Valproate: A Current Model for Studying Autism Spectrum Disorder


Cite item

Full Text

Abstract

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with increased prevalence and incidence in recent decades. Its etiology remains largely unclear, but it seems to involve a strong genetic component and environmental factors that, in turn, induce epigenetic changes during embryonic and postnatal brain development. In recent decades, clinical studies have shown that inutero exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug, is an environmental factor associated with an increased risk of ASD. Subsequently, prenatal VPA exposure in rodents has been established as a reliable translational model to study the pathophysiology of ASD, which has helped demonstrate neurobiological changes in rodents, non-human primates, and brain organoids from human pluripotent stem cells. This evidence supports the notion that prenatal VPA exposure is a valid and current model to replicate an idiopathic ASD-like disorder in experimental animals. This review summarizes and describes the current features reported with this animal model of autism and the main neurobiological findings and correlates that help elucidate the pathophysiology of ASD. Finally, we discuss the general framework of the VPA model in comparison to other environmental and genetic ASD models.

About the authors

David Zarate-Lopez

Laboratory of Neuroscience, School of Psychology, University of Colima

Email: info@benthamscience.net

Ana Torres-Chávez

Laboratory of Neuroscience, School of Psychology,, University of Colima

Email: info@benthamscience.net

Alma Gálvez-Contreras

Department of Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara

Author for correspondence.
Email: info@benthamscience.net

Oscar Gonzalez-Perez

Laboratory of Neuroscience, School of Psychology, University of Colima

Author for correspondence.
Email: info@benthamscience.net

References

  1. Lord, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet, 2018, 392(10146), 508-520. doi: 10.1016/S0140-6736(18)31129-2 PMID: 30078460
  2. Li, Y.A.; Chen, Z.J.; Li, X.D.; Gu, M.H.; Xia, N.; Gong, C.; Zhou, Z.W.; Yasin, G.; Xie, H.Y.; Wei, X.P.; Liu, Y.L.; Han, X.H.; Lu, M.; Xu, J.; Huang, X.L. Epidemiology of autism spectrum disorders: Global burden of disease 2019 and bibliometric analysis of risk factors. Front Pediatr., 2022, 10, 972809. doi: 10.3389/fped.2022.972809 PMID: 36545666
  3. Sharma, S.R.; Gonda, X.; Tarazi, F.I. Autism spectrum disorder: Classification, diagnosis and therapy. Pharmacol. Ther., 2018, 190, 91-104. doi: 10.1016/j.pharmthera.2018.05.007 PMID: 29763648
  4. Bölte, S.; Girdler, S.; Marschik, P.B. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell. Mol. Life Sci., 2019, 76(7), 1275-1297. doi: 10.1007/s00018-018-2988-4 PMID: 30570672
  5. Lord, C.; Brugha, T.S.; Charman, T.; Cusack, J.; Dumas, G.; Frazier, T.; Jones, E.J.H.; Jones, R.M.; Pickles, A.; State, M.W.; Taylor, J.L.; Veenstra-VanderWeele, J. Autism spectrum disorder. Nat. Rev. Dis. Primers, 2020, 6(1), 5. doi: 10.1038/s41572-019-0138-4 PMID: 31949163
  6. Tomson, T.; Battino, D.; Perucca, E. Valproic acid after five decades of use in epilepsy: time to reconsider the indications of a time-honoured drug. Lancet Neurol., 2016, 15(2), 210-218. doi: 10.1016/S1474-4422(15)00314-2 PMID: 26655849
  7. Johannessen, C.U.; Johannessen, S.I. Valproate: Past, present, and future. CNS Drug Rev., 2003, 9(2), 199-216. doi: 10.1111/j.1527-3458.2003.tb00249.x PMID: 12847559
  8. Rahman, M.; Nguyen, H. Valproic Acid., 2022. Available from:https://www.ncbi.nlm.nih.gov/books/NBK559112/
  9. Mohamed, Z.A.; Thokerunga, E.; Jimale, A.O.; Liu, Z.; Fan, J. Risk of autism spectrum disorder according to the dose and trimester of exposure to antiseizure medications: A systematic review and meta-analysis. Open J. Psychiatr., 2023, 13(2), 106-121. doi: 10.4236/ojpsych.2023.132011
  10. Sato, A.; Kotajima-Murakami, H.; Tanaka, M.; Katoh, Y.; Ikeda, K. Influence of prenatal drug exposure, maternal inflammation, and parental aging on the development of autism spectrum disorder. Front. Psychiatry, 2022, 13, 821455. doi: 10.3389/fpsyt.2022.821455 PMID: 35222122
  11. Cui, K.; Wang, Y.; Zhu, Y.; Tao, T.; Yin, F.; Guo, Y.; Liu, H.; Li, F.; Wang, P.; Chen, Y.; Qin, J. Neurodevelopmental impairment induced by prenatal valproic acid exposure shown with the human cortical organoid-on-a-chip model. Microsyst. Nanoeng., 2020, 6(1), 49. doi: 10.1038/s41378-020-0165-z PMID: 34567661
  12. Zang, Z.; Yin, H.; Du, Z.; Xie, R.; Yang, L.; Cai, Y.; Wang, L.; Zhang, D.; Li, X.; Liu, T.; Gong, H.; Gao, J.; Yang, H.; Warner, M.; Gustafsson, J.A.; Xu, H.; Fan, X. Valproic acid exposure decreases neurogenic potential of outer radial glia in human brain organoids. Front. Mol. Neurosci., 2022, 15, 1023765. doi: 10.3389/fnmol.2022.1023765 PMID: 36523605
  13. Meng, Q.; Zhang, W.; Wang, X.; Jiao, C.; Xu, S.; Liu, C.; Tang, B.; Chen, C. Human forebrain organoids reveal connections between valproic acid exposure and autism risk. Transl. Psychiatry, 2022, 12(1), 130. doi: 10.1038/s41398-022-01898-x PMID: 35351869
  14. Chang, Z.L. Sodium valproate and valproic acid. In: Analytical Profiles of Drug Substances; Elsevier, 1979; pp. 529-556.
  15. Ghodke-Puranik, Y.; Thorn, C.F.; Lamba, J.K.; Leeder, J.S.; Song, W.; Birnbaum, A.K.; Altman, R.B.; Klein, T.E. Valproic acid pathway. Pharmacogenet. Genomics, 2013, 23(4), 236-241. doi: 10.1097/FPC.0b013e32835ea0b2 PMID: 23407051
  16. Methaneethorn, J. A systematic review of population pharmacokinetics of valproic acid. Br. J. Clin. Pharmacol., 2018, 84(5), 816-834. doi: 10.1111/bcp.13510 PMID: 29328514
  17. Henry, T.R. The history of valproate in clinical neuroscience. Psychopharmacol. Bull., 2003, 37(S2), 5-16. PMID: 14624229
  18. Romoli, M.; Mazzocchetti, P.; D’Alonzo, R.; Siliquini, S.; Rinaldi, V.E.; Verrotti, A.; Calabresi, P.; Costa, C. Valproic acid and epilepsy: From molecular mechanisms to clinical evidences. Curr. Neuropharmacol., 2019, 17(10), 926-946. doi: 10.2174/1570159X17666181227165722 PMID: 30592252
  19. Carli, M.; Weiss, F.; Grenno, G.; Ponzini, S.; Kolachalam, S.; Vaglini, F.; Viaggi, C.; Pardini, C.; Tidona, S.; Longoni, B.; Maggio, R.; Scarselli, M. Pharmacological strategies for bipolar disorders in acute phases and chronic management with a special focus on lithium, valproic acid, and atypical antipsychotics. Curr. Neuropharmacol., 2023, 21(4), 935-950. doi: 10.2174/1570159X21666230224102318 PMID: 36825703
  20. Yurekli, V.A.; Akhan, G.; Kutluhan, S.; Uzar, E.; Koyuncuoglu, H.R.; Gultekin, F. The effect of sodium valproate on chronic daily headache and its subgroups. J. Headache Pain, 2008, 9(1), 37-41. doi: 10.1007/s10194-008-0002-5 PMID: 18231713
  21. Wang, F.; Zhang, H.; Wang, L.; Cao, Y.; He, Q. Intravenous sodium valproate for acute migraine in the emergency department: A meta‐analysis. Acta Neurol. Scand., 2020, 142(6), 521-530. doi: 10.1111/ane.13325 PMID: 32740903
  22. Wang, Y.; Xia, J.; Helfer, B.; Li, C.; Leucht, S. Valproate for schizophrenia. Cochrane Database Syst. Rev., 2016, 11(11), CD004028. PMID: 27884042
  23. Nau, H.; Rating, D.; Koch, S.; Häuser, I.; Helge, H. Valproic acid and its metabolites: placental transfer, neonatal pharmacokinetics, transfer via mother’s milk and clinical status in neonates of epileptic mothers. J. Pharmacol. Exp. Ther., 1981, 219(3), 768-777. PMID: 6795343
  24. Jeong, E.J.; Yu, W.J.; Kim, C.Y.; Chung, M.K. Placenta transfer and toxicokinetics of valproic acid in pregnant cynomolgus monkeys. Toxicol. Res., 2010, 26(4), 275-283. doi: 10.5487/TR.2010.26.4.275 PMID: 24278535
  25. Lee, J.H.; Yu, W.J.; Jeong, E.J.; Chung, M.K. Milk transfer and toxicokinetics of valproic Acid in lactating cynomolgus monkeys. Toxicol. Res., 2013, 29(1), 53-60. doi: 10.5487/TR.2013.29.1.053 PMID: 24278629
  26. Genton, P.; Semah, F.; Trinka, E. Valproic acid in epilepsy: Pregnancy-related issues. Drug Saf., 2006, 29(1), 1-21. doi: 10.2165/00002018-200629010-00001 PMID: 16454531
  27. Williams, G.; King, J.; Cunningham, M.; Stephan, M.; Kerr, B.; Hersh, J.H. Fetal valproate syndrome and autism: Additional evidence of an association. Dev. Med. Child Neurol., 2001, 43(3), 202-206. doi: 10.1111/j.1469-8749.2001.tb00188.x PMID: 11263692
  28. Rasalam, A.D.; Hailey, H.; Williams, J.H.G.; Moore, S.J.; Turnpenny, P.D.; Lloyd, D.J.; Dean, J.C.S. Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Dev. Med. Child Neurol., 2005, 47(8), 551-555. doi: 10.1017/S0012162205001076 PMID: 16108456
  29. Ornoy, A. Valproic acid in pregnancy: How much are we endangering the embryo and fetus? Reprod. Toxicol., 2009, 28(1), 1-10. doi: 10.1016/j.reprotox.2009.02.014 PMID: 19490988
  30. Harden, C.L. In utero valproate exposure and autism: Long suspected, finally proven. Epilepsy Curr., 2013, 13(6), 282-284. doi: 10.5698/1535-7597-13.6.282 PMID: 24348128
  31. Christensen, J.; Grønborg, T.K.; Sørensen, M.J.; Schendel, D.; Parner, E.T.; Pedersen, L.H.; Vestergaard, M. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA, 2013, 309(16), 1696-1703. doi: 10.1001/jama.2013.2270 PMID: 23613074
  32. Elger, C.E. Is valproate contraindicated in young women with epilepsy? No. Epileptology, 2013, 1(1), 43-45. doi: 10.1016/j.epilep.2013.01.002
  33. Macfarlane, A.; Greenhalgh, T. Sodium valproate in pregnancy: What are the risks and should we use a shared decision-making approach? BMC Pregnancy Childbirth, 2018, 18(1), 200. doi: 10.1186/s12884-018-1842-x PMID: 29859057
  34. Thisted, E.; Ebbesen, F. Malformations, withdrawal manifestations, and hypoglycaemia after exposure to valproate in utero. Arch. Dis. Child., 1993, 69, 288-291. doi: 10.1136/adc.69.3_Spec_No.288
  35. Wiedemann, K.; Stüber, T.; Rehn, M.; Frieauff, E. Fetal valproate syndrome - still a problem today! Z. Geburtshilfe Neonatol., 2017, 221(5), 243-246. doi: 10.1055/s-0043-107619 PMID: 29073690
  36. Kulkarni, M.L.; Zaheeruddin, M.; Shenoy, N.; Vani, H.N. Fetal valproate syndrome. Indian J. Pediatr., 2006, 73(10), 937-939. doi: 10.1007/BF02859291 PMID: 17090909
  37. Chandane, P.; Shah, I. Fetal valproate syndrome. Indian J. Hum. Genet., 2014, 20(2), 187-188. doi: 10.4103/0971-6866.142898 PMID: 25400349
  38. Zaki, S.A.; Phulsundar, A.; Shanbag, P.; Mauskar, A. Fetal valproate syndrome in a 2-month-old male infant. Ann. Saudi Med., 2010, 30(3), 233-235. doi: 10.4103/0256-4947.62839 PMID: 20427941
  39. Wood, A.G.; Nadebaum, C.; Anderson, V.; Reutens, D.; Barton, S.; O’Brien, T.J.; Vajda, F. Prospective assessment of autism traits in children exposed to antiepileptic drugs during pregnancy. Epilepsia, 2015, 56(7), 1047-1055. doi: 10.1111/epi.13007 PMID: 25963613
  40. Cummings, C.; Stewart, M.; Stevenson, M.; Morrow, J.; Nelson, J. Neurodevelopment of children exposed in utero to lamotrigine, sodium valproate and carbamazepine. Arch. Dis. Child., 2011, 96(7), 643-647. doi: 10.1136/adc.2009.176990 PMID: 21415043
  41. Shallcross, R.; Bromley, R.L.; Irwin, B.; Bonnett, L.J.; Morrow, J.; Baker, G.A. Child development following in utero exposure: Levetiracetam vs sodium valproate. Neurology, 2011, 76(4), 383-389. doi: 10.1212/WNL.0b013e3182088297 PMID: 21263139
  42. Meador, K.J.; Baker, G.A.; Browning, N.; Clayton-Smith, J.; Combs-Cantrell, D.T.; Cohen, M.; Kalayjian, L.A.; Kanner, A.; Liporace, J.D.; Pennell, P.B.; Privitera, M.; Loring, D.W. Cognitive function at 3 years of age after fetal exposure to antiepileptic drugs. N. Engl. J. Med., 2009, 360(16), 1597-1605. doi: 10.1056/NEJMoa0803531 PMID: 19369666
  43. Nadebaum, C.; Anderson, V.; Vajda, F.; Reutens, D.; Barton, S.; Wood, A. The Australian brain and cognition and antiepileptic drugs study: IQ in school-aged children exposed to sodium valproate and polytherapy. J. Int. Neuropsychol. Soc., 2011, 17(1), 133-142. doi: 10.1017/S1355617710001359 PMID: 21092354
  44. Nadebaum, C.; Anderson, V.A.; Vajda, F.; Reutens, D.C.; Barton, S.; Wood, A.G. Language skills of school-aged children prenatally exposed to antiepileptic drugs. Neurology, 2011, 76(8), 719-726. doi: 10.1212/WNL.0b013e31820d62c7 PMID: 21339499
  45. Goyal, M.; Gupta, A.; Sharma, M.; Mathur, P.; Bansal, N. Fetal valproate syndrome with limb defects: An Indian case report. Case Rep. Pediatr., 2016, 2016, 1-4. doi: 10.1155/2016/3495910 PMID: 28003925
  46. Tomson, T.; Battino, D.; Bonizzoni, E.; Craig, J.; Lindhout, D.; Sabers, A.; Perucca, E.; Vajda, F. Dose-dependent risk of malformations with antiepileptic drugs: An analysis of data from the EURAP epilepsy and pregnancy registry. Lancet Neurol., 2011, 10(7), 609-617. doi: 10.1016/S1474-4422(11)70107-7 PMID: 21652013
  47. Jentink, J.; Dolk, H.; Loane, MA.; Morris, JK.; Wellesley, D.; Garne, E. Intrauterine exposure to carbamazepine and specific congenital malformations: Systematic review and case-control study. BMJ, 2010, 341, c6581-c6581. doi: 10.1136/bmj.c6581
  48. Stadelmaier, R.; Nasri, H.; Deutsch, C.K.; Bauman, M.; Hunt, A.; Stodgell, C.J.; Adams, J.; Holmes, L.B. Exposure to sodium valproate during pregnancy: Facial Features and Signs of Autism. Birth Defects Res., 2017, 109(14), 1134-1143. doi: 10.1002/bdr2.1052 PMID: 28635121
  49. Donovan, M.F.; Cascella, M. Embryology, Weeks 6-8.StatPearls; StatPearls Publishing: Treasure Island, FL, 2023.
  50. O’Rahilly, R.; Müller, F. Developmental stages in human embryos: Revised and new measurements. Cells Tissues Organs, 2010, 192(2), 73-84. doi: 10.1159/000289817 PMID: 20185898
  51. Sass, L.; Urhoj, S.K.; Kjærgaard, J.; Dreier, J.W.; Strandberg-Larsen, K.; Nybo Andersen, A.M. Fever in pregnancy and the risk of congenital malformations: A cohort study. BMC Pregnancy Childbirth, 2017, 17(1), 413. doi: 10.1186/s12884-017-1585-0 PMID: 29221468
  52. Romøren, M.; Lindbaek, M.; Nordeng, H. Pregnancy outcome after gestational exposure to erythromycin - a population-based register study from Norway. Br. J. Clin. Pharmacol., 2012, 74(6), 1053-1062. doi: 10.1111/j.1365-2125.2012.04286.x PMID: 22463376
  53. Sun, L.; Xi, Y.; Wen, X.; Zou, W. Use of metoclopramide in the first trimester and risk of major congenital malformations: A systematic review and meta-analysis. PLoS One, 2021, 16(9), e0257584. doi: 10.1371/journal.pone.0257584
  54. Christianson, A.L.; Chester, N.; Kromberg, J.G.R. Fetal valproate syndrome: Clinical and neuro-developmental features in two sibling pairs. Dev. Med. Child Neurol., 1994, 36(4), 361-369. doi: 10.1111/j.1469-8749.1994.tb11858.x PMID: 7512516
  55. Laegreid, L.; Kyllerman, M.; Hedner, T.; Hagberg, B.; Viggedahl, G. Benzodiazepine amplification of valproate teratogenic effects in children of mothers with absence epilepsy. Neuropediatrics, 1993, 24(2), 88-92. doi: 10.1055/s-2008-1071520 PMID: 7687042
  56. Williams, P.G.; Hersh, J.H. A male with fetal valproate syndrome and autism. Dev. Med. Child Neurol., 1997, 39(9), 632-634. doi: 10.1111/j.1469-8749.1997.tb07500.x PMID: 9344057
  57. Bromley, R.L.; Mawer, G.; Clayton-Smith, J.; Baker, G.A. Autism spectrum disorders following in utero exposure to antiepileptic drugs. Neurology, 2008, 71(23), 1923-1924. doi: 10.1212/01.wnl.0000339399.64213.1a PMID: 19047565
  58. Moore, S.J.; Turnpenny, P.; Quinn, A.; Glover, S.; Lloyd, D.J.; Montgomery, T.; Dean, J.C. A clinical study of 57 children with fetal anticonvulsant syndromes. J. Med. Genet., 2000, 37(7), 489-497. doi: 10.1136/jmg.37.7.489 PMID: 10882750
  59. Dean, J.C.S.; Hailey, H.; Moore, S.J.; Lloyd, D.J.; Turnpenny, P.D.; Little, J. Long term health and neurodevelopment in children exposed to antiepileptic drugs before birth. J. Med. Genet., 2002, 39(4), 251-259. doi: 10.1136/jmg.39.4.251 PMID: 11950853
  60. Bromley, R.L.; Mawer, G.E.; Briggs, M.; Cheyne, C.; Clayton-Smith, J.; García-Fiñana, M.; Kneen, R.; Lucas, S.B.; Shallcross, R.; Baker, G.A.; Baker, G.; Briggs, M.; Bromley, R.; Clayton-Smith, J.; Dixon, P.; Fryer, A.; Gummery, A.; Kneen, R.; Kerr, L.; Lucas, S.; Mawer, G.; Shallcross, R. The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs. J. Neurol. Neurosurg. Psychiatry, 2013, 84(6), 637-643. doi: 10.1136/jnnp-2012-304270 PMID: 23370617
  61. Petersen, I.; Collings, S.L.; McCrea, R.L.; Nazareth, I.; Osborn, D.P.; Cowen, P.J.; Sammon, C.J. Antiepileptic drugs prescribed in pregnancy and prevalence of major congenital malformations: Comparative prevalence studies. Clin. Epidemiol., 2017, 9, 95-103. doi: 10.2147/CLEP.S118336 PMID: 28243149
  62. Hisle-Gorman, E.; Susi, A.; Stokes, T.; Gorman, G.; Erdie-Lalena, C.; Nylund, C.M. Prenatal, perinatal, and neonatal risk factors of autism spectrum disorder. Pediatr. Res., 2018, 84(2), 190-198. doi: 10.1038/pr.2018.23 PMID: 29538366
  63. Crawley, J.N. Translational animal models of autism and neurodevelopmental disorders. Dialogues Clin. Neurosci., 2012, 14(3), 293-305. doi: 10.31887/DCNS.2012.14.3/jcrawley PMID: 23226954
  64. Bauman, M.D.; Crawley, J.N.; Berman, R.F. Autism: Animal Models, 1st ed; John Wiley & Sons, Ltd., 2010.
  65. Belzung, C.; Lemoine, M. Criteria of validity for animal models of psychiatric disorders: Focus on anxiety disorders and depression. Biol. Mood Anxiety Disord., 2011, 1(1), 9. doi: 10.1186/2045-5380-1-9 PMID: 22738250
  66. American Psychiatric AssociationDiagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision; American Psychiatric Association: Washington, DC, 2022.
  67. Mabunga, D.F.N.; Gonzales, E.L.T.; Kim, J.; Kim, K.C.; Shin, C.Y. Exploring the validity of valproic acid animal model of autism. Exp. Neurobiol., 2015, 24(4), 285-300. doi: 10.5607/en.2015.24.4.285 PMID: 26713077
  68. Rodier, P.M.; Ingram, J.L.; Tisdale, B.; Nelson, S.; Romano, J. Embryological origin for autism: Developmental anomalies of the cranial nerve motor nuclei. J. Comp. Neurol., 1996, 370(2), 247-261. doi: 10.1002/(SICI)1096-9861(19960624)370:23.0.CO;2-2 PMID: 8808733
  69. Tartaglione, A.M.; Schiavi, S.; Calamandrei, G.; Trezza, V. Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder. Neuropharmacology, 2019, 159, 107477. doi: 10.1016/j.neuropharm.2018.12.024 PMID: 30639388
  70. Nicolini, C.; Fahnestock, M. The valproic acid-induced rodent model of autism. Exp. Neurol., 2018, 299(Pt A), 217-227. doi: 10.1016/j.expneurol.2017.04.017 PMID: 28472621
  71. Ranger, P.; Ellenbroek, B.A. Perinatal influences of valproate on brain and behaviour: An animal model for autism. In: Neurotoxin Modeling of Brain Disorders—Life-long Outcomes in Behavioral Teratology; Kostrzewa, R.M.; Archer, A., Eds.; Springer International Publishing: Cham, 2015; pp. 363-386.
  72. Roullet, F.I.; Lai, J.K.Y.; Foster, J.A. In utero exposure to valproic acid and autism — A current review of clinical and animal studies. Neurotoxicol. Teratol., 2013, 36, 47-56. doi: 10.1016/j.ntt.2013.01.004 PMID: 23395807
  73. Kim, K.C.; Kim, P.; Go, H.S.; Choi, C.S.; Yang, S.I.; Cheong, J.H.; Shin, C.Y.; Ko, K.H. The critical period of valproate exposure to induce autistic symptoms in Sprague–Dawley rats. Toxicol. Lett., 2011, 201(2), 137-142. doi: 10.1016/j.toxlet.2010.12.018 PMID: 21195144
  74. Yochum, C.L.; Dowling, P.; Reuhl, K.R.; Wagner, G.C.; Ming, X. VPA-induced apoptosis and behavioral deficits in neonatal mice. Brain Res., 2008, 1203, 126-132. doi: 10.1016/j.brainres.2008.01.055 PMID: 18316065
  75. Chomiak, T.; Karnik, V.; Block, E.; Hu, B. Altering the trajectory of early postnatal cortical development can lead to structural and behavioural features of autism. BMC Neurosci., 2010, 11(1), 102. doi: 10.1186/1471-2202-11-102 PMID: 20723245
  76. Reynolds, S.; Millette, A.; Devine, D.P. Sensory and motor characterization in the postnatal valproate rat model of autism. Dev. Neurosci., 2012, 34(2-3), 258-267. doi: 10.1159/000336646 PMID: 22627078
  77. Wagner, G.C.; Reuhl, K.R.; Cheh, M.; McRae, P.; Halladay, A.K. A new neurobehavioral model of autism in mice: Pre- and postnatal exposure to sodium valproate. J. Autism Dev. Disord., 2006, 36(6), 779-793. doi: 10.1007/s10803-006-0117-y PMID: 16609825
  78. Oguchi-Katayama, A.; Monma, A.; Sekino, Y.; Moriguchi, T.; Sato, K. Comparative gene expression analysis of the amygdala in autistic rat models produced by pre- and post-natal exposures to valproic acid. J. Toxicol. Sci., 2013, 38(3), 391-402. doi: 10.2131/jts.38.391 PMID: 23665938
  79. Larner, O.; Roberts, J.; Twiss, J.; Freeman, L. A Need for consistency in behavioral phenotyping for ASD: Analysis of the valproic acid model. Rossignol D; Treat, A.R., Ed.; , 2021, pp. 1-10.
  80. Chaliha, D.; Albrecht, M.; Vaccarezza, M.; Takechi, R.; Lam, V.; Al-Salami, H.; Mamo, J. A systematic review of the valproic-acid-induced rodent model of autism. Dev. Neurosci., 2020, 42(1), 12-48. doi: 10.1159/000509109 PMID: 32810856
  81. Juliandi, B.; Tanemura, K.; Igarashi, K.; Tominaga, T.; Furukawa, Y.; Otsuka, M.; Moriyama, N.; Ikegami, D.; Abematsu, M.; Sanosaka, T.; Tsujimura, K.; Narita, M.; Kanno, J.; Nakashima, K. Reduced adult hippocampal neurogenesis and cognitive impairments following prenatal treatment of the antiepileptic drug valproic acid. Stem Cell Reports, 2015, 5(6), 996-1009. doi: 10.1016/j.stemcr.2015.10.012 PMID: 26677766
  82. Main, S.L.; Kulesza, R.J. Repeated prenatal exposure to valproic acid results in cerebellar hypoplasia and ataxia. Neuroscience, 2017, 340, 34-47. doi: 10.1016/j.neuroscience.2016.10.052 PMID: 27984183
  83. Cartocci, V.; Catallo, M.; Tempestilli, M.; Segatto, M.; Pfrieger, F.W.; Bronzuoli, M.R.; Scuderi, C.; Servadio, M.; Trezza, V.; Pallottini, V. Altered brain cholesterol/isoprenoid metabolism in a rat model of autism spectrum disorders. Neuroscience, 2018, 372, 27-37. doi: 10.1016/j.neuroscience.2017.12.053 PMID: 29309878
  84. Cezar, LC; Kirsten, TB; da Fonseca, CCN; de Lima, APN; Bernardi, MM; Felicio, LF Zinc as a therapy in a rat model of autism prenatally induced by valproic acid. Prog. Neuropsychopharmacol. Biol. Psychiatry., 2018, 84(Pt A), 173-180. doi: 10.1016/j.pnpbp.2018.02.008
  85. Dai, Y.C.; Zhang, H.F.; Schön, M.; Böckers, T.M.; Han, S.P.; Han, J.S.; Zhang, R. Neonatal oxytocin treatment ameliorates autistic-like behaviors and oxytocin deficiency in valproic acid-induced rat model of autism. Front. Cell. Neurosci., 2018, 12, 355. doi: 10.3389/fncel.2018.00355 PMID: 30356897
  86. Felix-Ortiz, A.C.; Febo, M. Gestational valproate alters BOLD activation in response to complex social and primary sensory stimuli. PLoS One, 2012, 7(5), e37313. doi: 10.1371/journal.pone.0037313 PMID: 22615973
  87. Moldrich, R.X.; Leanage, G.; She, D.; Dolan-Evans, E.; Nelson, M.; Reza, N.; Reutens, D.C. Inhibition of histone deacetylase in utero causes sociability deficits in postnatal mice. Behav. Brain Res., 2013, 257, 253-264. doi: 10.1016/j.bbr.2013.09.049 PMID: 24103642
  88. Kuo, H.Y.; Liu, F.C. Valproic acid induces aberrant development of striatal compartments and corticostriatal pathways in a mouse model of autism spectrum disorder. FASEB J., 2017, 31(10), 4458-4471. doi: 10.1096/fj.201700054R PMID: 28687613
  89. Melancia, F.; Schiavi, S.; Servadio, M.; Cartocci, V.; Campolongo, P.; Palmery, M.; Pallottini, V.; Trezza, V. Sex-specific autistic endophenotypes induced by prenatal exposure to valproic acid involve anandamide signalling. Br. J. Pharmacol., 2018, 175(18), 3699-3712. doi: 10.1111/bph.14435 PMID: 29968249
  90. Servadio, M.; Manduca, A.; Melancia, F.; Leboffe, L.; Schiavi, S.; Campolongo, P.; Palmery, M.; Ascenzi, P.; di Masi, A.; Trezza, V. Impaired repair of DNA damage is associated with autistic-like traits in rats prenatally exposed to valproic acid. Eur. Neuropsychopharmacol., 2018, 28(1), 85-96. doi: 10.1016/j.euroneuro.2017.11.014 PMID: 29174949
  91. Tsuji, C.; Fujisaku, T.; Tsuji, T. Oxytocin ameliorates maternal separation‐induced ultrasonic vocalisation calls in mouse pups prenatally exposed to valproic acid. J. Neuroendocrinol., 2020, 32(4), e12850. doi: 10.1111/jne.12850 PMID: 32321197
  92. Tyzio, R.; Nardou, R.; Ferrari, D.C.; Tsintsadze, T.; Shahrokhi, A.; Eftekhari, S.; Khalilov, I.; Tsintsadze, V.; Brouchoud, C.; Chazal, G.; Lemonnier, E.; Lozovaya, N.; Burnashev, N.; Ben-Ari, Y. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science, 2014, 343(6171), 675-679. doi: 10.1126/science.1247190 PMID: 24503856
  93. Zhang, J.; Liu, L.M.; Ni, J.F. Rapamycin modulated brain-derived neurotrophic factor and B-cell lymphoma 2 to mitigate autism spectrum disorder in rats. Neuropsychiatr. Dis. Treat., 2017, 13, 835-842. doi: 10.2147/NDT.S125088 PMID: 28360521
  94. Kim, P.; Park, J.H.; Kwon, K.J.; Kim, K.C.; Kim, H.J.; Lee, J.M.; Kim, H.Y.; Han, S.H.; Shin, C.Y. Effects of Korean red ginseng extracts on neural tube defects and impairment of social interaction induced by prenatal exposure to valproic acid. Food Chem. Toxicol., 2013, 51, 288-296. doi: 10.1016/j.fct.2012.10.011 PMID: 23104247
  95. Kim, K.C.; Kim, P.; Go, H.S.; Choi, C.S.; Park, J.H.; Kim, H.J.; Jeon, S.J.; dela Pena, I.C.; Han, S.H.; Cheong, J.H.; Ryu, J.H.; Shin, C.Y. Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. J. Neurochem., 2013, 124(6), 832-843. doi: 10.1111/jnc.12147 PMID: 23311691
  96. Zhao, G.; Gao, J.; Liang, S.; Wang, X.; Sun, C.; Xia, W.; Hao, Y.; Li, X.; Cao, Y.; Wu, L. Study of the serum levels of polyunsaturated fatty acids and the expression of related liver metabolic enzymes in a rat valproate‐induced autism model. Int. J. Dev. Neurosci., 2015, 44(1), 14-21. doi: 10.1016/j.ijdevneu.2015.04.350 PMID: 25916973
  97. Cho, H.; Kim, C.H.; Knight, E.Q.; Oh, H.W.; Park, B.; Kim, D.G.; Park, H.J. Changes in brain metabolic connectivity underlie autistic-like social deficits in a rat model of autism spectrum disorder. Sci. Rep., 2017, 7(1), 13213. doi: 10.1038/s41598-017-13642-3 PMID: 29038507
  98. Wu, H.; Wang, X.; Gao, J.; Liang, S.; Hao, Y.; Sun, C.; Xia, W.; Cao, Y.; Wu, L. Fingolimod (FTY720) attenuates social deficits, learning and memory impairments, neuronal loss and neuroinflammation in the rat model of autism. Life Sci., 2017, 173, 43-54. doi: 10.1016/j.lfs.2017.01.012 PMID: 28161158
  99. Al-Amin, M.M.; Rahman, M.M.; Khan, F.R.; Zaman, F.; Mahmud Reza, H. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism. Behav. Brain Res., 2015, 286, 112-121. doi: 10.1016/j.bbr.2015.02.041 PMID: 25732953
  100. Bambini-Junior, V.; Zanatta, G.; Della, F.N.G.; Mueller de Melo, G.; Michels, M.; Fontes-Dutra, M.; Nogueira Freire, V.; Riesgo, R.; Gottfried, C. Resveratrol prevents social deficits in animal model of autism induced by valproic acid. Neurosci. Lett., 2014, 583, 176-181. doi: 10.1016/j.neulet.2014.09.039 PMID: 25263788
  101. Campolongo, M.; Kazlauskas, N.; Falasco, G.; Urrutia, L.; Salgueiro, N.; Höcht, C.; Depino, A.M. Sociability deficits after prenatal exposure to valproic acid are rescued by early social enrichment. Mol. Autism, 2018, 9(1), 36. doi: 10.1186/s13229-018-0221-9 PMID: 29946415
  102. Chau, D.K.F.; Choi, A.Y.T.; Yang, W.; Leung, W.N.; Chan, C.W. Downregulation of glutamatergic and GABAergic proteins in valproric acid associated social impairment during adolescence in mice. Behav. Brain Res., 2017, 316, 255-260. doi: 10.1016/j.bbr.2016.09.003 PMID: 27614006
  103. Dai, X.; Yin, Y.; Qin, L. Valproic acid exposure decreases the mRNA stability of Bcl-2 via up-regulating miR-34a in the cerebellum of rat. Neurosci. Lett., 2017, 657, 159-165. doi: 10.1016/j.neulet.2017.08.018 PMID: 28803955
  104. Eissa, N.; Jayaprakash, P.; Azimullah, S.; Ojha, S.K.; Al-Houqani, M.; Jalal, F.Y.; Łażewska, D.; Kieć-Kononowicz, K.; Sadek, B. The histamine H3R antagonist DL77 attenuates autistic behaviors in a prenatal valproic acid-induced mouse model of autism. Sci. Rep., 2018, 8(1), 13077. doi: 10.1038/s41598-018-31385-7 PMID: 30166610
  105. Gao, J.; Wu, H.; Cao, Y.; Liang, S.; Sun, C.; Wang, P.; Wang, J.; Sun, H.; Wu, L. Maternal DHA supplementation protects rat offspring against impairment of learning and memory following prenatal exposure to valproic acid. J. Nutr. Biochem., 2016, 35, 87-95. doi: 10.1016/j.jnutbio.2016.07.003 PMID: 27469996
  106. Hirsch, M.M.; Deckmann, I.; Santos-Terra, J.; Staevie, G.Z.; Fontes-Dutra, M.; Carello-Collar, G.; Körbes-Rockenbach, M.; Brum Schwingel, G.; Bauer-Negrini, G.; Rabelo, B.; Gonçalves, M.C.B.; Corrêa-Velloso, J.; Naaldijk, Y.; Castillo, A.R.G.; Schneider, T.; Bambini-Junior, V.; Ulrich, H.; Gottfried, C. Effects of single-dose antipurinergic therapy on behavioral and molecular alterations in the valproic acid-induced animal model of autism. Neuropharmacology, 2020, 167, 107930. doi: 10.1016/j.neuropharm.2019.107930 PMID: 31904357
  107. Hou, Q.; Wang, Y.; Li, Y.; Chen, D.; Yang, F.; Wang, S. A developmental study of abnormal behaviors and altered gabaergic signaling in the vpa-treated rat model of autism. Front. Behav. Neurosci., 2018, 12, 182. doi: 10.3389/fnbeh.2018.00182 PMID: 30186123
  108. Kerr, D.M.; Downey, L.; Conboy, M.; Finn, D.P.; Roche, M. Alterations in the endocannabinoid system in the rat valproic acid model of autism. Behav. Brain Res., 2013, 249, 124-132. doi: 10.1016/j.bbr.2013.04.043 PMID: 23643692
  109. Khalaj, R.; Hajizadeh Moghaddam, A.; Zare, M. Hesperetin and it nanocrystals ameliorate social behavior deficits and oxido‐inflammatory stress in rat model of autism. Int. J. Dev. Neurosci., 2018, 69(1), 80-87. doi: 10.1016/j.ijdevneu.2018.06.009 PMID: 29966739
  110. Kim, J.W.; Seung, H.; Kim, K.C.; Gonzales, E.L.T.; Oh, H.A.; Yang, S.M.; Ko, M.J.; Han, S.H.; Banerjee, S.; Shin, C.Y. Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism. Neuropharmacology, 2017, 113(Pt A), 71-81. doi: 10.1016/j.neuropharm.2016.09.014 PMID: 27638451
  111. Matsuo, K.; Yabuki, Y.; Fukunaga, K. 5-aminolevulinic acid inhibits oxidative stress and ameliorates autistic-like behaviors in prenatal valproic acid-exposed rats. Neuropharmacology, 2020, 168, 107975. doi: 10.1016/j.neuropharm.2020.107975 PMID: 31991146
  112. Qin, L.; Dai, X.; Yin, Y. Valproic acid exposure sequentially activates Wnt and mTOR pathways in rats. Mol. Cell. Neurosci., 2016, 75, 27-35. doi: 10.1016/j.mcn.2016.06.004 PMID: 27343825
  113. Rajizadeh, M.A.; Afarinesh, M.R.; Zarif, M.; Mirasadi, A.; Esmaeilpour, K. Does caffeine therapy improve cognitive impairments in valproic acid rat model of autism? Toxin Rev., 2021, 40(4), 654-664. doi: 10.1080/15569543.2019.1680563
  114. Servadio, M.; Melancia, F.; Cartocci, V.; Pallottini, V.; Trezza, V. Role of the endocannabinoid system in the altered social behavior observed in the rat valproic acid model of autism. Eur. Neuropsychopharmacol., 2016, 26, S269-S270. doi: 10.1016/S0924-977X(16)31152-X
  115. Štefánik, P.; Olexová, L.; Kršková, L. Increased sociability and gene expression of oxytocin and its receptor in the brains of rats affected prenatally by valproic acid. Pharmacol. Biochem. Behav., 2015, 131, 42-50. doi: 10.1016/j.pbb.2015.01.021 PMID: 25662821
  116. Wu, H.F.; Chen, P.S.; Chen, Y.J.; Lee, C.W.; Chen, I.T.; Lin, H.C. Alleviation of N-Methyl-d-aspartate receptor-dependent long-term depression via regulation of the glycogen synthase kinase-3β pathway in the amygdala of a valproic acid-induced animal model of autism. Mol. Neurobiol., 2017, 54(7), 5264-5276. doi: 10.1007/s12035-016-0074-1 PMID: 27578017
  117. Zamberletti, E.; Gabaglio, M.; Woolley-Roberts, M.; Bingham, S.; Rubino, T.; Parolaro, D. Cannabidivarin treatment ameliorates autism-like behaviors and restores hippocampal endocannabinoid system and glia alterations induced by prenatal valproic acid exposure in rats. Front. Cell. Neurosci., 2019, 13, 367. doi: 10.3389/fncel.2019.00367 PMID: 31447649
  118. Zhang, R.; Zhou, J.; Ren, J.; Sun, S.; Di, Y.; Wang, H.; An, X.; Zhang, K.; Zhang, J.; Qian, Z.; Shi, M.; Qiao, Y.; Ren, W.; Tian, Y. Transcriptional and splicing dysregulation in the prefrontal cortex in valproic acid rat model of autism. Reprod. Toxicol., 2018, 77, 53-61. doi: 10.1016/j.reprotox.2018.01.008 PMID: 29427782
  119. Zhang, Y.; Xiang, Z.; Jia, Y.; He, X.; Wang, L.; Cui, W. The notch signaling pathway inhibitor dapt alleviates autism-like behavior, autophagy and dendritic spine density abnormalities in a valproic acid-induced animal model of autism. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 94, 109644. doi: 10.1016/j.pnpbp.2019.109644 PMID: 31075347
  120. Schiavi, S.; Iezzi, D.; Manduca, A.; Leone, S.; Melancia, F.; Carbone, C.; Petrella, M.; Mannaioni, G.; Masi, A.; Trezza, V. Reward-related behavioral, neurochemical and electrophysiological changes in a rat model of autism based on prenatal exposure to valproic acid. Front. Cell. Neurosci., 2019, 13, 479. doi: 10.3389/fncel.2019.00479 PMID: 31708750
  121. Hajisoltani, R.; Karimi, S.A.; Rahdar, M.; Davoudi, S.; Borjkhani, M.; Hosseinmardi, N.; Behzadi, G.; Janahmadi, M. Hyperexcitability of hippocampal CA1 pyramidal neurons in male offspring of a rat model of autism spectrum disorder (ASD) induced by prenatal exposure to valproic acid: A possible involvement of Ih channel current. Brain Res., 2019, 1708, 188-199. doi: 10.1016/j.brainres.2018.12.011 PMID: 30537517
  122. Kim, K.C.; Lee, D.K.; Go, H.S.; Kim, P.; Choi, C.S.; Kim, J.W.; Jeon, S.J.; Song, M.R.; Shin, C.Y. Pax6-dependent cortical glutamatergic neuronal differentiation regulates autism-like behavior in prenatally valproic acid-exposed rat offspring. Mol. Neurobiol., 2014, 49(1), 512-528. doi: 10.1007/s12035-013-8535-2 PMID: 24030726
  123. Wu, H.F.; Chen, Y.J.; Chu, M.C.; Hsu, Y.T.; Lu, T.Y.; Chen, I.T.; Chen, P.; Lin, H.C. Deep brain stimulation modified autism-like deficits via the serotonin system in a valproic acid-induced rat model. Int. J. Mol. Sci., 2018, 19(9), 2840. doi: 10.3390/ijms19092840 PMID: 30235871
  124. Schneider, T.; Turczak, J.; Przewłocki, R. Environmental enrichment reverses behavioral alterations in rats prenatally exposed to valproic acid: Issues for a therapeutic approach in autism. Neuropsychopharmacology, 2006, 31(1), 36-46. doi: 10.1038/sj.npp.1300767 PMID: 15920505
  125. Degroote, S.; Hunting, D.; Sébire, G.; Takser, L. Autistic-like traits in Lewis rats exposed perinatally to a mixture of common endocrine disruptors. Endocr. Disruptors, 2014, 2(1), e976123. doi: 10.4161/23273747.2014.976123
  126. Ahn, Y.; Narous, M.; Tobias, R.; Rho, J.M.; Mychasiuk, R. The ketogenic diet modifies social and metabolic alterations identified in the prenatal valproic acid model of autism spectrum disorder. Dev. Neurosci., 2014, 36(5), 371-380. doi: 10.1159/000362645 PMID: 25011527
  127. Codagnone, M.G.; Podestá, M.F.; Uccelli, N.A.; Reinés, A. Differential local connectivity and neuroinflammation profiles in the medial prefrontal cortex and hippocampus in the valproic acid rat model of autism. Dev. Neurosci., 2015, 37(3), 215-231. doi: 10.1159/000375489 PMID: 25895486
  128. Du, L.; Zhao, G.; Duan, Z.; Li, F. Behavioral improvements in a valproic acid rat model of autism following vitamin D supplementation. Psychiatry Res., 2017, 253, 28-32. doi: 10.1016/j.psychres.2017.03.003 PMID: 28324861
  129. Edalatmanesh, M.A.; Nikfarjam, H.; Vafaee, F.; Moghadas, M. Increased hippocampal cell density and enhanced spatial memory in the valproic acid rat model of autism. Brain Res., 2013, 1526, 15-25. doi: 10.1016/j.brainres.2013.06.024 PMID: 23806776
  130. Kataoka, S.; Takuma, K.; Hara, Y.; Maeda, Y.; Ago, Y.; Matsuda, T. Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid. Int. J. Neuropsychopharmacol., 2013, 16(1), 91-103. doi: 10.1017/S1461145711001714 PMID: 22093185
  131. Lin, H.C.; Gean, P.W.; Wang, C.C.; Chan, Y.H.; Chen, P.S. The amygdala excitatory/inhibitory balance in a valproate-induced rat autism model. PLoS ONE., 2013, 8(1), e55248.
  132. Markram, K.; Rinaldi, T.; Mendola, D.L.; Sandi, C.; Markram, H. Abnormal fear conditioning and amygdala processing in an animal model of autism. Neuropsychopharmacology, 2008, 33(4), 901-912. doi: 10.1038/sj.npp.1301453 PMID: 17507914
  133. Olde Loohuis, N.F.M.; Martens, G.J.M.; van Bokhoven, H.; Kaplan, B.B.; Homberg, J.R.; Aschrafi, A. Altered expression of circadian rhythm and extracellular matrix genes in the medial prefrontal cortex of a valproic acid rat model of autism. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 77, 128-132. doi: 10.1016/j.pnpbp.2017.04.009 PMID: 28408291
  134. Sandhya, T.; Sowjanya, J.; Veeresh, B. Bacopa monniera (L.) Wettst ameliorates behavioral alterations and oxidative markers in sodium valproate induced autism in rats. Neurochem. Res., 2012, 37(5), 1121-1131. doi: 10.1007/s11064-012-0717-1 PMID: 22322665
  135. Schneider, T.; Przewłocki, R. Behavioral alterations in rats prenatally exposed to valproic acid: Animal model of autism. Neuropsychopharmacology, 2005, 30(1), 80-89. doi: 10.1038/sj.npp.1300518 PMID: 15238991
  136. Wang, C.C.; Lin, H.C.; Chan, Y.H.; Gean, P.W.; Yang, Y.K.; Chen, P.S. 5-HT1A-receptor agonist modified amygdala activity and amygdala-associated social behavior in a valproate-induced rat autism model. Int. J. Neuropsychopharmacol., 2013, 16(9), 2027-2039. doi: 10.1017/S1461145713000473 PMID: 23823694
  137. Yamaguchi, H.; Hara, Y.; Ago, Y.; Takano, E.; Hasebe, S.; Nakazawa, T.; Hashimoto, H.; Matsuda, T.; Takuma, K. Environmental enrichment attenuates behavioral abnormalities in valproic acid-exposed autism model mice. Behav. Brain Res., 2017, 333, 67-73. doi: 10.1016/j.bbr.2017.06.035 PMID: 28655565
  138. Bringas, M.E.; Carvajal-Flores, F.N.; López-Ramírez, T.A.; Atzori, M.; Flores, G. Rearrangement of the dendritic morphology in limbic regions and altered exploratory behavior in a rat model of autism spectrum disorder. Neuroscience, 2013, 241, 170-187. doi: 10.1016/j.neuroscience.2013.03.030 PMID: 23535253
  139. Choi, C.S.; Hong, M.; Kim, K.C.; Kim, J.W.; Yang, S.M.; Seung, H.; Ko, M.J.; Choi, D.H.; You, J.S.; Shin, C.Y.; Bahn, G.H. Effects of atomoxetine on hyper-locomotive activity of the prenatally valproate-exposed rat offspring. Biomol. Ther., 2014, 22(5), 406-413. doi: 10.4062/biomolther.2014.027 PMID: 25414770
  140. Olexová, L.; Štefánik, P.; Kršková, L. Increased anxiety-like behaviour and altered GABAergic system in the amygdala and cerebellum of VPA rats — An animal model of autism. Neurosci. Lett., 2016, 629, 9-14. doi: 10.1016/j.neulet.2016.06.035 PMID: 27353514
  141. Zhang, Y.; Cui, W.; Zhai, Q.; Zhang, T.; Wen, X. N-acetylcysteine ameliorates repetitive/stereotypic behavior due to its antioxidant properties without activation of the canonical Wnt pathway in a valproic acid-induced rat model of autism. Mol. Med. Rep., 2017, 16(2), 2233-2240. doi: 10.3892/mmr.2017.6787 PMID: 28627665
  142. Wu, H.F.; Chen, P.S.; Hsu, Y.T.; Lee, C.W.; Wang, T.F.; Chen, Y.J.; Lin, H.C. D-cycloserine ameliorates autism-like deficits by removing glua2-containing AMPA receptors in a valproic acid-induced rat model. Mol. Neurobiol., 2018, 55(6), 4811-4824. doi: 10.1007/s12035-017-0685-1 PMID: 28733898
  143. Al Sagheer, T.; Haida, O.; Balbous, A.; Francheteau, M.; Matas, E.; Fernagut, P.O.; Jaber, M. Motor impairments correlate with social deficits and restricted neuronal loss in an environmental model of autism. Int. J. Neuropsychopharmacol., 2018, 21(9), 871-882. doi: 10.1093/ijnp/pyy043 PMID: 29762671
  144. Kerr, DM; Gilmartin, A; Roche, M Pharmacological inhibition of fatty acid amide hydrolase attenuates social behavioural deficits in male rats prenatally exposed to valproic acid. Pharmacol. Res., 2016, 113(Pt A), 228-235. doi: 10.1016/j.phrs.2016.08.033
  145. Bambini-Junior, V.; Rodrigues, L.; Behr, G.A.; Moreira, J.C.F.; Riesgo, R.; Gottfried, C. Animal model of autism induced by prenatal exposure to valproate: Behavioral changes and liver parameters. Brain Res., 2011, 1408, 8-16. doi: 10.1016/j.brainres.2011.06.015 PMID: 21767826
  146. Gobshtis, N.; Tfilin, M.; Wolfson, M.; Fraifeld, V.E.; Turgeman, G. Transplantation of mesenchymal stem cells reverses behavioural deficits and impaired neurogenesis caused by prenatal exposure to valproic acid. Oncotarget, 2017, 8(11), 17443-17452. doi: 10.18632/oncotarget.15245 PMID: 28407680
  147. Guo, Q.; Yin, X.; Qiao, M.; Jia, Y.; Chen, D.; Shao, J.; Lebaron, T.W.; Gao, Y.; Shi, H.; Jia, B. Hydrogen-rich water ameliorates autistic-like behavioral abnormalities in valproic acid-treated adolescent mice offspring. Front. Behav. Neurosci., 2018, 12, 170. doi: 10.3389/fnbeh.2018.00170 PMID: 30127728
  148. Huang, F.; Chen, X.; Jiang, X.; Niu, J.; Cui, C.; Chen, Z.; Sun, J. Betaine ameliorates prenatal valproic‐acid‐induced autism‐like behavioral abnormalities in mice by promoting homocysteine metabolism. Psychiatry Clin. Neurosci., 2019, 73(6), 317-322. doi: 10.1111/pcn.12833 PMID: 30821067
  149. Kazlauskas, N.; Seiffe, A.; Campolongo, M.; Zappala, C.; Depino, A.M. Sex-specific effects of prenatal valproic acid exposure on sociability and neuroinflammation: Relevance for susceptibility and resilience in autism. Psychoneuroendocrinology, 2019, 110, 104441. doi: 10.1016/j.psyneuen.2019.104441 PMID: 31541913
  150. Kumar, H.; Sharma, B. Memantine ameliorates autistic behavior, biochemistry & blood brain barrier impairments in rats. Brain Res. Bull., 2016, 124, 27-39. doi: 10.1016/j.brainresbull.2016.03.013 PMID: 27034117
  151. Kumar, H.; Sharma, B. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats. Brain Res., 2016, 1630, 83-97. doi: 10.1016/j.brainres.2015.10.052 PMID: 26551768
  152. Kumar, H.; Sharma, B.M.; Sharma, B. Benefits of agomelatine in behavioral, neurochemical and blood brain barrier alterations in prenatal valproic acid induced autism spectrum disorder. Neurochem. Int., 2015, 91, 34-45. doi: 10.1016/j.neuint.2015.10.007 PMID: 26498253
  153. Lim, J.S.; Lim, M.Y.; Choi, Y.; Ko, G. Modeling environmental risk factors of autism in mice induces IBD-related gut microbial dysbiosis and hyperserotonemia. Mol. Brain, 2017, 10(1), 14. doi: 10.1186/s13041-017-0292-0 PMID: 28427452
  154. Lucchina, L.; Depino, A.M. Altered peripheral and central inflammatory responses in a mouse model of autism. Autism Res., 2014, 7(2), 273-289. doi: 10.1002/aur.1338 PMID: 24124122
  155. Mirza, R.; Sharma, B. Beneficial effects of pioglitazone, a selective peroxisome proliferator‐activated receptor‐γ agonist in prenatal valproic acid‐induced behavioral and biochemical autistic like features in Wistar rats. Int. J. Dev. Neurosci., 2019, 76(1), 6-16. doi: 10.1016/j.ijdevneu.2019.05.006 PMID: 31128204
  156. Mirza, R.; Sharma, B. Benefits of Fenofibrate in prenatal valproic acid-induced autism spectrum disorder related phenotype in rats. Brain Res. Bull., 2019, 147, 36-46. doi: 10.1016/j.brainresbull.2019.02.003 PMID: 30769127
  157. Mohammadi, S.; Asadi-Shekaari, M.; Basiri, M.; Parvan, M.; Shabani, M.; Nozari, M. Improvement of autistic-like behaviors in adult rats prenatally exposed to valproic acid through early suppression of NMDA receptor function. Psychopharmacology, 2020, 237(1), 199-208. doi: 10.1007/s00213-019-05357-2 PMID: 31595334
  158. Wang, Y.; Zhao, S.; Liu, X.; Zheng, Y.; Li, L.; Meng, S. Oxytocin improves animal behaviors and ameliorates oxidative stress and inflammation in autistic mice. Biomed. Pharmacother., 2018, 107, 262-269. doi: 10.1016/j.biopha.2018.07.148 PMID: 30098544
  159. Wang, J.; Feng, S.; Li, M.; Liu, Y.; Yan, J.; Tang, Y.; Du, D.; Chen, F. Increased expression of Kv10.2 in the hippocampus attenuates valproic acid-induced autism-like behaviors in rats. Neurochem. Res., 2019, 44(12), 2796-2808. doi: 10.1007/s11064-019-02903-4 PMID: 31728858
  160. Tian, Y.; Yabuki, Y.; Moriguchi, S.; Fukunaga, K.; Mao, P.J.; Hong, L.J.; Lu, Y.M.; Wang, R.; Ahmed, M.M.; Liao, M.H.; Huang, J.Y.; Zhang, R.T.; Zhou, T.Y.; Long, S.; Han, F. Melatonin reverses the decreases in hippocampal protein serine/threonine kinases observed in an animal model of autism. J. Pineal Res., 2014, 56(1), 1-11. doi: 10.1111/jpi.12081 PMID: 23952810
  161. Hirsch, M.M.; Deckmann, I.; Fontes-Dutra, M.; Bauer-Negrini, G.; Nunes, G.D.F.; Nunes, W.; Rabelo, B.; Riesgo, R.; Margis, R.; Bambini-Junior, V.; Gottfried, C. Data on social transmission of food preference in a model of autism induced by valproic acid and translational analysis of circulating microRNA. Data Brief, 2018, 18, 1433-1440. doi: 10.1016/j.dib.2018.04.047 PMID: 29904648
  162. Hara, Y.; Ago, Y.; Taruta, A.; Hasebe, S.; Kawase, H.; Tanabe, W.; Tsukada, S.; Nakazawa, T.; Hashimoto, H.; Matsuda, T.; Takuma, K. Risperidone and aripiprazole alleviate prenatal valproic acidinduced abnormalities in behaviors and dendritic spine density in mice. Psychopharmacology., 2017, 234(21), 3217-3228. doi: 10.1007/s00213-017-4703-9 PMID: 28798977
  163. Cuevas-Olguin, R.; Roychowdhury, S.; Banerjee, A.; Garcia-Oscos, F.; Esquivel-Rendon, E.; Bringas, M.E.; Kilgard, M.P.; Flores, G.; Atzori, M. Cerebrolysin prevents deficits in social behavior, repetitive conduct, and synaptic inhibition in a rat model of autism. J. Neurosci. Res., 2017, 95(12), 2456-2468. doi: 10.1002/jnr.24072 PMID: 28609577
  164. Hara, Y.; Ago, Y.; Higuchi, M.; Hasebe, S.; Nakazawa, T.; Hashimoto, H.; Matsuda, T.; Takuma, K. Oxytocin attenuates deficits in social interaction but not recognition memory in a prenatal valproic acid-induced mouse model of autism. Horm. Behav., 2017, 96, 130-136. doi: 10.1016/j.yhbeh.2017.09.013 PMID: 28942000
  165. Hara, Y.; Ago, Y.; Taruta, A.; Katashiba, K.; Hasebe, S.; Takano, E.; Onaka, Y.; Hashimoto, H.; Matsuda, T.; Takuma, K. Improvement by methylphenidate and atomoxetine of social interaction deficits and recognition memory impairment in a mouse model of valproic acid-induced autism. Autism Res., 2016, 9(9), 926-939. doi: 10.1002/aur.1596 PMID: 26714434
  166. Kawase, H.; Ago, Y.; Naito, M.; Higuchi, M.; Hara, Y.; Hasebe, S.; Tsukada, S.; Kasai, A.; Nakazawa, T.; Mishina, T.; Kouji, H.; Takuma, K.; Hashimoto, H. mS-11, a mimetic of the mSin3-binding helix in NRSF, ameliorates social interaction deficits in a prenatal valproic acid-induced autism mouse model. Pharmacol. Biochem. Behav., 2019, 176, 1-5. doi: 10.1016/j.pbb.2018.11.003 PMID: 30419271
  167. Kotajima-Murakami, H.; Kobayashi, T.; Kashii, H.; Sato, A.; Hagino, Y.; Tanaka, M.; Nishito, Y.; Takamatsu, Y.; Uchino, S.; Ikeda, K. Effects of rapamycin on social interaction deficits and gene expression in mice exposed to valproic acid in utero. Mol. Brain, 2019, 12(1), 3. doi: 10.1186/s13041-018-0423-2 PMID: 30621732
  168. Matsuo, K.; Yabuki, Y.; Fukunaga, K. 493. Improvement of social interaction and cognition by oxytocin for autism-like behaviors in valproic acid-exposed rats. Biol. Psychiatry, 2017, 81(10), S200-S201. doi: 10.1016/j.biopsych.2017.02.1101
  169. Olde Loohuis, N.F.M.; Kole, K.; Glennon, J.C.; Karel, P.; Van der Borg, G.; Van Gemert, Y.; Van den Bosch, D.; Meinhardt, J.; Kos, A.; Shahabipour, F.; Tiesinga, P.; van Bokhoven, H.; Martens, G.J.M.; Kaplan, B.B.; Homberg, J.R.; Aschrafi, A. Elevated microRNA-181c and microRNA-30d levels in the enlarged amygdala of the valproic acid rat model of autism. Neurobiol. Dis., 2015, 80, 42-53. doi: 10.1016/j.nbd.2015.05.006 PMID: 25986729
  170. Wang, X.; Tao, J.; Qiao, Y.; Luo, S.; Zhao, Z.; Gao, Y.; Guo, J.; Kong, J.; Chen, C.; Ge, L.; Zhang, B.; Guo, P.; Liu, L.; Song, Y. Gastrodin rescues autistic-like phenotypes in valproic acid-induced animal model. Front. Neurol., 2018, 9, 1052. doi: 10.3389/fneur.2018.01052 PMID: 30581411
  171. Zhang, Y.; Yang, C.; Yuan, G.; Wang, Z.; Cui, W.; Li, R. Sulindac attenuates valproic acid-induced oxidative stress levels in primary cultured cortical neurons and ameliorates repetitive/stereotypic-like movement disorders in Wistar rats prenatally exposed to valproic acid. Int. J. Mol. Med., 2015, 35(1), 263-270. doi: 10.3892/ijmm.2014.1996 PMID: 25384498
  172. Eissa, N.; Azimullah, S.; Jayaprakash, P.; Jayaraj, R.L.; Reiner, D.; Ojha, S.K.; Beiram, R.; Stark, H.; Łażewska, D.; Kieć-Kononowicz, K.; Sadek, B. The dual-active histamine H3 receptor antagonist and acetylcholine esterase inhibitor E100 ameliorates stereotyped repetitive behavior and neuroinflammmation in sodium valproate induced autism in mice. Chem. Biol. Interact., 2019, 312, 108775. doi: 10.1016/j.cbi.2019.108775 PMID: 31369746
  173. Hara, Y.; Takuma, K.; Takano, E.; Katashiba, K.; Taruta, A.; Higashino, K.; Hashimoto, H.; Ago, Y.; Matsuda, T. Reduced prefrontal dopaminergic activity in valproic acid-treated mouse autism model. Behav. Brain Res., 2015, 289, 39-47. doi: 10.1016/j.bbr.2015.04.022 PMID: 25907743
  174. Zhang, Y.; Sun, Y.; Wang, F.; Wang, Z.; Peng, Y.; Li, R. Downregulating the canonical Wnt/β-catenin signaling pathway attenuates the susceptibility to autism-like phenotypes by decreasing oxidative stress. Neurochem. Res., 2012, 37(7), 1409-1419. doi: 10.1007/s11064-012-0724-2 PMID: 22374471
  175. Anshu, K.; Nair, A.K.; Kumaresan, U.D.; Kutty, B.M.; Srinath, S.; Laxmi, T.R. Altered attentional processing in male and female rats in a prenatal valproic acid exposure model of autism spectrum disorder. Autism Res., 2017, 10(12), 1929-1944. doi: 10.1002/aur.1852 PMID: 28851114
  176. Favre, M.; ô, R.; La Mendola, D.; Meystre, J.; Christodoulou, D.; Cochrane, M.J.; Markram, H.; Markram, K. Predictable enriched environment prevents development of hyper-emotionality in the VPA rat model of autism. Front. Neurosci., 2015, 9(MAR), 127. doi: 10.3389/fnins.2015.00127 PMID: 26089770
  177. Foley, A.G.; Gannon, S.; Rombach-Mullan, N.; Prendergast, A.; Barry, C.; Cassidy, A.W.; Regan, C.M. Class I histone deacetylase inhibition ameliorates social cognition and cell adhesion molecule plasticity deficits in a rodent model of autism spectrum disorder. Neuropharmacology, 2012, 63(4), 750-760. doi: 10.1016/j.neuropharm.2012.05.042 PMID: 22683514
  178. Foley, A.G.; Cassidy, A.W.; Regan, C.M. Pentyl-4-yn-VPA, a histone deacetylase inhibitor, ameliorates deficits in social behavior and cognition in a rodent model of autism spectrum disorders. Eur. J. Pharmacol., 2014, 727(1), 80-86. doi: 10.1016/j.ejphar.2014.01.050 PMID: 24486700
  179. Win-Shwe, T.T.; Nway, N.C.; Imai, M.; Lwin, T.T.; Mar, O.; Watanabe, H. Social behavior, neuroimmune markers and glutamic acid decarboxylase levels in a rat model of valproic acid-induced autism. J. Toxicol. Sci., 2018, 43(11), 631-643. doi: 10.2131/jts.43.631 PMID: 30404997
  180. Schneider, T.; Roman, A.; Basta-Kaim, A.; Kubera, M.; Budziszewska, B.; Schneider, K.; Przewłocki, R. Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology, 2008, 33(6), 728-740. doi: 10.1016/j.psyneuen.2008.02.011 PMID: 18396377
  181. Banerjee, A.; Engineer, C.T.; Sauls, B.L.; Morales, A.A.; Kilgard, M.P.; Ploski, J.E. Abnormal emotional learning in a rat model of autism exposed to valproic acid in utero. Front. Behav. Neurosci., 2014, 8(387), 387. doi: 10.3389/fnbeh.2014.00387 PMID: 25429264
  182. Kumaravel, P.; Melchias, G.; Vasanth, N.; Manivasagam, T. Epigallocatechin gallate attenuates behavioral defects in sodium valproate induced autism rat model. Res. J. Pharm. Technol., 2017, 10(5), 1477. doi: 10.5958/0974-360X.2017.00260.8
  183. Song, T.J.; Lan, X.Y.; Wei, M.P.; Zhai, F.J.; Boeckers, T.M.; Wang, J.N.; Yuan, S.; Jin, M.Y.; Xie, Y.F.; Dang, W.W.; Zhang, C.; Schön, M.; Song, P.W.; Qiu, M.H.; Song, Y.Y.; Han, S.P.; Han, J.S.; Zhang, R. Altered behaviors and impaired synaptic function in a novel rat model with a complete shank3 deletion. Front. Cell. Neurosci., 2019, 13, 111. doi: 10.3389/fncel.2019.00111 PMID: 30971895
  184. Watanabe, S.; Kurotani, T.; Oga, T.; Noguchi, J.; Isoda, R.; Nakagami, A.; Sakai, K.; Nakagaki, K.; Sumida, K.; Hoshino, K.; Saito, K.; Miyawaki, I.; Sekiguchi, M.; Wada, K.; Minamimoto, T.; Ichinohe, N. Functional and molecular characterization of a non-human primate model of autism spectrum disorder shows similarity with the human disease. Nat. Commun., 2021, 12(1), 5388. doi: 10.1038/s41467-021-25487-6 PMID: 34526497
  185. Zhao, H.; Wang, Q.; Yan, T.; Zhang, Y.; Xu, H.; Yu, H.; Tu, Z.; Guo, X.; Jiang, Y.; Li, X.; Zhou, H.; Zhang, Y.Q. Maternal valproic acid exposure leads to neurogenesis defects and autism-like behaviors in non-human primates. Transl. Psychiatry, 2019, 9(1), 267. doi: 10.1038/s41398-019-0608-1 PMID: 31636273
  186. Yasue, M.; Nakagami, A.; Banno, T.; Nakagaki, K.; Ichinohe, N.; Kawai, N. Indifference of marmosets with prenatal valproate exposure to third-party non-reciprocal interactions with otherwise avoided non-reciprocal individuals. Behav. Brain Res., 2015, 292, 323-326. doi: 10.1016/j.bbr.2015.06.006 PMID: 26133500
  187. Sgadò, P.; Rosa-Salva, O.; Versace, E.; Vallortigara, G. Embryonic exposure to valproic acid impairs social predispositions of newly-hatched chicks. Sci. Rep., 2018, 8(1), 5919. doi: 10.1038/s41598-018-24202-8 PMID: 29650996
  188. Lorenzi, E.; Pross, A.; Rosa-Salva, O.; Versace, E.; Sgadò, P.; Vallortigara, G. Embryonic exposure to valproic acid affects social predispositions for dynamic cues of animate motion in newly-hatched chicks. Front. Physiol., 2019, 10, 501. doi: 10.3389/fphys.2019.00501 PMID: 31114510
  189. Adiletta, A.; Pedrana, S.; Rosa-Salva, O.; Sgadò, P. Spontaneous visual preference for face-like stimuli is impaired in newly-hatched domestic chicks exposed to valproic acid during embryogenesis. Front. Behav. Neurosci., 2021, 15, 733140. doi: 10.3389/fnbeh.2021.733140 PMID: 34858146
  190. Matsushima, T.; Miura, M.; Patzke, N.; Toji, N.; Wada, K.; Ogura, Y. Fetal blockade of nicotinic acetylcholine transmission causes autism-like impairment of biological motion preference in the neonatal chick. Cereb. Cortex, 2022, tgac041. doi: 10.1093/texcom/tgac041
  191. Nishigori, H.; Kagami, K.; Takahashi, A.; Tezuka, Y.; Sanbe, A.; Nishigori, H. Impaired social behavior in chicks exposed to sodium valproate during the last week of embryogenesis. Psychopharmacology, 2013, 227(3), 393-402. doi: 10.1007/s00213-013-2979-y PMID: 23371491
  192. Zachar, G.; Tóth, A.S.; Gerecsei, L.I.; Zsebők, S.; Ádám, Á.; Csillag, A. Valproate exposure in ovo attenuates the acquisition of social preferences of young post-hatch domestic chicks. Front. Physiol., 2019, 10, 881. doi: 10.3389/fphys.2019.00881 PMID: 31379596
  193. Chen, J.; Lei, L.; Tian, L.; Hou, F.; Roper, C.; Ge, X.; Zhao, Y.; Chen, Y.; Dong, Q.; Tanguay, R.L.; Huang, C. Developmental and behavioral alterations in zebrafish embryonically exposed to valproic acid (VPA): An aquatic model for autism. Neurotoxicol. Teratol., 2018, 66, 8-16. doi: 10.1016/j.ntt.2018.01.002 PMID: 29309833
  194. Dwivedi, S.; Medishetti, R.; Rani, R.; Sevilimedu, A.; Kulkarni, P.; Yogeeswari, P. Larval zebrafish model for studying the effects of valproic acid on neurodevelopment: An approach towards modeling autism. J. Pharmacol. Toxicol. Methods, 2019, 95, 56-65. doi: 10.1016/j.vascn.2018.11.006 PMID: 30500431
  195. Zimmermann, F.F.; Gaspary, K.V.; Leite, C.E.; De Paula, C.G.; Bonan, C.D. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): A developmental behavior analysis. Neurotoxicol. Teratol., 2015, 52(Pt A), 36-41. doi: 10.1016/j.ntt.2015.10.002 PMID: 26477937
  196. Baronio, D.; Puttonen, H.A.J.; Sundvik, M.; Semenova, S.; Lehtonen, E.; Panula, P. Embryonic exposure to valproic acid affects the histaminergic system and the social behaviour of adult zebrafish (Danio rerio). Br. J. Pharmacol., 2018, 175(5), 797-809. doi: 10.1111/bph.14124 PMID: 29235100
  197. Bell, M.R. Comparing postnatal development of gonadal hormones and associated social behaviors in rats, mice, and humans. Endocrinology, 2018, 159(7), 2596-2613. doi: 10.1210/en.2018-00220 PMID: 29767714
  198. Carter, M. Animal behavior. In: Guide to Research Techniques in Neuroscience; Elsevier, 2015; pp. 39-71. doi: 10.1016/B978-0-12-800511-8.00002-2
  199. Rudie, J.D.; Brown, J.A.; Beck-Pancer, D.; Hernandez, L.M.; Dennis, E.L.; Thompson, P.M.; Bookheimer, S.Y.; Dapretto, M. Altered functional and structural brain network organization in autism. Neuroimage Clin., 2013, 2, 79-94. doi: 10.1016/j.nicl.2012.11.006 PMID: 24179761
  200. Zhao, Y.; Chen, H.; Li, Y.; Lv, J.; Jiang, X.; Ge, F.; Zhang, T.; Zhang, S.; Ge, B.; Lyu, C.; Zhao, S.; Han, J.; Guo, L.; Liu, T. Connectome-scale group-wise consistent resting-state network analysis in autism spectrum disorder. Neuroimage Clin., 2016, 12, 23-33. doi: 10.1016/j.nicl.2016.06.004 PMID: 27358766
  201. Guo, X.; Duan, X.; Chen, H.; He, C.; Xiao, J.; Han, S.; Fan, Y.S.; Guo, J.; Chen, H. Altered inter‐ and intrahemispheric functional connectivity dynamics in autistic children. Hum. Brain Mapp., 2020, 41(2), 419-428. doi: 10.1002/hbm.24812 PMID: 31600014
  202. Uzunova, G.; Pallanti, S.; Hollander, E. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. World J. Biol. Psychiatry, 2016, 17(3), 174-186. doi: 10.3109/15622975.2015.1085597 PMID: 26469219
  203. Hampson, D.R.; Blatt, G.J. Autism spectrum disorders and neuropathology of the cerebellum. Front. Neurosci., 2015, 9, 420. doi: 10.3389/fnins.2015.00420 PMID: 26594141
  204. D’Mello, A.M.; Crocetti, D.; Mostofsky, S.H.; Stoodley, C.J. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. Neuroimage Clin., 2015, 7, 631-639. doi: 10.1016/j.nicl.2015.02.007 PMID: 25844317
  205. Hanaie, R.; Mohri, I.; Kagitani-Shimono, K.; Tachibana, M.; Azuma, J.; Matsuzaki, J.; Watanabe, Y.; Fujita, N.; Taniike, M. Altered microstructural connectivity of the superior cerebellar peduncle is related to motor dysfunction in children with autistic spectrum disorders. Cerebellum, 2013, 12(5), 645-656. doi: 10.1007/s12311-013-0475-x PMID: 23564050
  206. Bauman, M.L.; Kemper, T.L. Neuroanatomic observations of the brain in autism: A review and future directions. Int. J. Dev. Neurosci., 2005, 23(2-3), 183-187. doi: 10.1016/j.ijdevneu.2004.09.006 PMID: 15749244
  207. Pang, Y.; Fan, L-W. Dysregulation of neurogenesis by neuroinflammation: key differences in neurodevelopmental and neurological disorders. Neural Regen. Res., 2017, 12(3), 366-371. doi: 10.4103/1673-5374.202926 PMID: 28469641
  208. Subramanian, M.; Timmerman, C.K.; Schwartz, J.L.; Pham, D.L.; Meffert, M.K. Characterizing autism spectrum disorders by key biochemical pathways. Front. Neurosci., 2015, 9, 313. doi: 10.3389/fnins.2015.00313 PMID: 26483618
  209. Chen, O.; Tahmazian, I.; Ferrara, H.J.; Hu, B.; Chomiak, T. The early overgrowth theory of autism spectrum disorder: Insight into convergent mechanisms from valproic acid exposure and translational models. In: Progress in Molecular Biology and Translational Science; Elsevier, 2020; pp. 275-300.
  210. Libero, L.E.; DeRamus, T.P.; Lahti, A.C.; Deshpande, G.; Kana, R.K. Multimodal neuroimaging based classification of autism spectrum disorder using anatomical, neurochemical, and white matter correlates. Cortex, 2015, 66, 46-59. doi: 10.1016/j.cortex.2015.02.008 PMID: 25797658
  211. Mraz, K.D.; Green, J.; Dumont-Mathieu, T.; Makin, S.; Fein, D. Correlates of head circumference growth in infants later diagnosed with autism spectrum disorders. J. Child Neurol., 2007, 22(6), 700-713. doi: 10.1177/0883073807304005 PMID: 17641255
  212. Lainhart, J.; Piven, J.; Wzorek, M.; Landa, R.; Santangelo, S.L.; Coon, H.; Folstein, S. Macrocephaly in children and adults with autism. J. Am. Acad. Child Adolesc. Psychiatry, 1997, 36(2), 282-290. doi: 10.1097/00004583-199702000-00019 PMID: 9031582
  213. Sacco, R.; Gabriele, S.; Persico, A.M. Head circumference and brain size in autism spectrum disorder: A systematic review and meta-analysis. Psychiatry Res. Neuroimaging, 2015, 234(2), 239-251. doi: 10.1016/j.pscychresns.2015.08.016 PMID: 26456415
  214. Nordahl, C.W.; Braunschweig, D.; Iosif, A.M.; Lee, A.; Rogers, S.; Ashwood, P.; Amaral, D.G.; Van de Water, J. Maternal autoantibodies are associated with abnormal brain enlargement in a subgroup of children with autism spectrum disorder. Brain Behav. Immun., 2013, 30, 61-65. doi: 10.1016/j.bbi.2013.01.084 PMID: 23395715
  215. Surén, P.; Stoltenberg, C.; Bresnahan, M.; Hirtz, D.; Lie, K.K.; Lipkin, W.I.; Magnus, P.; Reichborn-Kjennerud, T.; Schjølberg, S.; Susser, E.; Øyen, A.S.; Li, L.; Hornig, M. Early growth patterns in children with autism. Epidemiology, 2013, 24(5), 660-670. doi: 10.1097/EDE.0b013e31829e1d45 PMID: 23867813
  216. Lainhart, J.E.; Bigler, E.D.; Bocian, M.; Coon, H.; Dinh, E.; Dawson, G.; Deutsch, C.K.; Dunn, M.; Estes, A.; Tager-Flusberg, H.; Folstein, S.; Hepburn, S.; Hyman, S.; McMahon, W.; Minshew, N.; Munson, J.; Osann, K.; Ozonoff, S.; Rodier, P.; Rogers, S.; Sigman, M.; Spence, M.A.; Stodgell, C.J.; Volkmar, F. Head circumference and height in autism: A study by the collaborative program of excellence in autism. Am. J. Med. Genet. A., 2006, 140A(21), 2257-2274. doi: 10.1002/ajmg.a.31465 PMID: 17022081
  217. Courchesne, E.; Mouton, P.R.; Calhoun, M.E.; Semendeferi, K.; Ahrens-Barbeau, C.; Hallet, M.J.; Barnes, C.C.; Pierce, K. Neuron number and size in prefrontal cortex of children with autism. JAMA, 2011, 306(18), 2001-2010. doi: 10.1001/jama.2011.1638 PMID: 22068992
  218. Marchetto, M.C.; Belinson, H.; Tian, Y.; Freitas, B.C.; Fu, C.; Vadodaria, K.C.; Beltrao-Braga, P.C.; Trujillo, C.A.; Mendes, A.P.D.; Padmanabhan, K.; Nunez, Y.; Ou, J.; Ghosh, H.; Wright, R.; Brennand, K.J.; Pierce, K.; Eichenfield, L.; Pramparo, T.; Eyler, L.T.; Barnes, C.C.; Courchesne, E.; Geschwind, D.H.; Gage, F.H.; Wynshaw-Boris, A.; Muotri, A.R. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol. Psychiatry, 2017, 22(6), 820-835. doi: 10.1038/mp.2016.95 PMID: 27378147
  219. Hutsler, J.J.; Love, T.; Zhang, H. Histological and magnetic resonance imaging assessment of cortical layering and thickness in autism spectrum disorders. Biol. Psychiatry, 2007, 61(4), 449-457. doi: 10.1016/j.biopsych.2006.01.015 PMID: 16580643
  220. Wegiel, J.; Kuchna, I.; Nowicki, K.; Imaki, H.; Wegiel, J.; Marchi, E.; Ma, S.Y.; Chauhan, A.; Chauhan, V.; Bobrowicz, T.W.; de Leon, M.; Louis, L.A.S.; Cohen, I.L.; London, E.; Brown, W.T.; Wisniewski, T. The neuropathology of autism: Defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol., 2010, 119(6), 755-770. doi: 10.1007/s00401-010-0655-4 PMID: 20198484
  221. Hsieh, J.; Nakashima, K.; Kuwabara, T.; Mejia, E.; Gage, F.H. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc. Natl. Acad. Sci., 2004, 101(47), 16659-16664. doi: 10.1073/pnas.0407643101 PMID: 15537713
  222. Go, H.S.; Kim, K.C.; Choi, C.S.; Jeon, S.J.; Kwon, K.J.; Han, S.H.; Lee, J.; Cheong, J.H.; Ryu, J.H.; Kim, C.H.; Ko, K.H.; Shin, C.Y. Prenatal exposure to valproic acid increases the neural progenitor cell pool and induces macrocephaly in rat brain via a mechanism involving the GSK-3β/β-catenin pathway. Neuropharmacology, 2012, 63(6), 1028-1041. doi: 10.1016/j.neuropharm.2012.07.028 PMID: 22841957
  223. Bicker, F.; Nardi, L.; Maier, J.; Vasic, V.; Schmeisser, M.J. Criss‐crossing autism spectrum disorder and adult neurogenesis. J. Neurochem., 2021, 159(3), 452-478. doi: 10.1111/jnc.15501 PMID: 34478569
  224. Gilbert, J.; Man, H.Y. Fundamental elements in autism: From neurogenesis and neurite growth to synaptic plasticity. Front. Cell. Neurosci., 2017, 11, 359. doi: 10.3389/fncel.2017.00359 PMID: 29209173
  225. Watanabe, Y.; Murakami, T.; Kawashima, M.; Hasegawa-Baba, Y.; Mizukami, S.; Imatanaka, N.; Akahori, Y.; Yoshida, T.; Shibutani, M. Maternal exposure to valproic acid primarily targets interneurons followed by late effects on neurogenesis in the hippocampal dentate gyrus in rat offspring. Neurotox. Res., 2017, 31(1), 46-62. doi: 10.1007/s12640-016-9660-2 PMID: 27566479
  226. Ingram, J.L.; Peckham, S.M.; Tisdale, B.; Rodier, P.M. Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicol. Teratol., 2000, 22(3), 319-324. doi: 10.1016/S0892-0362(99)00083-5 PMID: 10840175
  227. Mowery, T.M.; Wilson, S.M.; Kostylev, P.V.; Dina, B.; Buchholz, J.B.; Prieto, A.L.; Garraghty, P.E. Embryological exposure to valproic acid disrupts morphology of the deep cerebellar nuclei in a sexually dimorphic way. Int. J. Dev. Neurosci., 2015, 40(1), 15-23. doi: 10.1016/j.ijdevneu.2014.10.003 PMID: 25447790
  228. Wang, R.; Tan, J.; Guo, J.; Zheng, Y.; Han, Q.; So, K.F.; Yu, J.; Zhang, L. Aberrant development and synaptic transmission of cerebellar cortex in a VPA induced mouse autism model. Front. Cell. Neurosci., 2018, 12, 500. doi: 10.3389/fncel.2018.00500 PMID: 30622458
  229. Gogolla, N.; LeBlanc, J.J.; Quast, K.B.; Südhof, T.C.; Fagiolini, M.; Hensch, T.K. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J. Neurodev. Disord., 2009, 1(2), 172-181. doi: 10.1007/s11689-009-9023-x PMID: 20664807
  230. Hara, Y.; Maeda, Y.; Kataoka, S.; Ago, Y.; Takuma, K.; Matsuda, T. Effect of prenatal valproic acid exposure on cortical morphology in female mice. J. Pharmacol. Sci., 2012, 118(4), 543-546. doi: 10.1254/jphs.12025SC PMID: 22447305
  231. Fujimura, K.; Mitsuhashi, T.; Shibata, S.; Shimozato, S.; Takahashi, T. In utero exposure to valproic acid induces neocortical dysgenesis via dysregulation of neural progenitor cell proliferation/differentiation. J. Neurosci., 2016, 36(42), 10908-10919. doi: 10.1523/JNEUROSCI.0229-16.2016 PMID: 27798144
  232. Dixon, S.C.; Calder, B.J.; Lilya, S.M.; Davies, B.M.; Martin, A.; Peterson, M.; Hansen, J.M.; Suli, A. Valproic acid affects neurogenesis during early optic tectum development in zebrafish. Biol. Open, 2023, 12(1), bio059567. doi: 10.1242/bio.059567 PMID: 36537579
  233. Dozawa, M.; Kono, H.; Sato, Y.; Ito, Y.; Tanaka, H.; Ohshima, T. Valproic acid, a histone deacetylase inhibitor, regulates cell proliferation in the adult zebrafish optic tectum. Dev. Dyn., 2014, 243(11), 1401-1415. doi: 10.1002/dvdy.24173 PMID: 25091230
  234. Chen, A.; Wang, M.; Xu, C.; Zhao, Y.; Xian, P.; Li, Y.; Zheng, W.; Yi, X.; Wu, S.; Wang, Y. Glycolysis mediates neuron specific histone acetylation in valproic acid-induced human excitatory neuron differentiation. Front. Mol. Neurosci., 2023, 16, 1151162. doi: 10.3389/fnmol.2023.1151162 PMID: 37089691
  235. Wang, H. Modeling neurological diseases with human brain organoids. Front. Synaptic Neurosci., 2018, 10, 15. doi: 10.3389/fnsyn.2018.00015 PMID: 29937727
  236. Trujillo, C.A.; Muotri, A.R. Brain Organoids and the Study of Neurodevelopment. Trends Mol. Med., 2018, 24(12), 982-990. doi: 10.1016/j.molmed.2018.09.005 PMID: 30377071
  237. Hansen, A.H.; Hippenmeyer, S. Non-cell-autonomous mechanisms in radial projection neuron migration in the developing cerebral cortex. Front. Cell Dev. Biol., 2020, 8, 574382. doi: 10.3389/fcell.2020.574382 PMID: 33102480
  238. Gao, P.; Sultan, K.T.; Zhang, X.J.; Shi, S.H. Lineage-dependent circuit assembly in the neocortex. Development, 2013, 140(13), 2645-2655. doi: 10.1242/dev.087668 PMID: 23757410
  239. Stoner, R.; Chow, M.L.; Boyle, M.P.; Sunkin, S.M.; Mouton, P.R.; Roy, S.; Wynshaw-Boris, A.; Colamarino, S.A.; Lein, E.S.; Courchesne, E. Patches of disorganization in the neocortex of children with autism. N. Engl. J. Med., 2014, 370(13), 1209-1219. doi: 10.1056/NEJMoa1307491 PMID: 24670167
  240. Bailey, A.; Luthert, P.; Dean, A.; Harding, B.; Janota, I.; Montgomery, M.; Rutter, M.; Lantos, P. A clinicopathological study of autism. Brain, 1998, 121(5), 889-905. doi: 10.1093/brain/121.5.889 PMID: 9619192
  241. Kemper, T.L.; Bauman, M. Neuropathology of infantile autism. J. Neuropathol. Exp. Neurol., 1998, 57(7), 645-652. doi: 10.1097/00005072-199807000-00001 PMID: 9690668
  242. Simms, M.L.; Kemper, T.L.; Timbie, C.M.; Bauman, M.L.; Blatt, G.J. The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathol., 2009, 118(5), 673-684. doi: 10.1007/s00401-009-0568-2 PMID: 19590881
  243. Goldowitz, D.; Hamre, K. The cells and molecules that make a cerebellum. Trends Neurosci., 1998, 21(9), 375-382. doi: 10.1016/S0166-2236(98)01313-7 PMID: 9735945
  244. Sakai, A.; Matsuda, T.; Doi, H.; Nagaishi, Y.; Kato, K.; Nakashima, K. Ectopic neurogenesis induced by prenatal antiepileptic drug exposure augments seizure susceptibility in adult mice. Proc. Natl. Acad. Sci., 2018, 115(16), 4270-4275. doi: 10.1073/pnas.1716479115 PMID: 29610328
  245. Choe, Y.; Pleasure, S.J. Wnt signaling regulates intermediate precursor production in the postnatal dentate gyrus by regulating CXCR4 expression. Dev. Neurosci., 2012, 34(6), 502-514. doi: 10.1159/000345353 PMID: 23257686
  246. Schultheiß, C.; Abe, P.; Hoffmann, F.; Mueller, W.; Kreuder, A.E.; Schütz, D.; Haege, S.; Redecker, C.; Keiner, S.; Kannan, S.; Claasen, J.H.; Pfrieger, F.W.; Stumm, R. CXCR4 prevents dispersion of granule neuron precursors in the adult dentate gyrus. Hippocampus, 2013, 23(12), 1345-1358. doi: 10.1002/hipo.22180 PMID: 23929505
  247. Tsai, L.K.; Leng, Y.; Wang, Z.; Leeds, P.; Chuang, D.M. The mood stabilizers valproic acid and lithium enhance mesenchymal stem cell migration via distinct mechanisms. Neuropsychopharmacology, 2010, 35(11), 2225-2237. doi: 10.1038/npp.2010.97 PMID: 20613717
  248. Peñagarikano, O.; Geschwind, D.H. What does CNTNAP2 reveal about autism spectrum disorder? Trends Mol. Med., 2012, 18(3), 156-163. doi: 10.1016/j.molmed.2012.01.003 PMID: 22365836
  249. Tahirovic, S.; Bradke, F. Neuronal polarity. Cold Spring Harb. Perspect. Biol., 2009, 1(3), a001644-a001644. doi: 10.1101/cshperspect.a001644 PMID: 20066106
  250. Migliore, M.; Shepherd, G.M. An integrated approach to classifying neuronal phenotypes. Nat. Rev. Neurosci., 2005, 6(10), 810-818. doi: 10.1038/nrn1769 PMID: 16276357
  251. Sporns, O. Structure and function of complex brain networks. Dialogues Clin. Neurosci., 2013, 15(3), 247-262. doi: 10.31887/DCNS.2013.15.3/osporns PMID: 24174898
  252. Azmitia, E.C.; Singh, J.S.; Hou, X.P.; Wegiel, J. Dystrophic serotonin axons in postmortem brains from young autism patients. Anat. Rec., 2011, 294(10), 1653-1662. doi: 10.1002/ar.21243 PMID: 21901837
  253. Azmitia, E.C.; Singh, J.S.; Whitaker-Azmitia, P.M. Increased serotonin axons (immunoreactive to 5-HT transporter) in postmortem brains from young autism donors. Neuropharmacology, 2011, 60(7-8), 1347-1354. doi: 10.1016/j.neuropharm.2011.02.002 PMID: 21329710
  254. Casanova, M.F.; Buxhoeveden, D.P.; Switala, A.E.; Roy, E. Minicolumnar pathology in autism. Neurology, 2002, 58(3), 428-432. doi: 10.1212/WNL.58.3.428 PMID: 11839843
  255. Raymond, G.V.; Bauman, M.L.; Kemper, T.L. Hippocampus in autism: A Golgi analysis. Acta Neuropathol., 1995, 91(1), 117-119. doi: 10.1007/s004010050401 PMID: 8773156
  256. Mukaetova-Ladinska, E.B.; Arnold, H.; Jaros, E.; Perry, R.; Perry, E. Depletion of MAP2 expression and laminar cytoarchitectonic changes in dorsolateral prefrontal cortex in adult autistic individuals. Neuropathol. Appl. Neurobiol., 2004, 30(6), 615-623. doi: 10.1111/j.1365-2990.2004.00574.x PMID: 15541002
  257. Hutsler, J.J.; Zhang, H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res., 2010, 1309, 83-94. doi: 10.1016/j.brainres.2009.09.120 PMID: 19896929
  258. Martínez-Cerdeño, V.; Camacho, J.; Fox, E.; Miller, E.; Ariza, J.; Kienzle, D.; Plank, K.; Noctor, S.C.; Van de Water, J. Prenatal exposure to autism-specific maternal autoantibodies alters proliferation of cortical neural precursor cells, enlarges brain, and increases neuronal size in adult animals. Cereb. Cortex, 2016, 26(1), 374-383. doi: 10.1093/cercor/bhu291 PMID: 25535268
  259. Snow, W.M.; Hartle, K.; Ivanco, T.L. Altered morphology of motor cortex neurons in the VPA rat model of autism. Dev. Psychobiol., 2008, 50(7), 633-639. doi: 10.1002/dev.20337 PMID: 18985861
  260. Mychasiuk, R.; Richards, S.; Nakahashi, A.; Kolb, B.; Gibb, R. Effects of rat prenatal exposure to valproic acid on behaviour and neuro-anatomy. Dev. Neurosci., 2012, 34(2-3), 268-276. doi: 10.1159/000341786 PMID: 22890088
  261. Muhsen, M.; Youngs, J.; Riu, A.; Gustafsson, J.Å.; Kondamadugu, V.S.; Garyfalidis, E.; Bondesson, M. Folic acid supplementation rescues valproic acid‐induced developmental neurotoxicity and behavioral alterations in zebrafish embryos. Epilepsia, 2021, 62(7), 1689-1700. doi: 10.1111/epi.16915 PMID: 33997963
  262. Jacob, J.; Ribes, V.; Moore, S.; Constable, SC.; Sasai, N.; Gerety, SS. Valproic acid silencing of ascl1b/ascl1 results in the failure of serotonergic differentiation in a zebrafish model of fetal valproate syndrome. Dis. Model. Mech., 2013, 7(1), 107-117.
  263. Kawanai, T.; Ago, Y.; Watanabe, R.; Inoue, A.; Taruta, A.; Onaka, Y.; Hasebe, S.; Hashimoto, H.; Matsuda, T.; Takuma, K. Prenatal exposure to histone deacetylase inhibitors affects gene expression of autism-related molecules and delays neuronal maturation. Neurochem. Res., 2016, 41(10), 2574-2584. doi: 10.1007/s11064-016-1969-y PMID: 27300699
  264. Lee, E.; Lee, J.; Kim, E. Excitation/inhibition imbalance in animal models of autism spectrum disorders. Biol. Psychiatry, 2017, 81(10), 838-847. doi: 10.1016/j.biopsych.2016.05.011 PMID: 27450033
  265. Rubenstein, J.L.R.; Merzenich, M.M. Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav., 2003, 2(5), 255-267. doi: 10.1034/j.1601-183X.2003.00037.x PMID: 14606691
  266. Tong, F.; Meng, M.; Blake, R. Neural bases of binocular rivalry. Trends Cogn. Sci., 2006, 10(11), 502-511. doi: 10.1016/j.tics.2006.09.003 PMID: 16997612
  267. van Loon, A.M.; Knapen, T.; Scholte, H.S.; St John-Saaltink, E.; Donner, T.H.; Lamme, V.A.F. GABA shapes the dynamics of bistable perception. Curr. Biol., 2013, 23(9), 823-827. doi: 10.1016/j.cub.2013.03.067 PMID: 23602476
  268. Choi, Y.B.; Mentch, J.; Haskins, A.J.; Van Wicklin, C.; Robertson, C.E. Visual processing in genetic conditions linked to autism: A behavioral study of binocular rivalry in individuals with 16p11.2 deletions and age‐matched controls. Autism Res., 2023, 16(4), 831-840. doi: 10.1002/aur.2901 PMID: 36751102
  269. Robertson, C.E.; Ratai, E.M.; Kanwisher, N. Reduced GABAergic action in the autistic brain. Curr. Biol., 2016, 26(1), 80-85. doi: 10.1016/j.cub.2015.11.019 PMID: 26711497
  270. Casanova, M. Cortical organization. Transl. Neurosci., 2010, 1(1), 62-71. doi: 10.2478/v10134-010-0002-2 PMID: 22754693
  271. Casanova, M.F.; El-Baz, A.; Switala, A. Laws of conservation as related to brain growth, aging, and evolution: Symmetry of the minicolumn. Front. Neuroanat., 2011, 5, 66. doi: 10.3389/fnana.2011.00066 PMID: 22207838
  272. Casanova, M.F.; Van Kooten, I.A.J.; Switala, A.E.; Van Engeland, H.; Heinsen, H.; Steinbusch, H.W.M.; Hof, P.R.; Trippe, J.; Stone, J.; Schmitz, C. Minicolumnar abnormalities in autism. Acta Neuropathol., 2006, 112(3), 287-303. doi: 10.1007/s00401-006-0085-5 PMID: 16819561
  273. McKavanagh, R.; Buckley, E.; Chance, S.A. Wider minicolumns in autism: A neural basis for altered processing? Brain, 2015, 138(7), 2034-2045. doi: 10.1093/brain/awv110 PMID: 25935724
  274. Sapey-Triomphe, L.A.; Lamberton, F.; Sonié, S.; Mattout, J.; Schmitz, C. Tactile hypersensitivity and GABA concentration in the sensorimotor cortex of adults with autism. Autism Res., 2019, 12(4), 562-575. doi: 10.1002/aur.2073 PMID: 30632707
  275. Kolodny, T.; Schallmo, M.P.; Gerdts, J.; Edden, R.A.E.; Bernier, R.A.; Murray, S.O. Concentrations of cortical GABA and glutamate in young adults with autism spectrum disorder. Autism Res., 2020, 13(7), 1111-1129. doi: 10.1002/aur.2300 PMID: 32297709
  276. Oblak, A.L.; Gibbs, T.T.; Blatt, G.J. Decreased GABAB receptors in the cingulate cortex and fusiform gyrus in Autism: Decreased GABAB receptors in autism. J. Neurochem., 2010, 114(5), 1414-1423.
  277. Oblak, A.; Gibbs, T.T.; Blatt, G.J. Decreased GABA A receptors and benzodiazepine binding sites in the anterior cingulate cortex in autism. Autism Res., 2009, 2(4), 205-219. doi: 10.1002/aur.88 PMID: 19650112
  278. Yip, J.; Soghomonian, J.J.; Blatt, G.J. Decreased GAD65 mRNA levels in select subpopulations of neurons in the cerebellar dentate nuclei in autism: An in situ hybridization study. Autism Res., 2009, 2(1), 50-59. doi: 10.1002/aur.62 PMID: 19358307
  279. Yip, J.; Soghomonian, J.J.; Blatt, G.J. IncreasedGAD67 mRNA expression in cerebellar interneurons in autism: Implications for Purkinje cell dysfunction. J. Neurosci. Res., 2008, 86(3), 525-530. doi: 10.1002/jnr.21520 PMID: 17918742
  280. Yip, J.; Soghomonian, J.J.; Blatt, G.J. Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol., 2007, 113(5), 559-568. doi: 10.1007/s00401-006-0176-3 PMID: 17235515
  281. Zhao, H.; Mao, X.; Zhu, C.; Zou, X.; Peng, F.; Yang, W.; Li, B.; Li, G.; Ge, T.; Cui, R. GABAergic system dysfunction in autism spectrum disorders. Front. Cell Dev. Biol., 2022, 9, 781327. doi: 10.3389/fcell.2021.781327 PMID: 35198562
  282. Nelson, S.B.; Valakh, V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron, 2015, 87(4), 684-698. doi: 10.1016/j.neuron.2015.07.033 PMID: 26291155
  283. Martin, H.G.S.; Manzoni, O.J. Late onset deficits in synaptic plasticity in the valproic acid rat model of autism. Front. Cell. Neurosci., 2014, 8, 23. doi: 10.3389/fncel.2014.00023 PMID: 24550781
  284. Iijima, Y.; Behr, K.; Iijima, T.; Biemans, B.; Bischofberger, J.; Scheiffele, P. Distinct defects in synaptic differentiation of neocortical neurons in response to prenatal valproate exposure. Sci. Rep., 2016, 6(1), 27400. doi: 10.1038/srep27400 PMID: 27264355
  285. Kim, J.W.; Park, K.; Kang, R.J.; Gonzales, E.L.T.; Kim, D.G.; Oh, H.A.; Seung, H.; Ko, M.J.; Kwon, K.J.; Kim, K.C.; Lee, S.H.; Chung, C.; Shin, C.Y. Pharmacological modulation of AMPA receptor rescues social impairments in animal models of autism. Neuropsychopharmacology, 2019, 44(2), 314-323. doi: 10.1038/s41386-018-0098-5 PMID: 29899405
  286. Brumback, A.C.; Ellwood, I.T.; Kjaerby, C.; Iafrati, J.; Robinson, S.; Lee, A.T.; Patel, T.; Nagaraj, S.; Davatolhagh, F.; Sohal, V.S. Identifying specific prefrontal neurons that contribute to autism-associated abnormalities in physiology and social behavior. Mol. Psychiatry, 2018, 23(10), 2078-2089. doi: 10.1038/mp.2017.213 PMID: 29112191
  287. Rinaldi, T.; Kulangara, K.; Antoniello, K.; Markram, H. Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proc. Natl. Acad. Sci. USA, 2007, 104(33), 13501-13506. doi: 10.1073/pnas.0704391104 PMID: 17675408
  288. Rinaldi, T.; Perrodin, C.; Markram, H. Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic acid animal model of autism. Front. Neural Circuits, 2008, 2, 4. doi: 10.3389/neuro.04.004.2008 PMID: 18989389
  289. Rinaldi, T.; Silberberg, G.; Markram, H. Hyperconnectivity of local neocortical microcircuitry induced by prenatal exposure to valproic acid. Cereb. Cortex, 2008, 18(4), 763-770. doi: 10.1093/cercor/bhm117 PMID: 17638926
  290. Banerjee, A.; García-Oscos, F.; Roychowdhury, S.; Galindo, L.C.; Hall, S.; Kilgard, M.P.; Atzori, M. Impairment of cortical GABAergic synaptic transmission in an environmental rat model of autism. Int. J. Neuropsychopharmacol., 2013, 16(6), 1309-1318. doi: 10.1017/S1461145712001216 PMID: 23228615
  291. Qi, C.; Chen, A.; Mao, H.; Hu, E.; Ge, J.; Ma, G.; Ren, K.; Xue, Q.; Wang, W.; Wu, S. Excitatory and inhibitory synaptic imbalance caused by brain-derived neurotrophic factor deficits during development in a valproic acid mouse model of autism. Front. Mol. Neurosci., 2022, 15, 860275. doi: 10.3389/fnmol.2022.860275 PMID: 35465089
  292. Bradl, M.; Lassmann, H. Oligodendrocytes: Biology and pathology. Acta Neuropathol., 2010, 119(1), 37-53. doi: 10.1007/s00401-009-0601-5 PMID: 19847447
  293. Kuhn, S.; Gritti, L.; Crooks, D.; Dombrowski, Y. Oligodendrocytes in development, myelin generation and beyond. Cells, 2019, 8(11), 1424. doi: 10.3390/cells8111424 PMID: 31726662
  294. Jakovcevski, I.; Filipovic, R.; Mo, Z.; Rakic, S.; Zecevic, N. Oligodendrocyte development and the onset of myelination in the human fetal brain. Front. Neuroanat., 2009, 3, 5. doi: 10.3389/neuro.05.005.2009 PMID: 19521542
  295. Ackerman, S.D.; Monk, K.R. The scales and tales of myelination: Using zebrafish and mouse to study myelinating glia. Brain Res., 2016, 1641(Pt A), 79-91. doi: 10.1016/j.brainres.2015.10.011 PMID: 26498880
  296. Travers, B.G.; Adluru, N.; Ennis, C.; Tromp, D.P.M.; Destiche, D.; Doran, S.; Bigler, E.D.; Lange, N.; Lainhart, J.E.; Alexander, A.L. Diffusion tensor imaging in autism spectrum disorder: a review. Autism Res., 2012, 5(5), 289-313. doi: 10.1002/aur.1243 PMID: 22786754
  297. Chauhan, A.; Chauhan, V. Oxidative stress in autism. Pathophysiology, 2006, 13(3), 171-181. doi: 10.1016/j.pathophys.2006.05.007 PMID: 16766163
  298. Ameis, S.H.; Lerch, J.P.; Taylor, M.J.; Lee, W.; Viviano, J.D.; Pipitone, J.; Nazeri, A.; Croarkin, P.E.; Voineskos, A.N.; Lai, M.C.; Crosbie, J.; Brian, J.; Soreni, N.; Schachar, R.; Szatmari, P.; Arnold, P.D.; Anagnostou, E. A diffusion tensor imaging study in children with adhd, autism spectrum disorder, OCD, and matched controls: Distinct and non-distinct white matter disruption and dimensional brain-behavior relationships. Am. J. Psychiatry, 2016, 173(12), 1213-1222. doi: 10.1176/appi.ajp.2016.15111435 PMID: 27363509
  299. Graciarena, M.; Seiffe, A.; Nait-Oumesmar, B.; Depino, A.M. Hypomyelination and oligodendroglial alterations in a mouse model of autism spectrum disorder. Front. Cell. Neurosci., 2019, 12, 517. doi: 10.3389/fncel.2018.00517 PMID: 30687009
  300. Courchesne, E.; Karns, C.M.; Davis, H.R.; Ziccardi, R.; Carper, R.A.; Tigue, Z.D.; Chisum, H.J.; Moses, P.; Pierce, K.; Lord, C.; Lincoln, A.J.; Pizzo, S.; Schreibman, L.; Haas, R.H.; Akshoomoff, N.A.; Courchesne, R.Y. Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 2001, 57(2), 245-254. doi: 10.1212/WNL.57.2.245 PMID: 11468308
  301. Dimond, D.; Schuetze, M.; Smith, R.E.; Dhollander, T.; Cho, I.; Vinette, S.; Ten Eycke, K.; Lebel, C.; McCrimmon, A.; Dewey, D.; Connelly, A.; Bray, S. Reduced white matter fiber density in autism spectrum disorder. Cereb. Cortex, 2019, 29(4), 1778-1788. doi: 10.1093/cercor/bhy348 PMID: 30668849
  302. Galvez-Contreras, A.Y.; Zarate-Lopez, D.; Torres-Chavez, A.L.; Gonzalez-Perez, O. Role of oligodendrocytes and myelin in the pathophysiology of autism spectrum disorder. Brain Sci., 2020, 10(12), 951. doi: 10.3390/brainsci10120951 PMID: 33302549
  303. Hong, S.J.; Hyung, B.; Paquola, C.; Bernhardt, B.C. The superficial white matter in autism and its role in connectivity anomalies and symptom severity. Cereb. Cortex, 2019, 29(10), 4415-4425. doi: 10.1093/cercor/bhy321 PMID: 30566613
  304. Carmody, D.P.; Lewis, M. Regional white matter development in children with autism spectrum disorders. Dev. Psychobiol., 2010, 52(8), 755-763. doi: 10.1002/dev.20471 PMID: 20564327
  305. Noriuchi, M.; Kikuchi, Y.; Yoshiura, T.; Kira, R.; Shigeto, H.; Hara, T.; Tobimatsu, S.; Kamio, Y. Altered white matter fractional anisotropy and social impairment in children with autism spectrum disorder. Brain Res., 2010, 1362, 141-149. doi: 10.1016/j.brainres.2010.09.051 PMID: 20858472
  306. Wolff, J.J.; Gerig, G.; Lewis, J.D.; Soda, T.; Styner, M.A.; Vachet, C.; Botteron, K.N.; Elison, J.T.; Dager, S.R.; Estes, A.M.; Hazlett, H.C.; Schultz, R.T.; Zwaigenbaum, L.; Piven, J. Altered corpus callosum morphology associated with autism over the first 2 years of life. Brain, 2015, 138(7), 2046-2058. doi: 10.1093/brain/awv118 PMID: 25937563
  307. Cheon, K.A.; Kim, Y.S.; Oh, S.H.; Park, S.Y.; Yoon, H.W.; Herrington, J.; Nair, A.; Koh, Y.J.; Jang, D.P.; Kim, Y.B.; Leventhal, B.L.; Cho, Z.H.; Castellanos, F.X.; Schultz, R.T. Involvement of the anterior thalamic radiation in boys with high functioning autism spectrum disorders: A Diffusion Tensor Imaging study. Brain Res., 2011, 1417(12), 77-86. doi: 10.1016/j.brainres.2011.08.020 PMID: 21890117
  308. Kumar, A.; Sundaram, S.K.; Sivaswamy, L.; Behen, M.E.; Makki, M.I.; Ager, J.; Janisse, J.; Chugani, H.T.; Chugani, D.C. Alterations in frontal lobe tracts and corpus callosum in young children with autism spectrum disorder. Cereb. Cortex, 2010, 20(9), 2103-2113. doi: 10.1093/cercor/bhp278 PMID: 20019145
  309. Ikuta, T.; Shafritz, K.M.; Bregman, J.; Peters, B.D.; Gruner, P.; Malhotra, A.K.; Szeszko, P.R. Abnormal cingulum bundle development in autism: A probabilistic tractography study. Psychiatry Res. Neuroimaging, 2014, 221(1), 63-68. doi: 10.1016/j.pscychresns.2013.08.002 PMID: 24231056
  310. Nair, A.; Treiber, J.M.; Shukla, D.K.; Shih, P.; Müller, R.A. Impaired thalamocortical connectivity in autism spectrum disorder: A study of functional and anatomical connectivity. Brain, 2013, 136(6), 1942-1955. doi: 10.1093/brain/awt079 PMID: 23739917
  311. Bronzuoli, M.R.; Facchinetti, R.; Ingrassia, D.; Sarvadio, M.; Schiavi, S.; Steardo, L.; Verkhratsky, A.; Trezza, V.; Scuderi, C. Neuroglia in the autistic brain: Evidence from a preclinical model. Mol. Autism, 2018, 9(1), 66. doi: 10.1186/s13229-018-0254-0 PMID: 30603062
  312. Uccelli, N.A.; Codagnone, M.G.; Traetta, M.E.; Levanovich, N.; Rosato Siri, M.V.; Urrutia, L.; Falasco, G.; Vázquez, S.; Pasquini, J.M.; Reinés, A.G. Neurobiological substrates underlying corpus callosum hypoconnectivity and brain metabolic patterns in the valproic acid rat model of autism spectrum disorder. J. Neurochem., 2021, 159(1), 128-144. doi: 10.1111/jnc.15444 PMID: 34081798
  313. Zhou, B.; Yan, X.; Yang, L.; Zheng, X.; Chen, Y.; Liu, Y.; Ren, Y.; Peng, J.; Zhang, Y.; Huang, J.; Tang, L.; Wen, M. Effects of arginine vasopressin on the transcriptome of prefrontal cortex in autistic rat model. J. Cell. Mol. Med., 2022, 26(21), 5493-5505. doi: 10.1111/jcmm.17578 PMID: 36239083
  314. Marie, C.; Clavairoly, A.; Frah, M.; Hmidan, H.; Yan, J.; Zhao, C.; Van Steenwinckel, J.; Daveau, R.; Zalc, B.; Hassan, B.; Thomas, J.L.; Gressens, P.; Ravassard, P.; Moszer, I.; Martin, D.M.; Lu, Q.R.; Parras, C. Oligodendrocyte precursor survival and differentiation requires chromatin remodeling by Chd7 and Chd8. Proc. Natl. Acad. Sci., 2018, 115(35), E8246-E8255. doi: 10.1073/pnas.1802620115 PMID: 30108144
  315. Hanafy, K.A.; Sloane, J.A. Regulation of remyelination in multiple sclerosis. FEBS Lett., 2011, 585(23), 3821-3828. doi: 10.1016/j.febslet.2011.03.048 PMID: 21443876
  316. Boulanger-Bertolus, J.; Pancaro, C.; Mashour, G.A. Increasing role of maternal immune activation in neurodevelopmental disorders. Front. Behav. Neurosci., 2018, 12, 230. doi: 10.3389/fnbeh.2018.00230 PMID: 30344483
  317. Zawadzka, A.; Cieślik, M.; Adamczyk, A. The role of maternal immune activation in the pathogenesis of autism: A review of the evidence, proposed mechanisms and implications for treatment. Int. J. Mol. Sci., 2021, 22(21), 11516. doi: 10.3390/ijms222111516 PMID: 34768946
  318. Rose, S.; Melnyk, S.; Pavliv, O.; Bai, S.; Nick, T.G.; Frye, R.E.; James, S.J. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl. Psychiatry, 2012, 2(7), e134-e134. doi: 10.1038/tp.2012.61 PMID: 22781167
  319. Yockey, L.J.; Iwasaki, A. Interferons and proinflammatory cytokines in pregnancy and fetal development. Immunity, 2018, 49(3), 397-412. doi: 10.1016/j.immuni.2018.07.017 PMID: 30231982
  320. Fox, E.; Amaral, D.; Van de Water, J. Maternal and fetal antibrain antibodies in development and disease. Dev. Neurobiol., 2012, 72(10), 1327-1334. doi: 10.1002/dneu.22052 PMID: 22911883
  321. Heuer, L.; Braunschweig, D.; Ashwood, P.; Van de Water, J.; Campbell, D.B. Association of a MET genetic variant with autism-associated maternal autoantibodies to fetal brain proteins and cytokine expression. Transl. Psychiatry, 2011, 1(10), e48-e48. doi: 10.1038/tp.2011.48 PMID: 22833194
  322. Bilbo, S.D. Block, C.L.; Bolton, J.L.; Hanamsagar, R.; Tran, P.K. Beyond infection - Maternal immune activation by environmental factors, microglial development, and relevance for autism spectrum disorders. Exp. Neurol., 2018, 299(Pt A), pp. 241-251. doi: 10.1016/j.expneurol.2017.07.002 PMID: 28698032
  323. Stubbs, E.G.; Crawford, M.L.; Burger, D.R.; Vandenbark, A.A. Depressed lymphocyte responsiveness in autistic children. J. Autism Child. Schizophr., 1977, 7(1), 49-55. doi: 10.1007/BF01531114 PMID: 139400
  324. Burger, R.A.; Warren, R.P. Possible immunogenetic basis for autism. Ment. Retard. Dev. Disabil. Res. Rev., 1998, 4(2), 137-141. doi: 10.1002/(SICI)1098-2779(1998)4:23.0.CO;2-W
  325. Croonenberghs, J.; Bosmans, E.; Deboutte, D.; Kenis, G.; Maes, M. Activation of the inflammatory response system in autism. Neuropsychobiology, 2002, 45(1), 1-6. doi: 10.1159/000048665 PMID: 11803234
  326. Molloy, C.; Morrow, A.; Meinzenderr, J.; Schleifer, K.; Dienger, K.; Manningcourtney, P.; Altaye, M.; Willskarp, M. Elevated cytokine levels in children with autism spectrum disorder. J. Neuroimmunol., 2006, 172(1-2), 198-205. doi: 10.1016/j.jneuroim.2005.11.007 PMID: 16360218
  327. Jyonouchi, H.; Sun, S.; Le, H. Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. J. Neuroimmunol., 2001, 120(1-2), 170-179. doi: 10.1016/S0165-5728(01)00421-0 PMID: 11694332
  328. Vargas, D.L.; Nascimbene, C.; Krishnan, C.; Zimmerman, A.W.; Pardo, C.A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol., 2005, 57(1), 67-81. doi: 10.1002/ana.20315 PMID: 15546155
  329. Morgan, J.T.; Chana, G.; Pardo, C.A.; Achim, C.; Semendeferi, K.; Buckwalter, J.; Courchesne, E.; Everall, I.P. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol. Psychiatry, 2010, 68(4), 368-376. doi: 10.1016/j.biopsych.2010.05.024 PMID: 20674603
  330. McDougle, C.J.; Landino, S.M.; Vahabzadeh, A.; O’Rourke, J.; Zurcher, N.R.; Finger, B.C.; Palumbo, M.L.; Helt, J.; Mullett, J.E.; Hooker, J.M.; Carlezon, W.A., Jr Toward an immune-mediated subtype of autism spectrum disorder. Brain Res., 2015, 1617, 72-92. doi: 10.1016/j.brainres.2014.09.048 PMID: 25445995
  331. Suzuki, K.; Sugihara, G.; Ouchi, Y.; Nakamura, K.; Futatsubashi, M.; Takebayashi, K.; Yoshihara, Y.; Omata, K.; Matsumoto, K.; Tsuchiya, K.J.; Iwata, Y.; Tsujii, M.; Sugiyama, T.; Mori, N. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry, 2013, 70(1), 49-58. doi: 10.1001/jamapsychiatry.2013.272 PMID: 23404112
  332. Oskvig, D.B.; Elkahloun, A.G.; Johnson, K.R.; Phillips, T.M.; Herkenham, M. Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response. Brain Behav. Immun., 2012, 26(4), 623-634. doi: 10.1016/j.bbi.2012.01.015 PMID: 22310921
  333. Shook, L.L.; Fourman, L.T.; Edlow, A.G. Immune responses to sARS-CoV-2 in pregnancy: Implications for the health of the next generation. J. Immunol., 2022, 209(8), 1465-1473. doi: 10.4049/jimmunol.2200414 PMID: 36192115
  334. Pangrazzi, L.; Balasco, L.; Bozzi, Y. Oxidative stress and immune system dysfunction in autism spectrum disorders. Int. J. Mol. Sci., 2020, 21(9), 3293. doi: 10.3390/ijms21093293 PMID: 32384730
  335. Kazlauskas, N.; Campolongo, M.; Lucchina, L.; Zappala, C.; Depino, A.M. Postnatal behavioral and inflammatory alterations in female pups prenatally exposed to valproic acid. Psychoneuroendocrinology, 2016, 72, 11-21. doi: 10.1016/j.psyneuen.2016.06.001 PMID: 27337090
  336. Gąssowska-Dobrowolska, M.; Cieślik, M.; Czapski, G.A.; Jęśko, H.; Frontczak-Baniewicz, M.; Gewartowska, M.; Dominiak, A.; Polowy, R.; Filipkowski, R.K.; Babiec, L.; Adamczyk, A. Prenatal exposure to valproic acid affects microglia and synaptic ultrastructure in a brain-region-specific manner in young-adult male rats: relevance to autism spectrum disorders. Int. J. Mol. Sci., 2020, 21(10), 3576. doi: 10.3390/ijms21103576 PMID: 32443651
  337. Luo, L.; Chen, J.; Wu, Q.; Yuan, B.; Hu, C.; Yang, T.; Wei, H.; Li, T. Prenatally VPA exposure is likely to cause autistic-like behavior in the rats offspring via TREM2 down-regulation to affect the microglial activation and synapse alterations. Environ. Toxicol. Pharmacol., 2023, 99, 104090. doi: 10.1016/j.etap.2023.104090 PMID: 36870407
  338. Triyasakorn, K.; Ubah, U.D.B.; Roan, B.; Conlin, M.; Aho, K.; Awale, P.S. The antiepileptic drug and toxic teratogen valproic acid alters microglia in an environmental mouse model of autism. Toxics, 2022, 10(7), 379. doi: 10.3390/toxics10070379 PMID: 35878284
  339. Dhabhar, F.S. Enhancing versus suppressive effects of stress on immune function: Implications for immunoprotection and immunopathology. Neuroimmunomodulation, 2009, 16(5), 300-317. doi: 10.1159/000216188 PMID: 19571591
  340. Sweeten, T.L.; Posey, D.J.; Shankar, S.; McDougle, C.J. High nitric oxide production in autistic disorder: A possible role for interferon-γ. Biol. Psychiatry, 2004, 55(4), 434-437. doi: 10.1016/j.biopsych.2003.09.001 PMID: 14960298
  341. Wu, C.; Li, A.; Leng, Y.; Li, Y.; Kang, J. Histone deacetylase inhibition by sodium valproate regulates polarization of macrophage subsets. DNA Cell Biol., 2012, 31(4), 592-599. doi: 10.1089/dna.2011.1401 PMID: 22054065
  342. Zhang, Z.; Zhang, Z.Y.; Wu, Y.; Schluesener, H.J. Valproic acid ameliorates inflammation in experimental autoimmune encephalomyelitis rats. Neuroscience, 2012, 221, 140-150. doi: 10.1016/j.neuroscience.2012.07.013 PMID: 22800566
  343. Chen, S.; Ye, J.; Chen, X.; Shi, J.; Wu, W.; Lin, W.; Lin, W.; Li, Y.; Fu, H.; Li, S. Valproic acid attenuates traumatic spinal cord injury-induced inflammation via STAT1 and NF-κB pathway dependent of HDAC3. J. Neuroinflammation, 2018, 15(1), 150. doi: 10.1186/s12974-018-1193-6 PMID: 29776446
  344. Ubah, U.D.B.; Triyasakorn, K.; Roan, B.; Conlin, M.; Lai, J.C.K.; Awale, P.S. Pan HDACi valproic acid and trichostatin a show apparently contrasting inflammatory responses in cultured J774A.1 macrophages. Epigenomes, 2022, 6(4), 38. doi: 10.3390/epigenomes6040038 PMID: 36412793
  345. Noriega, D.B.; Savelkoul, H.F.J. Immune dysregulation in autism spectrum disorder. Eur. J. Pediatr., 2014, 173(1), 33-43. doi: 10.1007/s00431-013-2183-4 PMID: 24297668
  346. Deckmann, I.; Santos-Terra, J.; Fontes-Dutra, M.; Körbes-Rockenbach, M.; Bauer-Negrini, G.; Schwingel, G.B.; Riesgo, R.; Bambini-Junior, V.; Gottfried, C. Resveratrol prevents brain edema, blood–brain barrier permeability, and altered aquaporin profile in autism animal model. Int. J. Dev. Neurosci., 2021, 81(7), 579-604. doi: 10.1002/jdn.10137 PMID: 34196408
  347. Gurvich, N.; Tsygankova, O.M.; Meinkoth, J.L.; Klein, P.S. Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res., 2004, 64(3), 1079-1086. doi: 10.1158/0008-5472.CAN-03-0799 PMID: 14871841
  348. Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov., 2006, 5(9), 769-784. doi: 10.1038/nrd2133 PMID: 16955068
  349. Kostrouchová, M.; Kostrouch, Z.; Kostrouchová, M. Valproic acid, a molecular lead to multiple regulatory pathways. Folia Biol., 2007, 53(2), 37-49. PMID: 17448293
  350. Ganai, S.A.; Malli Kalladi, S.; Mahadevan, V. HDAC inhibition through valproic acid modulates the methylation profiles in human embryonic kidney cells. J. Biomol. Struct. Dyn., 2015, 33(6), 1185-1197. doi: 10.1080/07391102.2014.938247 PMID: 25012937
  351. Blaheta, R.A.; Nau, H.; Michaelis, M.; Cinatl, J., Jr Valproate and valproate-analogues: Potent tools to fight against cancer. Curr. Med. Chem., 2002, 9(15), 1417-1433. doi: 10.2174/0929867023369763 PMID: 12173980
  352. Yoon, S.; Choi, J.; Lee, W.; Do, J. Genetic and epigenetic etiology underlying autism spectrum disorder. J. Clin. Med., 2020, 9(4), 966. doi: 10.3390/jcm9040966 PMID: 32244359
  353. Volmar, C.H.; Wahlestedt, C. Histone deacetylases (HDACs) and brain function. Neuroepigenetics, 2015, 1, 20-27. doi: 10.1016/j.nepig.2014.10.002
  354. Krämer, O.H.; Zhu, P.; Ostendorff, H.P.; Golebiewski, M.; Tiefenbach, J.; Peters, M.A.; Brill, B.; Groner, B.; Bach, I.; Heinzel, T.; Göttlicher, M. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J., 2003, 22(13), 3411-3420. doi: 10.1093/emboj/cdg315 PMID: 12840003
  355. Kouzarides, T. Chromatin modifications and their function. Cell, 2007, 128(4), 693-705. doi: 10.1016/j.cell.2007.02.005 PMID: 17320507
  356. Hezroni, H.; Sailaja, B.S.; Meshorer, E. Pluripotency-related, valproic acid (VPA)-induced genome-wide histone H3 lysine 9 (H3K9) acetylation patterns in embryonic stem cells. J. Biol. Chem., 2011, 286(41), 35977-35988. doi: 10.1074/jbc.M111.266254 PMID: 21849501
  357. Lee, JH; Hart, SRL; Skalnik, DG Histone deacetylase activity is required for embryonic stem cell differentiation. genesis., 2004, 38(1), 32-38.
  358. Qiao, Y.; Wang, R.; Yang, X.; Tang, K.; Jing, N. Dual roles of histone H3 lysine 9 acetylation in human embryonic stem cell pluripotency and neural differentiation. J. Biol. Chem., 2015, 290(4), 2508-2520. doi: 10.1074/jbc.M114.603761 PMID: 25519907
  359. Gandhi, S.; Mitterhoff, R.; Rapoport, R.; Farago, M.; Greenberg, A.; Hodge, L.; Eden, S.; Benner, C.; Goren, A.; Simon, I. Mitotic H3K9ac is controlled by phase-specific activity of HDAC2, HDAC3, and SIRT1. Life Sci. Alliance, 2022, 5(10), e202201433. doi: 10.26508/lsa.202201433 PMID: 35981887
  360. Lagger, G.; O’Carroll, D.; Rembold, M.; Khier, H.; Tischler, J.; Weitzer, G.; Schuettengruber, B.; Hauser, C.; Brunmeir, R.; Jenuwein, T.; Seiser, C. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J., 2002, 21(11), 2672-2681. doi: 10.1093/emboj/21.11.2672 PMID: 12032080
  361. Kim, K.C.; Choi, C.S.; Gonzales, E.L.T.; Mabunga, D.F.N.; Lee, S.H.; Jeon, S.J.; Hwangbo, R.; Hong, M.; Ryu, J.H.; Han, S.H.; Bahn, G.H.; Shin, C.Y. Valproic acid induces telomerase reverse transcriptase expression during cortical development. Exp. Neurobiol., 2017, 26(5), 252-265. doi: 10.5607/en.2017.26.5.252 PMID: 29093634
  362. Tung, E.W.Y.; Winn, L.M. Epigenetic modifications in valproic acid-induced teratogenesis. Toxicol. Appl. Pharmacol., 2010, 248(3), 201-209. doi: 10.1016/j.taap.2010.08.001 PMID: 20705080
  363. Wang, Z.; Xu, L.; Zhu, X.; Cui, W.; Sun, Y.; Nishijo, H.; Peng, Y.; Li, R. Demethylation of specific Wnt/β-catenin pathway genes and its upregulation in rat brain induced by prenatal valproate exposure. Anat. Rec., 2010, 293(11), 1947-1953. doi: 10.1002/ar.21232 PMID: 20734317
  364. He, Y.; Mei, H.; Yu, H.; Sun, S.; Ni, W.; Li, H. Role of histone deacetylase activity in the developing lateral line neuromast of zebrafish larvae. Exp. Mol. Med., 2014, 46(5), e94-e94. doi: 10.1038/emm.2014.18 PMID: 24810423
  365. Leung, C.S.; Rosenzweig, S.J.; Yoon, B.; Marinelli, N.A.; Hollingsworth, E.W.; Maguire, A.M.; Cowen, M.H.; Schmidt, M.; Imitola, J.; Gamsiz Uzun, E.D.; Lizarraga, S.B. Dysregulation of the chromatin environment leads to differential alternative splicing as a mechanism of disease in a human model of autism spectrum disorder. Hum. Mol. Genet., 2023, 32(10), 1634-1646. doi: 10.1093/hmg/ddad002 PMID: 36621967
  366. Boudadi, E.; Stower, H.; Halsall, J.A.; Rutledge, C.E.; Leeb, M.; Wutz, A.; O’Neill, L.P.; Nightingale, K.P.; Turner, B.M. The histone deacetylase inhibitor sodium valproate causes limited transcriptional change in mouse embryonic stem cells but selectively overrides Polycomb-mediated Hoxb silencing. Epigenetics Chromatin, 2013, 6(1), 11. doi: 10.1186/1756-8935-6-11 PMID: 23634885
  367. Guerra, M.; Medici, V.; Weatheritt, R.; Corvino, V.; Palacios, D.; Geloso, M.C.; Farini, D.; Sette, C. Fetal exposure to valproic acid dysregulates the expression of autism-linked genes in the developing cerebellum. Transl. Psychiatry, 2023, 13(1), 114. doi: 10.1038/s41398-023-02391-9 PMID: 37019889
  368. Hara, Y.; Ago, Y.; Takano, E.; Hasebe, S.; Nakazawa, T.; Hashimoto, H.; Matsuda, T.; Takuma, K. Prenatal exposure to valproic acid increases miR-132 levels in the mouse embryonic brain. Mol. Autism, 2017, 8(1), 33. doi: 10.1186/s13229-017-0149-5 PMID: 28670439
  369. Jung, G.A.; Yoon, J.Y.; Moon, B.S.; Yang, D.H.; Kim, H.Y.; Lee, S.H.; Bryja, V.; Arenas, E.; Choi, K.Y. Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-Ras-ERK-p21Cip/WAF1 pathway. BMC Cell Biol., 2008, 9(1), 66. doi: 10.1186/1471-2121-9-66 PMID: 19068119
  370. Basu, S.N.; Kollu, R.; Banerjee-Basu, S. AutDB: a gene reference resource for autism research. Nucleic Acids Res., 2009, 37(Database issue), D832-D836. doi: 10.1093/nar/gkn835 PMID: 19015121
  371. Baumann, C.; Zhang, X.; Zhu, L.; Fan, Y.; De La Fuente, R. Changes in chromatin accessibility landscape and histone H3 core acetylation during valproic acid-induced differentiation of embryonic stem cells. Epigenetics Chromatin, 2021, 14(1), 58. doi: 10.1186/s13072-021-00432-5 PMID: 34955095
  372. Yuan, J.; Pu, M.; Zhang, Z.; Lou, Z. Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle, 2009, 8(11), 1747-1753. doi: 10.4161/cc.8.11.8620 PMID: 19411844
  373. Tessarz, P.; Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol., 2014, 15(11), 703-708. doi: 10.1038/nrm3890 PMID: 25315270
  374. Xie, W.; Song, C.; Young, N.L.; Sperling, A.S.; Xu, F.; Sridharan, R.; Conway, A.E.; Garcia, B.A.; Plath, K.; Clark, A.T.; Grunstein, M. Histone h3 lysine 56 acetylation is linked to the core transcriptional network in human embryonic stem cells. Mol. Cell, 2009, 33(4), 417-427. doi: 10.1016/j.molcel.2009.02.004 PMID: 19250903
  375. Osumi, N.; Shinohara, H.; Numayama-Tsuruta, K.; Maekawa, M. Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells, 2008, 26(7), 1663-1672. doi: 10.1634/stemcells.2007-0884 PMID: 18467663
  376. Duan, D.; Fu, Y.; Paxinos, G.; Watson, C. Spatiotemporal expression patterns of Pax6 in the brain of embryonic, newborn, and adult mice. Brain Struct. Funct., 2013, 218(2), 353-372. doi: 10.1007/s00429-012-0397-2 PMID: 22354470
  377. Kroll, T.T.; O’Leary, D.D.M. Ventralized dorsal telencephalic progenitors in Pax6 mutant mice generate GABA interneurons of a lateral ganglionic eminence fate. Proc. Natl. Acad. Sci., 2005, 102(20), 7374-7379. doi: 10.1073/pnas.0500819102 PMID: 15878992
  378. Sansom, S.N.; Griffiths, D.S.; Faedo, A.; Kleinjan, D.J.; Ruan, Y.; Smith, J. The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genet., 2009, 5(6), e1000511. doi: 10.1371/journal.pgen.1000511
  379. Yuan, X.; Dai, M.; Xu, D. TERT promoter mutations and GABP transcription factors in carcinogenesis: More foes than friends. Cancer Lett., 2020, 493, 1-9. doi: 10.1016/j.canlet.2020.07.003 PMID: 32768523
  380. Tan, Y.; Xue, Y.; Song, C.; Grunstein, M. Acetylated histone H3K56 interacts with Oct4 to promote mouse embryonic stem cell pluripotency. Proc. Natl. Acad. Sci., 2013, 110(28), 11493-11498. doi: 10.1073/pnas.1309914110 PMID: 23798425
  381. Ye, F.; Chen, Y.; Hoang, T.; Montgomery, R.L.; Zhao, X.; Bu, H.; Hu, T.; Taketo, M.M.; van Es, J.H.; Clevers, H.; Hsieh, J.; Bassel-Duby, R.; Olson, E.N.; Lu, Q.R. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the β-catenin-TCF interaction. Nat. Neurosci., 2009, 12(7), 829-838. doi: 10.1038/nn.2333 PMID: 19503085
  382. Jamadagni, P.; Breuer, M.; Schmeisser, K.; Cardinal, T.; Kassa, B.; Parker, J.A.; Pilon, N.; Samarut, E.; Patten, S.A. Chromatin remodeller CHD7 is required for GABAergic neuron development by promoting PAQR3 expression. EMBO Rep., 2021, 22(6), e50958. doi: 10.15252/embr.202050958 PMID: 33900016
  383. Mello, M.L.S. Sodium Valproate-Induced Chromatin Remodeling. Front. Cell Dev. Biol., 2021, 9, 645518. doi: 10.3389/fcell.2021.645518 PMID: 33959607
  384. Simonini, M.V.; Camargo, L.M.; Dong, E.; Maloku, E.; Veldic, M.; Costa, E.; Guidotti, A. The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases. Proc. Natl. Acad. Sci., 2006, 103(5), 1587-1592. doi: 10.1073/pnas.0510341103 PMID: 16432198
  385. Dong, E.; Guidotti, A.; Grayson, D.R.; Costa, E. Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc. Natl. Acad. Sci., 2007, 104(11), 4676-4681. doi: 10.1073/pnas.0700529104 PMID: 17360583
  386. Tremolizzo, L.; Carboni, G.; Ruzicka, W.B.; Mitchell, C.P.; Sugaya, I.; Tueting, P.; Sharma, R.; Grayson, D.R.; Costa, E.; Guidotti, A. An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc. Natl. Acad. Sci., 2002, 99(26), 17095-17100. doi: 10.1073/pnas.262658999 PMID: 12481028
  387. Rocha, M.A.; Veronezi, G.M.B.; Felisbino, M.B.; Gatti, M.S.V.; Tamashiro, W.M.S.C.; Mello, M.L.S. Sodium valproate and 5-aza-2′-deoxycytidine differentially modulate DNA demethylation in G1 phase-arrested and proliferative HeLa cells. Sci. Rep., 2019, 9(1), 18236. doi: 10.1038/s41598-019-54848-x PMID: 31796828
  388. Marchion, D.C.; Bicaku, E.; Daud, A.I.; Sullivan, D.M.; Munster, P.N. Valproic acid alters chromatin structure by regulation of chromatin modulation proteins. Cancer Res., 2005, 65(9), 3815-3822. doi: 10.1158/0008-5472.CAN-04-2478 PMID: 15867379
  389. Palsamy, P.; Bidasee, K.R.; Shinohara, T. Valproic acid suppresses Nrf2/Keap1 dependent antioxidant protection through induction of endoplasmic reticulum stress and Keap1 promoter DNA demethylation in human lens epithelial cells. Exp. Eye Res., 2014, 121, 26-34. doi: 10.1016/j.exer.2014.01.021 PMID: 24525405
  390. Detich, N.; Bovenzi, V.; Szyf, M. Valproate induces replication-independent active DNA demethylation. J. Biol. Chem., 2003, 278(30), 27586-27592. doi: 10.1074/jbc.M303740200 PMID: 12748177
  391. Milutinovic, S.; D’Alessio, A.C.; Detich, N.; Szyf, M. Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes. Carcinogenesis, 2007, 28(3), 560-571. doi: 10.1093/carcin/bgl167 PMID: 17012225
  392. Dong, E.; Chen, Y.; Gavin, D.P.; Grayson, D.R.; Guidotti, A. Valproate induces DNA demethylation in nuclear extracts from adult mouse brain. Epigenetics, 2010, 5(8), 730-735. doi: 10.4161/epi.5.8.13053 PMID: 20716949
  393. Tan, N.N.; Tang, H.L.; Lin, G.W.; Chen, Y.H.; Lu, P.; Li, H.J.; Gao, M.M.; Zhao, Q.H.; Yi, Y.H.; Liao, W.P.; Long, Y.S. Epigenetic downregulation of scn3a expression by valproate: A possible role in its anticonvulsant activity. Mol. Neurobiol., 2017, 54(4), 2831-2842. doi: 10.1007/s12035-016-9871-9 PMID: 27013471
  394. Park, J.; Lee, K.; Kim, K.; Yi, S.J. The role of histone modifications: From neurodevelopment to neurodiseases. Signal Transduct. Target. Ther., 2022, 7(1), 217. doi: 10.1038/s41392-022-01078-9 PMID: 35794091
  395. Göttlicher, M.; Minucci, S.; Zhu, P.; Krämer, O.H.; Schimpf, A.; Giavara, S.; Sleeman, J.P.; Lo Coco, F.; Nervi, C.; Pelicci, P.G.; Heinzel, T. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J., 2001, 20(24), 6969-6978. doi: 10.1093/emboj/20.24.6969 PMID: 11742974
  396. Emmett, M.J.; Lazar, M.A. Integrative regulation of physiology by histone deacetylase 3. Nat. Rev. Mol. Cell Biol., 2019, 20(2), 102-115. doi: 10.1038/s41580-018-0076-0 PMID: 30390028
  397. Hayakawa, T.; Nakayama, J. Physiological roles of class I HDAC complex and histone demethylase. J. Biomed. Biotechnol., 2011, 2011, 1-10. doi: 10.1155/2011/129383
  398. Mello, M.L.S.; Rocha, M.A.; de Campos, V.B. Sodium valproate modulates the methylation status of lysine residues 4, 9 and 27 in histone H3 of HeLa cells. Curr. Mol. Pharmacol., 2023, 16(2), 197-210. doi: 10.2174/1874467215666220316110405 PMID: 35297358
  399. Marinova, Z.; Leng, Y.; Leeds, P.; Chuang, D.M. Histone deacetylase inhibition alters histone methylation associated with heat shock protein 70 promoter modifications in astrocytes and neurons. Neuropharmacology, 2011, 60(7-8), 1109-1115. doi: 10.1016/j.neuropharm.2010.09.022 PMID: 20888352
  400. Nightingale, K.P.; Gendreizig, S.; White, D.A.; Bradbury, C.; Hollfelder, F.; Turner, B.M. Cross-talk between histone modifications in response to histone deacetylase inhibitors: MLL4 links histone H3 acetylation and histone H3K4 methylation. J. Biol. Chem., 2007, 282(7), 4408-4416. doi: 10.1074/jbc.M606773200 PMID: 17166833
  401. Rahhal, R.; Seto, E. Emerging roles of histone modifications and HDACs in RNA splicing. Nucleic Acids Res., 2019, 47(10), 4911-4926. doi: 10.1093/nar/gkz292 PMID: 31162605
  402. Hnilicová, J.; Hozeifi, S.; Dušková, E.; Icha, J.; Tománková, T.; Staněk, D. Histone deacetylase activity modulates alternative splicing. PLoS One, 2011, 6(2), e16727. doi: 10.1371/journal.pone.0016727
  403. Su, C.H. D, D.; Tarn, W.Y. Alternative splicing in neurogenesis and brain development. Front. Mol. Biosci., 2018, 5, 12. doi: 10.3389/fmolb.2018.00012 PMID: 29484299
  404. Engal, E.; Baker, M.; Salton, M. The chromatin roots of abnormal splicing in autism. Trends Genet., 2022, 38(9), 892-894. doi: 10.1016/j.tig.2022.06.001 PMID: 35750536
  405. Sun, W.; Poschmann, J.; Cruz-Herrera del Rosario, R.; Parikshak, N.N.; Hajan, H.S.; Kumar, V.; Ramasamy, R.; Belgard, T.G.; Elanggovan, B.; Wong, C.C.Y.; Mill, J.; Geschwind, D.H.; Prabhakar, S. Histone acetylome-wide association study of autism spectrum disorder. Cell, 2016, 167(5), 1385-1397.e11. doi: 10.1016/j.cell.2016.10.031 PMID: 27863250
  406. Elgamal, M.; Moustafa, Y.; Ali, A.; El-Sayed, N.; Khodeer, D. Mechanisms of valproic acid-induced autism: Canonical wnt-β- catenin pathway. Records of Pharmaceutical and Biomedical Sciences, 2023, 7(3), 51-62. doi: 10.21608/rpbs.2023.189540.1205
  407. Mulligan, K.A.; Cheyette, B.N.R. Wnt signaling in vertebrate neural development and function. J. Neuroimmune Pharmacol., 2012, 7(4), 774-787. doi: 10.1007/s11481-012-9404-x PMID: 23015196
  408. Rosso, S.B.; Inestrosa, N.C. WNT signaling in neuronal maturation and synaptogenesis. Front. Cell. Neurosci., 2013, 7, 103. doi: 10.3389/fncel.2013.00103 PMID: 23847469
  409. Kwan, V.; Unda, B.K.; Singh, K.K. Wnt signaling networks in autism spectrum disorder and intellectual disability. J. Neurodev. Disord., 2016, 8(1), 45. doi: 10.1186/s11689-016-9176-3 PMID: 27980692
  410. Phiel, C.J.; Zhang, F.; Huang, E.Y.; Guenther, M.G.; Lazar, M.A.; Klein, P.S. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem., 2001, 276(39), 36734-36741. doi: 10.1074/jbc.M101287200 PMID: 11473107
  411. Takai, N.; Desmond, J.C.; Kumagai, T.; Gui, D.; Said, J.W.; Whittaker, S.; Miyakawa, I.; Koeffler, H.P. Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells. Clin. Cancer Res., 2004, 10(3), 1141-1149. doi: 10.1158/1078-0432.CCR-03-0100 PMID: 14871994
  412. Digel, W.; Lübbert, M. DNA methylation disturbances as novel therapeutic target in lung cancer: Preclinical and clinical results. Crit. Rev. Oncol. Hematol., 2005, 55(1), 1-11. doi: 10.1016/j.critrevonc.2005.02.002 PMID: 15886007
  413. Nie, X.; Liu, H.; Liu, L.; Wang, Y.D.; Chen, W.D. Emerging roles of Wnt ligands in human colorectal cancer. Front. Oncol., 2020, 10, 1341. doi: 10.3389/fonc.2020.01341 PMID: 32923386
  414. Kumar, S.; Reynolds, K.; Ji, Y.; Gu, R.; Rai, S.; Zhou, C.J. Impaired neurodevelopmental pathways in autism spectrum disorder: A review of signaling mechanisms and crosstalk. J. Neurodev. Disord., 2019, 11(1), 10. doi: 10.1186/s11689-019-9268-y PMID: 31202261
  415. Martin, P-M.; Yang, X.; Robin, N.; Lam, E.; Rabinowitz, J.S.; Erdman, C.A.; Quinn, J.; Weiss, L.A.; Hamilton, S.P.; Kwok, P-Y.; Moon, R.T.; Cheyette, B.N.R. A rare WNT1 missense variant overrepresented in ASD leads to increased Wnt signal pathway activation. Transl. Psychiatry, 2013, 3(9), e301-e301. doi: 10.1038/tp.2013.75 PMID: 24002087
  416. Wassink, T.H.; Piven, J.; Vieland, V.J.; Huang, J.; Swiderski, R.E.; Pietila, J.; Braun, T.; Beck, G.; Folstein, S.E.; Haines, J.L.; Sheffield, V.C. Evidence supporting WNT2 as an autism susceptibility gene. Am. J. Med. Genet., 2001, 105(5), 406-413. doi: 10.1002/ajmg.1401 PMID: 11449391
  417. Marui, T.; Funatogawa, I.; Koishi, S.; Yamamoto, K.; Matsumoto, H.; Hashimoto, O.; Jinde, S.; Nishida, H.; Sugiyama, T.; Kasai, K.; Watanabe, K.; Kano, Y.; Kato, N. Association between autism and variants in the wingless-type MMTV integration site family member 2 (WNT2) gene. Int. J. Neuropsychopharmacol., 2010, 13(4), 443-449. doi: 10.1017/S1461145709990903 PMID: 19895723
  418. Levy, D.; Ronemus, M.; Yamrom, B.; Lee, Y.; Leotta, A.; Kendall, J.; Marks, S.; Lakshmi, B.; Pai, D.; Ye, K.; Buja, A.; Krieger, A.; Yoon, S.; Troge, J.; Rodgers, L.; Iossifov, I.; Wigler, M. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron, 2011, 70(5), 886-897. doi: 10.1016/j.neuron.2011.05.015 PMID: 21658582
  419. Lin, P.I.; Chien, Y.L.; Wu, Y.Y.; Chen, C.H.; Gau, S.S.F.; Huang, Y.S.; Liu, S.K.; Tsai, W.C.; Chiu, Y.N. The WNT2 gene polymorphism associated with speech delay inherent to autism. Res. Dev. Disabil., 2012, 33(5), 1533-1540. doi: 10.1016/j.ridd.2012.03.004 PMID: 22522212
  420. Krumm, N.; O’Roak, B.J.; Shendure, J.; Eichler, E.E. A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci., 2014, 37(2), 95-105. doi: 10.1016/j.tins.2013.11.005 PMID: 24387789
  421. Platt, R.J.; Zhou, Y.; Slaymaker, I.M.; Shetty, A.S.; Weisbach, N.R.; Kim, J.A.; Sharma, J.; Desai, M.; Sood, S.; Kempton, H.R.; Crabtree, G.R.; Feng, G.; Zhang, F. Chd8 mutation leads to autistic-like behaviors and impaired striatal circuits. Cell Rep., 2017, 19(2), 335-350. doi: 10.1016/j.celrep.2017.03.052 PMID: 28402856
  422. Thompson, B.A.; Tremblay, V.; Lin, G.; Bochar, D.A. CHD8 is an ATP-dependent chromatin remodeling factor that regulates β-catenin target genes. Mol. Cell. Biol., 2008, 28(12), 3894-3904. doi: 10.1128/MCB.00322-08 PMID: 18378692
  423. McBride, K.L.; Varga, E.A.; Pastore, M.T.; Prior, T.W.; Manickam, K.; Atkin, J.F.; Herman, G.E. Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly. Autism Res., 2010, 3(3), 137-141. doi: 10.1002/aur.132 PMID: 20533527
  424. Zhou, T.; He, X.; Cheng, R.; Zhang, B.; Zhang, R.R.; Chen, Y.; Takahashi, Y.; Murray, A.R.; Lee, K.; Gao, G.; Ma, J. Implication of dysregulation of the canonical wingless-type MMTV integration site (WNT) pathway in diabetic nephropathy. Diabetologia, 2012, 55(1), 255-266. doi: 10.1007/s00125-011-2314-2 PMID: 22016045
  425. DeSpenza, T., Jr; Carlson, M.; Panchagnula, S.; Robert, S.; Duy, P.Q.; Mermin-Bunnell, N.; Reeves, B.C.; Kundishora, A.; Elsamadicy, A.A.; Smith, H.; Ocken, J.; Alper, S.L.; Jin, S.C.; Hoffman, E.J.; Kahle, K.T. PTEN mutations in autism spectrum disorder and congenital hydrocephalus: developmental pleiotropy and therapeutic targets. Trends Neurosci., 2021, 44(12), 961-976. doi: 10.1016/j.tins.2021.08.007 PMID: 34625286
  426. Mahmood, U.; Ahn, S.; Yang, E.J.; Choi, M.; Kim, H.; Regan, P.; Cho, K.; Kim, H.S. Dendritic spine anomalies and PTEN alterations in a mouse model of VPA-induced autism spectrum disorder. Pharmacol. Res., 2018, 128, 110-121. doi: 10.1016/j.phrs.2017.08.006 PMID: 28823725
  427. Nicolini, C.; Ahn, Y.; Michalski, B.; Rho, J.M.; Fahnestock, M. Decreased mTOR signaling pathway in human idiopathic autism and in rats exposed to valproic acid. Acta Neuropathol. Commun., 2015, 3(1), 3. doi: 10.1186/s40478-015-0184-4 PMID: 25627160
  428. Yang, E.J.; Ahn, S.; Lee, K.; Mahmood, U.; Kim, H.S. Early behavioral abnormalities and perinatal alterations of PTEN/AKT pathway in valproic acid autism model mice. PLoS One, 2016, 11(4), e0153298. doi: 10.1371/journal.pone.0153298 PMID: 27071011
  429. Barrett, C.E.; Hennessey, T.M.; Gordon, K.M.; Ryan, S.J.; McNair, M.L.; Ressler, K.J.; Rainnie, D.G. Developmental disruption of amygdala transcriptome and socioemotional behavior in rats exposed to valproic acid prenatally. Mol. Autism, 2017, 8(1), 42. doi: 10.1186/s13229-017-0160-x PMID: 28775827
  430. Tung, E.W.Y.; Winn, L.M. Valproic acid increases formation of reactive oxygen species and induces apoptosis in postimplantation embryos: A role for oxidative stress in valproic acid-induced neural tube defects. Mol. Pharmacol., 2011, 80(6), 979-987. doi: 10.1124/mol.111.072314 PMID: 21868484
  431. Sztainberg, Y.; Zoghbi, H.Y. Lessons learned from studying syndromic autism spectrum disorders. Nat. Neurosci., 2016, 19(11), 1408-1417. doi: 10.1038/nn.4420 PMID: 27786181
  432. Varghese, M.; Keshav, N.; Jacot-Descombes, S.; Warda, T.; Wicinski, B. Dickstein, DL Autism spectrum disorder: Neuropathology and animal models. Acta Neuropathol., 2017, 134(4), 537-566. doi: 10.1007/s00401-017-1736-4
  433. Kim, K.C.; Gonzales, E.L.; Lázaro, M.T.; Choi, C.S.; Bahn, G.H.; Yoo, H.J.; Shin, C.Y. Clinical and neurobiological relevance of current animal models of autism spectrum disorders. Biomol. Ther., 2016, 24(3), 207-243. doi: 10.4062/biomolther.2016.061 PMID: 27133257
  434. Feil, R.; Fraga, M.F. Epigenetics and the environment: Emerging patterns and implications. Nat. Rev. Genet., 2012, 13(2), 97-109. doi: 10.1038/nrg3142 PMID: 22215131
  435. Good, K.V.; Vincent, J.B.; Ausió, J. MeCP2: The genetic driver of rett syndrome epigenetics. Front. Genet., 2021, 12, 620859. doi: 10.3389/fgene.2021.620859 PMID: 33552148
  436. Loke, Y.J.; Hannan, A.J.; Craig, J.M. The role of epigenetic change in autism spectrum disorders. Front. Neurol., 2015, 6, 107. doi: 10.3389/fneur.2015.00107 PMID: 26074864
  437. Balan, S.; Iwayama, Y.; Ohnishi, T.; Fukuda, M.; Shirai, A.; Yamada, A.; Weirich, S.; Schuhmacher, M.K.; Dileep, K.V.; Endo, T.; Hisano, Y.; Kotoshiba, K.; Toyota, T.; Otowa, T.; Kuwabara, H.; Tochigi, M.; Watanabe, A.; Ohba, H.; Maekawa, M.; Toyoshima, M.; Sasaki, T.; Nakamura, K.; Tsujii, M.; Matsuzaki, H.; Zhang, K.Y.J.; Jeltsch, A.; Shinkai, Y.; Yoshikawa, T. A loss-of-function variant in SUV39H2 identified in autism-spectrum disorder causes altered H3K9 trimethylation and dysregulation of protocadherin β-cluster genes in the developing brain. Mol. Psychiatry, 2021, 26(12), 7550-7559. doi: 10.1038/s41380-021-01199-7 PMID: 34262135
  438. Balemans, M.C.M.; Huibers, M.M.H.; Eikelenboom, N.W.D.; Kuipers, A.J.; van Summeren, R.C.J.; Pijpers, M.M.C.A.; Tachibana, M.; Shinkai, Y.; van Bokhoven, H.; Van der Zee, C.E.E.M. Reduced exploration, increased anxiety, and altered social behavior: Autistic-like features of euchromatin histone methyltransferase 1 heterozygous knockout mice. Behav. Brain Res., 2010, 208(1), 47-55. doi: 10.1016/j.bbr.2009.11.008 PMID: 19896504
  439. Chen, E.S.; Gigek, C.O.; Rosenfeld, J.A.; Diallo, A.B.; Maussion, G.; Chen, G.G.; Vaillancourt, K.; Lopez, J.P.; Crapper, L.; Poujol, R.; Shaffer, L.G.; Bourque, G.; Ernst, C. Molecular convergence of neurodevelopmental disorders. Am. J. Hum. Genet., 2014, 95(5), 490-508. doi: 10.1016/j.ajhg.2014.09.013 PMID: 25307298
  440. Lin, C.W.; Septyaningtrias, D.E.; Chao, H.W.; Konda, M.; Atarashi, K.; Takeshita, K.; Tamada, K.; Nomura, J.; Sasagawa, Y.; Tanaka, K.; Nikaido, I.; Honda, K.; McHugh, T.J.; Takumi, T. A common epigenetic mechanism across different cellular origins underlies systemic immune dysregulation in an idiopathic autism mouse model. Mol. Psychiatry, 2022, 27(8), 3343-3354. doi: 10.1038/s41380-022-01566-y PMID: 35491410
  441. Lin, C.W.; Ellegood, J.; Tamada, K.; Miura, I.; Konda, M.; Takeshita, K. An old model with new insights: Endogenous retroviruses drive the evolvement toward ASD susceptibility and hijack transcription machinery during development. Mol. Psychiatry., 2023. (Epub a head of print). doi: 10.1038/s41380-023-01999-z
  442. Tseng, C.E.J.; McDougle, C.J.; Hooker, J.M.; Zürcher, N.R. Epigenetics of autism spectrum disorder: Histone deacetylases. Biol. Psychiatry, 2022, 91(11), 922-933. doi: 10.1016/j.biopsych.2021.11.021 PMID: 35120709
  443. Cao, D.D.; Li, L.; Chan, W.Y. MicroRNAs: Key regulators in the central nervous system and their implication in neurological diseases. Int. J. Mol. Sci., 2016, 17(6), 842. doi: 10.3390/ijms17060842 PMID: 27240359
  444. Pejhan, S.; Del Bigio, M.R.; Rastegar, M. The MeCP2E1/E2-BDNF-miR132 homeostasis regulatory network is region-dependent in the human brain and is impaired in rett syndrome patients. Front. Cell Dev. Biol., 2020, 8, 763. doi: 10.3389/fcell.2020.00763 PMID: 32974336
  445. Brown, E.A.; Lautz, J.D.; Davis, T.R.; Gniffke, E.P.; VanSchoiack, A.A.W.; Neier, S.C.; Tashbook, N.; Nicolini, C.; Fahnestock, M.; Schrum, A.G.; Smith, S.E.P. Clustering the autisms using glutamate synapse protein interaction networks from cortical and hippocampal tissue of seven mouse models. Mol. Autism, 2018, 9(1), 48. doi: 10.1186/s13229-018-0229-1 PMID: 30237867
  446. Arakawa, H. From multisensory assessment to functional interpretation of social behavioral phenotype in transgenic mouse models for autism spectrum disorders. Front. Psychiatry, 2020, 11, 592408. doi: 10.3389/fpsyt.2020.592408 PMID: 33329141
  447. Puścian, A.; Lęski, S.; Górkiewicz, T.; Meyza, K.; Lipp, H.P.; Knapska, E. A novel automated behavioral test battery assessing cognitive rigidity in two genetic mouse models of autism. Front. Behav. Neurosci., 2014, 8, 140. PMID: 24808839
  448. Jabarin, R.; Netser, S.; Wagner, S. Beyond the three-chamber test: Toward a multimodal and objective assessment of social behavior in rodents. Mol. Autism, 2022, 13(1), 41. doi: 10.1186/s13229-022-00521-6 PMID: 36284353
  449. Argyropoulos, A.; Gilby, K.L.; Hill-Yardin, E.L. Studying autism in rodent models: reconciling endophenotypes with comorbidities. Front. Hum. Neurosci., 2013, 7, 417. doi: 10.3389/fnhum.2013.00417 PMID: 23898259
  450. Das, I.; Estevez, M.A.; Sarkar, A.A.; Banerjee-Basu, S. A multifaceted approach for analyzing complex phenotypic data in rodent models of autism. Mol. Autism, 2019, 10(1), 11. doi: 10.1186/s13229-019-0263-7 PMID: 30911366
  451. Halsall, J.A.; Turan, N.; Wiersma, M.; Turner, B.M. Cells adapt to the epigenomic disruption caused by histone deacetylase inhibitors through a coordinated, chromatin-mediated transcriptional response. Epigenetics Chromatin, 2015, 8(1), 29. doi: 10.1186/s13072-015-0021-9 PMID: 26380582
  452. Schaaf, C.P.; Zoghbi, H.Y. Solving the autism puzzle a few pieces at a time. Neuron, 2011, 70(5), 806-808. doi: 10.1016/j.neuron.2011.05.025 PMID: 21658575

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers