The Diverse Network of Brain Histamine in Feeding: Dissect its Functions in a Circuit-Specific Way


Citar

Texto integral

Resumo

Abstracts:Feeding is an intrinsic and important behavior regulated by complex molecular, cellular and circuit-level mechanisms, one of which is the brain histaminergic network. In the past decades, many studies have provided a foundation of knowledge about the relationship between feeding and histamine receptors, which are deemed to have therapeutic potential but are not successful in treating feeding- related diseases. Indeed, the histaminergic circuits underlying feeding are poorly understood and characterized. This review describes current knowledge of histamine in feeding at the receptor level. Further, we provide insight into putative histamine-involved feeding circuits based on the classic feeding circuits. Understanding the histaminergic network in a circuit-specific way may be therapeutically relevant for increasing the drug specificity and precise treatment in feeding-related diseases.

Sobre autores

Lingyu Xu

Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University

Email: info@benthamscience.net

Wenkai Lin

Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University

Email: info@benthamscience.net

Yanrong Zheng

Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University

Email: info@benthamscience.net

Yi Wang

Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University

Email: info@benthamscience.net

Zhong Chen

stitute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Schwartz, J.C.; Arrang, J.M.; Garbarg, M.; Pollard, H.; Ruat, M. Histaminergic transmission in the mammalian brain. Physiol. Rev., 1991, 71(1), 1-51. doi: 10.1152/physrev.1991.71.1.1 PMID: 1846044
  2. Panula, P.; Yang, H.Y.; Costa, E. Histamine-containing neurons in the rat hypothalamus. Proc. Natl. Acad. Sci. USA, 1984, 81(8), 2572-2576. doi: 10.1073/pnas.81.8.2572 PMID: 6371818
  3. Volonté, C.; Apolloni, S.; Amadio, S. The histamine and multiple sclerosis alliance: Pleiotropic actions and functional validation. Curr. Top. Behav. Neurosci., 2021, 59, 1-23. doi: 10.1007/7854_2021_240 PMID: 34432258
  4. Sharma, A.; Muresanu, D.F.; Patnaik, R.; Menon, P.K.; Tian, Z.R.; Sahib, S.; Castellani, R.J.; Nozari, A.; Lafuente, J.V.; Buzoianu, A.D.; Skaper, S.D.; Bryukhovetskiy, I.; Manzhulo, I.; Wiklund, L.; Sharma, H.S. Histamine H3 and H4 receptors modulate Parkinson’s disease induced brain pathology. Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy.Prog. Brain Res; , 2021, 266, pp. 1-73. doi: 10.1016/bs.pbr.2021.06.003 PMID: 34689857
  5. Fang, Q.; Xicoy, H.; Shen, J.; Luchetti, S.; Dai, D.; Zhou, P.; Qi, X.R.; Martens, G.J.M.; Huitinga, I.; Swaab, D.F.; Liu, C.; Shan, L. Histamine-4 receptor antagonist ameliorates Parkinson-like pathology in the striatum. Brain Behav. Immun., 2021, 92, 127-138. doi: 10.1016/j.bbi.2020.11.036 PMID: 33249171
  6. Zheng, Y.; Chen, Z. Targeting histamine and histamine receptors for the precise regulation of feeding. Curr. Top. Behav. Neurosci., 2021, 59, 1-33. doi: 10.1007/7854_2021_258 PMID: 34622397
  7. Shulpekova, Y.O.; Nechaev, V.M.; Popova, I.R.; Deeva, T.A.; Kopylov, A.T.; Malsagova, K.A.; Kaysheva, A.L.; Ivashkin, V.T. Food intolerance: The role of histamine. Nutrients, 2021, 13(9), 3207. doi: 10.3390/nu13093207 PMID: 34579083
  8. Haas, H.L.; Sergeeva, O.A.; Selbach, O. Histamine in the nervous system. Physiol. Rev., 2008, 88(3), 1183-1241. doi: 10.1152/physrev.00043.2007 PMID: 18626069
  9. Fukudo, S.; Kano, M.; Sato, Y.; Muratsubaki, T.; Kanazawa, M.; Tashiro, M.; Yanai, K. Histamine neuroimaging in stress-related disorders. Curr. Top. Behav. Neurosci., 2021, 59, 1-17. doi: 10.1007/7854_2021_262 PMID: 35156186
  10. Passani, M.B.; Blandina, P.; Torrealba, F. The histamine H3 receptor and eating behavior. J. Pharmacol. Exp. Ther., 2011, 336(1), 24-29. doi: 10.1124/jpet.110.171306 PMID: 20864503
  11. Passani, M.B.; Blandina, P. Histamine receptors in the CNS as targets for therapeutic intervention. Trends Pharmacol. Sci., 2011, 32(4), 242-249. doi: 10.1016/j.tips.2011.01.003 PMID: 21324537
  12. Lei, X.G.; Ruan, J.Q.; Lai, C.; Sun, Z.; Yang, X. Efficacy and safety of phentermine/topiramate in adults with overweight or obesity: A systematic review and meta‐analysis. Obesity (Silver Spring), 2021, 29(6), 985-994. doi: 10.1002/oby.23152 PMID: 33864346
  13. Tak, Y.J.; Lee, S.Y. Long-term efficacy and safety of anti-obesity treatment: Where do we stand? Curr. Obes. Rep., 2021, 10(1), 14-30. doi: 10.1007/s13679-020-00422-w PMID: 33410104
  14. Hu, W.W.; Chen, Z. Role of histamine and its receptors in cerebral ischemia. ACS Chem. Neurosci., 2012, 3(4), 238-247. doi: 10.1021/cn200126p PMID: 22860191
  15. Hu, W.; Chen, Z. The roles of histamine and its receptor ligands in central nervous system disorders: An update. Pharmacol. Ther., 2017, 175, 116-132. doi: 10.1016/j.pharmthera.2017.02.039 PMID: 28223162
  16. Black, J.W.; Duncan, W.A.M.; Durant, C.J.; Ganellin, C.R.; Parsons, E.M. Definition and antagonism of histamine H 2 -receptors. Nature, 1972, 236(5347), 385-390. doi: 10.1038/236385a0 PMID: 4401751
  17. Arrang, J.M.; Garbarg, M.; Schwartz, J.C. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature, 1983, 302(5911), 832-837. doi: 10.1038/302832a0 PMID: 6188956
  18. Nguyen, T.; Shapiro, D.A.; George, S.R.; Setola, V.; Lee, D.K.; Cheng, R.; Rauser, L.; Lee, S.P.; Lynch, K.R.; Roth, B.L.; O’Dowd, B.F. Discovery of a novel member of the histamine receptor family. Mol. Pharmacol., 2001, 59(3), 427-433. doi: 10.1124/mol.59.3.427 PMID: 11179435
  19. Kobayashi, T.; Inoue, I.; Jenkins, N.A.; Gilbert, D.J.; Copeland, N.G.; Watanabe, T. Cloning, RNA expression, and chromosomal location of a mouse histamine H2 receptor gene. Genomics, 1996, 37(3), 390-394. doi: 10.1006/geno.1996.0575 PMID: 8938453
  20. Martinez-Mir, M.I.; Pollard, H.; Moreau, J.; Arrang, J.M.; Ruat, M.; Traiffort, E.; Schwartz, J.C.; Palacios, J.M. Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates. Brain Res., 1990, 526(2), 322-327. doi: 10.1016/0006-8993(90)91240-H PMID: 1979518
  21. Terao, A.; Steininger, T.L.; Morairty, S.R.; Kilduff, T.S. Age-related changes in histamine receptor mRNA levels in the mouse brain. Neurosci. Lett., 2004, 355(1-2), 81-84. doi: 10.1016/j.neulet.2003.10.061 PMID: 14729240
  22. Deshetty, U.M.; Tamatam, A.; Bhattacharjee, M.; Perumal, E.; Natarajan, G.; Khanum, F. Ameliorative effect of hesperidin against motion sickness by modulating histamine and histamine H1 receptor expression. Neurochem. Res., 2020, 45(2), 371-384. doi: 10.1007/s11064-019-02923-0 PMID: 31782104
  23. Provensi, G.; Fabbri, R.; Munari, L.; Costa, A.; Baldi, E.; Bucherelli, C.; Blandina, P.; Passani, M.B. Histaminergic neurotransmission as a gateway for the cognitive effect of oleoylethanolamide in contextual fear conditioning. Int. J. Neuropsychopharmacol., 2017, 20(5), 392-399. doi: 10.1093/ijnp/pyw110 PMID: 28339575
  24. Reiner, P.B.; Kamondi, A. Mechanisms of antihistamine-induced sedation in the human brain: H1 receptor activation reduces a background leakage potassium current. Neuroscience, 1994, 59(3), 579-588. doi: 10.1016/0306-4522(94)90178-3 PMID: 8008209
  25. Korotkova, T.M.; Sergeeva, O.A.; Ponomarenko, A.A.; Haas, H.L. Histamine excites noradrenergic neurons in locus coeruleus in rats. Neuropharmacology, 2005, 49(1), 129-134. doi: 10.1016/j.neuropharm.2005.03.001 PMID: 15992588
  26. Lin, J.S.; Hou, Y.; Sakai, K.; Jouvet, M. Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat. J. Neurosci., 1996, 16(4), 1523-1537. doi: 10.1523/JNEUROSCI.16-04-01523.1996 PMID: 8778302
  27. Zhou, F.W.; Xu, J.J.; Zhao, Y.; LeDoux, M.S.; Zhou, F.M. Opposite functions of histamine H1 and H2 receptors and H3 receptor in substantia nigra pars reticulata. J. Neurophysiol., 2006, 96(3), 1581-1591. doi: 10.1152/jn.00148.2006 PMID: 16738217
  28. Xu, C.; Michelsen, K.A.; Wu, M.; Morozova, E.; Panula, P.; Alreja, M. Histamine innervation and activation of septohippocampal GABAergic neurones: Involvement of local ACh release. J. Physiol., 2004, 561(3), 657-670. doi: 10.1113/jphysiol.2004.071712 PMID: 15486020
  29. Manahan-Vaughan, D.; Reymann, K.G.; Brown, R.E. In vivo electrophysiological investigations into the role of histamine in the dentate gyrus of the rat. Neuroscience, 1998, 84(3), 783-790. doi: 10.1016/S0306-4522(97)00540-X PMID: 9579783
  30. Ruat, M.; Traiffort, E.; Bouthenet, M.L.; Schwartz, J.C.; Hirschfeld, J.; Buschauer, A.; Schunack, W. Reversible and irreversible labeling and autoradiographic localization of the cerebral histamine H2 receptor using 125Iiodinated probes. Proc. Natl. Acad. Sci. USA, 1990, 87(5), 1658-1662. doi: 10.1073/pnas.87.5.1658 PMID: 2308927
  31. Vizuete, M.L.; Traiffort, E.; Bouthenet, M.L.; Ruat, M.; Souil, E.; Tardivel-Lacombe, J.; Schwartz, J.C. Detailed mapping of the histamine H2 receptor and its gene transcripts in guinea-pig brain. Neuroscience, 1997, 80(2), 321-343. doi: 10.1016/S0306-4522(97)00010-9 PMID: 9284338
  32. Provensi, G.; Blandina, P.; Passani, M.B. The histaminergic system as a target for the prevention of obesity and metabolic syndrome. Neuropharmacology, 2016, 106, 3-12. doi: 10.1016/j.neuropharm.2015.07.002 PMID: 26164344
  33. Haas, H.; Panula, P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat. Rev. Neurosci., 2003, 4(2), 121-130. doi: 10.1038/nrn1034 PMID: 12563283
  34. Arrang, J.M.; Garbarg, M.; Lancelo, J-C.; Lecomte, J.M.; Pollard, H.; Robba, M.; Schunack, W.; Schwartz, J.C. Highly potent and selective ligands for histamine H3-receptors. Nature, 1987, 327(6118), 117-123. doi: 10.1038/327117a0 PMID: 3033516
  35. Yamamoto, Y.; Mochizuki, T.; Okakura-Mochizuki, K.; Uno, A.; Yamatodani, A. Thioperamide, a histamine H3 receptor antagonist, increases GABA release from the rat hypothalamus. Methods Find. Exp. Clin. Pharmacol., 1997, 19(5), 289-298. PMID: 9379777
  36. Blandina, P.; Giorgetti, M.; Cecchi, M.; Leurs, R.; Timmerman, H.; Giovannini, M.G. Histamine H3 receptor inhibition of K+-evoked release of acetylcholine from rat cortex in vivo. Inflamm. Res., 1996, 45(S1)(Suppl. 1), S54-S55. doi: 10.1007/BF03354086 PMID: 8696930
  37. Schlicker, E.; Kathmann, M.; Detzner, M.; Exner, H.J.; Göthert, M. H3 receptor-mediated inhibition of noradrenaline release: An investigation into the involvement of Ca2+ and K+ ions, G protein and adenylate cyclase. Naunyn Schmiedebergs Arch. Pharmacol., 1994, 350(1), 34-41. doi: 10.1007/BF00180008 PMID: 7935852
  38. Chazot, P.L.; Hann, V.; Wilson, C.; Lees, G.; Thompson, C.L. Immunological identification of the mammalian H3 histamine receptor in the mouse brain. Neuroreport, 2001, 12(2), 259-262. doi: 10.1097/00001756-200102120-00016 PMID: 11209931
  39. Pillot, C.; Heron, A.; Cochois, V.; Tardivel-Lacombe, J.; Ligneau, X.; Schwartz, J.C.; Arrang, J.M. A detailed mapping of the histamine H3 receptor and its gene transcripts in rat brain. Neuroscience, 2002, 114(1), 173-193. doi: 10.1016/S0306-4522(02)00135-5 PMID: 12207964
  40. Strakhova, M.I.; Nikkel, A.L.; Manelli, A.M.; Hsieh, G.C.; Esbenshade, T.A.; Brioni, J.D.; Bitner, R.S. Localization of histamine H4 receptors in the central nervous system of human and rat. Brain Res., 2009, 1250, 41-48. doi: 10.1016/j.brainres.2008.11.018 PMID: 19046950
  41. Gbahou, F.; Rouleau, A.; Morisset, S.; Parmentier, R.; Crochet, S.; Lin, J.S.; Ligneau, X.; Tardivel-Lacombe, J.; Stark, H.; Schunack, W.; Ganellin, C.R.; Schwartz, J.C.; Arrang, J.M. Protean agonism at histamine H 3 receptors in vitro and in vivo. Proc. Natl. Acad. Sci. USA, 2003, 100(19), 11086-11091. doi: 10.1073/pnas.1932276100 PMID: 12960366
  42. Clineschmidt, B.V.; Lotti, V.J. Histamine: Intraventricular injection suppresses ingestive behavior of the cat. Arch. Int. Pharmacodyn. Ther., 1973, 206(2), 288-298. PMID: 4778620
  43. Mika, K.; Szafarz, M.; Bednarski, M.; Kuder, K.; Szczepańska, K.; Pociecha, K.; Pomierny, B.; Kieć-Kononowicz, K.; Sapa, J.; Kotańska, M. Metabolic benefits of novel histamine H3 receptor ligands in the model of excessive eating: The importance of intrinsic activity and pharmacokinetic properties. Biomed. Pharmacother., 2021, 142, 111952. doi: 10.1016/j.biopha.2021.111952 PMID: 34325303
  44. Kumar, A.; Pasam, V.R.; Thakur, R.K.; Singh, M.; Singh, K.; Shukla, M.; Yadav, A.; Dogra, S.; Sona, C.; Umrao, D.; Jaiswal, S.; Ahmad, H.; Rashid, M.; Singh, S.K.; Wahajuddin, M.; Dwivedi, A.K.; Siddiqi, M.I.; Lal, J.; Tripathi, R.P.; Yadav, P.N. Novel tetrahydroquinazolinamines as selective histamine 3 receptor antagonists for the treatment of obesity. J. Med. Chem., 2019, 62(9), 4638-4655. doi: 10.1021/acs.jmedchem.9b00241 PMID: 30998358
  45. Cohn, C.K.; Ball, G.G.; Hirsch, J. Histamine: Effect on selfstimulation. Science, 1973, 180(4087), 757-758. doi: 10.1126/science.180.4087.757
  46. Machidori, H.; Sakata, T.; Yoshimatsu, H.; Ookuma, K.; Fujimoto, K.; Kurokawa, M.; Yamatodani, A.; Wada, H. Zucker obese rats: Defect in brain histamine control of feeding. Brain Res., 1992, 590(1-2), 180-186. doi: 10.1016/0006-8993(92)91093-T PMID: 1330211
  47. Ookuma, K.; Sakata, T.; Fukagawa, K.; Yoshimatsu, H.; Kurokawa, M.; Machidori, H.; Fujimoto, K. Neuronal histamine in the hypothalamus suppresses food intake in rats. Brain Res., 1993, 628(1-2), 235-242. doi: 10.1016/0006-8993(93)90960-U PMID: 8313152
  48. Kasaoka, S.; Tsuboyama-Kasaoka, N.; Kawahara, Y.; Inoue, S.; Tsuji, M.; Ezaki, O.; Kato, H.; Tsuchiya, T.; Okuda, H.; Nakajima, S. Histidine supplementation suppresses food intake and fat accumulation in rats. Nutrition, 2004, 20(11-12), 991-996. doi: 10.1016/j.nut.2004.08.006 PMID: 15561489
  49. Sakata, T.; Yoshimatsu, H.; Kurokawa, M. Hypothalamic neuronal histamine: Implications of its homeostatic control of energy metabolism. Nutrition, 1997, 13(5), 403-411. doi: 10.1016/S0899-9007(97)91277-6 PMID: 9225331
  50. Yoshimoto, R.; Miyamoto, Y.; Shimamura, K.; Ishihara, A.; Takahashi, K.; Kotani, H.; Chen, A.S.; Chen, H.Y.; MacNeil, D.J.; Kanatani, A.; Tokita, S. Therapeutic potential of histamine H3 receptor agonist for the treatment of obesity and diabetes mellitus. Proc. Natl. Acad. Sci. USA, 2006, 103(37), 13866-13871. doi: 10.1073/pnas.0506104103 PMID: 16954192
  51. Masaki, T.; Yoshimatsu, H. The hypothalamic H1 receptor: A novel therapeutic target for disrupting diurnal feeding rhythm and obesity. Trends Pharmacol. Sci., 2006, 27(5), 279-284. doi: 10.1016/j.tips.2006.03.008 PMID: 16584790
  52. Masaki, T.; Chiba, S.; Yasuda, T.; Noguchi, H.; Kakuma, T.; Watanabe, T.; Sakata, T.; Yoshimatsu, H. Involvement of hypothalamic histamine H1 receptor in the regulation of feeding rhythm and obesity. Diabetes, 2004, 53(9), 2250-2260. doi: 10.2337/diabetes.53.9.2250 PMID: 15331534
  53. Masaki, T.; Yoshimatsu, H.; Chiba, S.; Watanabe, T.; Sakata, T. Targeted disruption of histamine H1-receptor attenuates regulatory effects of leptin on feeding, adiposity, and UCP family in mice. Diabetes, 2001, 50(2), 385-391. doi: 10.2337/diabetes.50.2.385 PMID: 11272151
  54. Morimoto, T.; Yamamoto, Y.; Mobarakeh, J.I.; Yanai, K.; Watanabe, T.; Watanabe, T.; Yamatodani, A. Involvement of the histaminergic system in leptin-induced suppression of food intake. Physiol. Behav., 1999, 67(5), 679-683. doi: 10.1016/S0031-9384(99)00123-7 PMID: 10604837
  55. Yoshimatsu, H.; Itateyama, E.; Kondou, S.; Tajima, D.; Himeno, K.; Hidaka, S.; Kurokawa, M.; Sakata, T. Hypothalamic neuronal histamine as a target of leptin in feeding behavior. Diabetes, 1999, 48(12), 2286-2291. doi: 10.2337/diabetes.48.12.2286 PMID: 10580415
  56. Mollet, A.; Lutz, T.A.; Meier, S.; Riediger, T.; Rushing, P.A.; Scharrer, E. Histamine H 1 receptors mediate the anorectic action of the pancreatic hormone amylin. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2001, 281(5), R1442-R1448. doi: 10.1152/ajpregu.2001.281.5.R1442 PMID: 11641114
  57. Mollet, A.; Meier, S.; Riediger, T.; Lutz, T.A. Histamine H1 receptors in the ventromedial hypothalamus mediate the anorectic action of the pancreatic hormone amylin. Peptides, 2003, 24(1), 155-158. doi: 10.1016/S0196-9781(02)00288-7 PMID: 12576097
  58. Davidowa, H. Histamine H1-receptors differentially mediate the action of amylin on hypothalamic neurons in control and in overweight rats. Behav. Brain Res., 2007, 182(1), 28-35. doi: 10.1016/j.bbr.2007.05.001 PMID: 17586064
  59. Gotoh, K.; Masaki, T.; Chiba, S.; Ando, H.; Shimasaki, T.; Mitsutomi, K.; Fujiwara, K.; Katsuragi, I.; Kakuma, T.; Sakata, T.; Yoshimatsu, H. Nesfatin-1, corticotropin-releasing hormone, thyrotropin-releasing hormone, and neuronal histamine interact in the hypothalamus to regulate feeding behavior. J. Neurochem., 2013, 124(1), 90-99. doi: 10.1111/jnc.12066 PMID: 23106615
  60. Itowi, N.; Nagai, K.; Nakagawa, H.; Watanabe, T.; Wada, H. Changes in the feeding behavior of rats elicited by histamine infusion. Physiol. Behav., 1988, 44(2), 221-226. doi: 10.1016/0031-9384(88)90142-4 PMID: 3237828
  61. Lecklin, A.; Tuomisto, L. The blockade of H1 receptors attenuates the suppression of feeding and diuresis induced by inhibition of histamine catabolism. Pharmacol. Biochem. Behav., 1998, 59(3), 753-758. doi: 10.1016/S0091-3057(97)00465-6 PMID: 9512082
  62. Vaziri, P.; Dang, K.; Anderson, G.H. Evidence for histamine involvement in the effect of histidine loads on food and water intake in rats. J. Nutr., 1997, 127(8), 1519-1526. doi: 10.1093/jn/127.8.1519 PMID: 9237947
  63. Lecklin, A.; Etu-Seppälä, P.; Stark, H.; Tuomisto, L. Effects of intracerebroventricularly infused histamine and selective H1, H2 and H3 agonists on food and water intake and urine flow in Wistar rats. Brain Res., 1998, 793(1-2), 279-288. doi: 10.1016/S0006-8993(98)00186-3 PMID: 9630675
  64. Kobayashi, T.; Tonai, S.; Ishihara, Y.; Koga, R.; Okabe, S.; Watanabe, T. Abnormal functional and morphological regulation of the gastric mucosa in histamine H2 receptor–deficient mice. J. Clin. Invest., 2000, 105(12), 1741-1749. doi: 10.1172/JCI9441 PMID: 10862789
  65. Scott Kraly, F.; Specht, S.M. Histamine plays a major role for drinking elicited by spontaneous eating in rats. Physiol. Behav., 1984, 33(4), 611-614. doi: 10.1016/0031-9384(84)90379-2 PMID: 6522479
  66. Kjaer, A.; Knigge, U.; Rouleau, A.; Garbarg, M.; Warberg, J. Dehydration-induced release of vasopressin involves activation of hypothalamic histaminergic neurons. Endocrinology, 1994, 135(2), 675-681. doi: 10.1210/endo.135.2.8033816 PMID: 8033816
  67. Wang, K.Y.; Tanimoto, A.; Yamada, S.; Guo, X.; Ding, Y.; Watanabe, T.; Watanabe, T.; Kohno, K.; Hirano, K.I.; Tsukada, H.; Sasaguri, Y. Histamine regulation in glucose and lipid metabolism via histamine receptors: Model for nonalcoholic steatohepatitis in mice. Am. J. Pathol., 2010, 177(2), 713-723. doi: 10.2353/ajpath.2010.091198 PMID: 20566747
  68. Støa-Birketvedt, G. Effect of cimetidine suspension on appetite and weight in overweight subjects. BMJ, 1993, 306(6885), 1091-1093. doi: 10.1136/bmj.306.6885.1091 PMID: 8388285
  69. Støa-Birketvedt, G.; Paus, P.N.; Ganss, R.; Ingebretsen, O.C.; Florholmen, J. Cimetidine reduces weight and improves metabolic control in overweight patients with Type 2 diabetes. Int. J. Obes., 1998, 22(11), 1041-1045. doi: 10.1038/sj.ijo.0800721 PMID: 9822940
  70. Xu, L.; Lin, W.; Zheng, Y.; Chen, J.; Fang, Z.; Tan, N.; Hu, W.; Guo, Y.; Wang, Y.; Chen, Z. An H2R-dependent medial septum histaminergic circuit mediates feeding behavior. Curr. Biol., 2022, 32(9), 1937-1948.e5. doi: 10.1016/j.cub.2022.03.010 PMID: 35338850
  71. Sakata, T.; Fukagawa, K.; Ookuma, K.; Fujimoto, K.; Yoshimatsu, H.; Yamatodani, A.; Wada, H. Hypothalamic neuronal histamine modulates ad libitum feeding by rats. Brain Res., 1990, 537(1-2), 303-306. doi: 10.1016/0006-8993(90)90373-J PMID: 2085781
  72. Malmlöf, K.; Zaragoza, F.; Golozoubova, V.; Refsgaard, H.H.F.; Cremers, T.; Raun, K.; Wulff, B.S.; Johansen, P.B.; Westerink, B.; Rimvall, K. Influence of a selective histamine H3 receptor antagonist on hypothalamic neural activity, food intake and body weight. Int. J. Obes., 2005, 29(12), 1402-1412. doi: 10.1038/sj.ijo.0803036 PMID: 16151415
  73. Malmlöf, K.; Golozoubova, V.; Peschke, B.; Wulff, B.S.; Refsgaard, H.H.F.; Johansen, P.B.; Cremers, T.; Rimvall, K. Increase of neuronal histamine in obese rats is associated with decreases in body weight and plasma triglycerides. Obesity (Silver Spring), 2006, 14(12), 2154-2162. doi: 10.1038/oby.2006.252 PMID: 17189541
  74. Malmlöf, K.; Hastrup, S.; Wulff, B.S.; Hansen, B.C.; Peschke, B.; Jeppesen, C.B.; Hohlweg, R.; Rimvall, K. Antagonistic targeting of the histamine H3 receptor decreases caloric intake in higher mammalian species. Biochem. Pharmacol., 2007, 73(8), 1237-1242. doi: 10.1016/j.bcp.2007.01.034 PMID: 17328868
  75. Itoh, E.; Fujimiya, M.; Inui, A. Thioperamide, a histamine H3 receptor antagonist, suppresses NPY-but not Dynorphin A-induced feeding in rats. Regul. Pept., 1998, 75-76, 373-376. doi: 10.1016/S0167-0115(98)00090-1 PMID: 9802431
  76. Itoh, E.; Fujimiya, M.; Inui, A. Thioperamide, a histamine H3 receptor antagonist, powerfully suppresses peptide YY-induced food intake in rats. Biol. Psychiatry, 1999, 45(4), 475-481. doi: 10.1016/S0006-3223(98)00044-4 PMID: 10071721
  77. Henry, M.B.; Zheng, S.; Duan, C.; Patel, B.; Vassileva, G.; Sondey, C.; Lachowicz, J.; Hwa, J.J. Antidiabetic properties of the histamine H3 receptor protean agonist proxyfan. Endocrinology, 2011, 152(3), 828-835. doi: 10.1210/en.2010-0757 PMID: 21239440
  78. Tokita, S.; Takahashi, K.; Kotani, H. Recent advances in molecular pharmacology of the histamine systems: Physiology and pharmacology of histamine H3 receptor: Roles in feeding regulation and therapeutic potential for metabolic disorders. J. Pharmacol. Sci., 2006, 101(1), 12-18. doi: 10.1254/jphs.FMJ06001X4 PMID: 16648667
  79. Thurmond, R.L. The histamine H4 receptor: From orphan to the clinic. Front. Pharmacol., 2015, 6, 65. doi: 10.3389/fphar.2015.00065 PMID: 25873897
  80. Doi, T.; Sakata, T.; Yoshimatsu, H.; Machidori, H.; Kurokawa, M.; Jayasekara, L.A.L.W.; Niki, N. Hypothalamic neuronal histamine regulates feeding circadian rhythm in rats. Brain Res., 1994, 641(2), 311-318. doi: 10.1016/0006-8993(94)90160-0 PMID: 8012834
  81. Abe, H.; Honma, S.; Ohtsu, H.; Honma, K. Circadian rhythms in behavior and clock gene expressions in the brain of mice lacking histidine decarboxylase. Brain Res. Mol. Brain Res., 2004, 124(2), 178-187. doi: 10.1016/j.molbrainres.2004.02.015 PMID: 15135226
  82. Ishizuka, T.; Yamatodani, A. Integrative role of the histaminergic system in feeding and taste perception. Front. Syst. Neurosci., 2012, 6, 44. doi: 10.3389/fnsys.2012.00044 PMID: 22654740
  83. Itoh, Y.; Oishi, R.; Saeki, K. Feeding-induced increase in the extracellular concentration of histamine in rat hypothalamus as measured by in vivo microdialysis. Neurosci. Lett., 1991, 125(2), 235-237. doi: 10.1016/0304-3940(91)90037-T PMID: 1881601
  84. Valdés, J.L.; Sánchez, C.; Riveros, M.E.; Blandina, P.; Contreras, M.; Farías, P.; Torrealba, F. The histaminergic tuberomammillary nucleus is critical for motivated arousal. Eur. J. Neurosci., 2010, 31(11), 2073-2085. doi: 10.1111/j.1460-9568.2010.07241.x PMID: 20529118
  85. Inzunza, O.; Serón-Ferré, M.J.; Bravo, H.; Torrealba, F. Tuberomammillary nucleus activation anticipates feeding under a restricted schedule in rats. Neurosci. Lett., 2000, 293(2), 139-142. doi: 10.1016/S0304-3940(00)01516-0 PMID: 11027853
  86. Meynard, M.; Valdés, J.; Recabarren, M.; Serónferré, M.; Torrealba, F. Specific activation of histaminergic neurons during daily feeding anticipatory behavior in rats. Behav. Brain Res., 2005, 158(2), 311-319. doi: 10.1016/j.bbr.2004.09.010 PMID: 15698898
  87. Umehara, H.; Mizuguchi, H.; Mizukawa, N.; Matsumoto, M.; Takeda, N.; Senba, E.; Fukui, H. Deprivation of anticipated food under scheduled feeding induces c-Fos expression in the caudal part of the arcuate nucleus of hypothalamus through histamine H1 receptors in rats: Potential involvement of E3 subgroup of histaminergic neurons in tuberomammillary nucleus. Brain Res., 2011, 1387, 61-70. doi: 10.1016/j.brainres.2011.02.018 PMID: 21320473
  88. Poyurovsky, M.; Fuchs, C.; Pashinian, A.; Levi, A.; Weizman, R.; Weizman, A. Reducing antipsychotic-induced weight gain in schizophrenia: A double-blind placebo-controlled study of reboxetine–betahistine combination. Psychopharmacology (Berl.), 2013, 226(3), 615-622. doi: 10.1007/s00213-012-2935-2 PMID: 23239133
  89. Barak, N.; Beck, Y.; Albeck, J.H. Betahistine decreases olanzapine-induced weight gain and somnolence in humans. J. Psychopharmacol., 2016, 30(3), 237-241. doi: 10.1177/0269881115626349 PMID: 26839321
  90. Barak, N.; Greenway, F.L.; Fujioka, K.; Aronne, L.J.; Kushner, R.F. Effect of histaminergic manipulation on weight in obese adults: A randomized placebo controlled trial. Int. J. Obes., 2008, 32(10), 1559-1565. doi: 10.1038/ijo.2008.135 PMID: 18698316
  91. Raveendran, V.V.; Kassel, K.M.; Smith, D.D.; Luyendyk, J.P.; Williams, K.J.; Cherian, R.; Reed, G.A.; Flynn, C.A.; Csanaky, I.L.; Lickteig, A.L.; Pratt-Hyatt, M.J.; Klaassen, C.D.; Dileepan, K.N. H1-antihistamines exacerbate high-fat diet-induced hepatic steatosis in wild-type but not in apolipoprotein E knockout mice. Am. J. Physiol. Gastrointest. Liver Physiol., 2014, 307(2), G219-G228. doi: 10.1152/ajpgi.00027.2014 PMID: 24852568
  92. Hancock, A.A.; Bennani, Y.L.; Bush, E.N.; Esbenshade, T.A.; Faghih, R.; Fox, G.B.; Jacobson, P.; Knourek-Segel, V.; Krueger, K.M.; Nuss, M.E.; Pan, J.B.; Shapiro, R.; Witte, D.G.; Yao, B.B. Antiobesity effects of A-331440, a novel non-imidazole histamine H3 receptor antagonist. Eur. J. Pharmacol., 2004, 487(1-3), 183-197. doi: 10.1016/j.ejphar.2004.01.015 PMID: 15033391
  93. Pierson, P.D.; Fettes, A.; Freichel, C.; Gatti-McArthur, S.; Hertel, C.; Huwyler, J.; Mohr, P.; Nakagawa, T.; Nettekoven, M.; Plancher, J.M.; Raab, S.; Richter, H.; Roche, O.; Rodríguez Sarmiento, R.M.; Schmitt, M.; Schuler, F.; Takahashi, T.; Taylor, S.; Ullmer, C.; Wiegand, R. 5-hydroxyindole-2-carboxylic acid amides: Novel histamine-3 receptor inverse agonists for the treatment of obesity. J. Med. Chem., 2009, 52(13), 3855-3868. doi: 10.1021/jm900409x PMID: 19456097
  94. Ericson, H.; Watanabe, T.; Köhler, C. Morphological analysis of the tuberomammmillary nucleus in the rat brain: Delineation of subgroups with antibody again L-histidine decarboxylase as a marker. J. Comp. Neurol., 1987, 263(1), 1-24. doi: 10.1002/cne.902630102 PMID: 2822770
  95. Miklós, I.H.; Kovács, K.J. Functional heterogeneity of the responses of histaminergic neuron subpopulations to various stress challenges. Eur. J. Neurosci., 2003, 18(11), 3069-3079. doi: 10.1111/j.1460-9568.2003.03033.x PMID: 14656302
  96. Panula, P.; Nuutinen, S. The histaminergic network in the brain: Basic organization and role in disease. Nat. Rev. Neurosci., 2013, 14(7), 472-487. doi: 10.1038/nrn3526 PMID: 23783198
  97. Medhurst, A.D.; Atkins, A.R.; Beresford, I.J.; Brackenborough, K.; Briggs, M.A.; Calver, A.R.; Cilia, J.; Cluderay, J.E.; Crook, B.; Davis, J.B.; Davis, R.K.; Davis, R.P.; Dawson, L.A.; Foley, A.G.; Gartlon, J.; Gonzalez, M.I.; Heslop, T.; Hirst, W.D.; Jennings, C.; Jones, D.N.C.; Lacroix, L.P.; Martyn, A.; Ociepka, S.; Ray, A.; Regan, C.M.; Roberts, J.C.; Schogger, J.; Southam, E.; Stean, T.O.; Trail, B.K.; Upton, N.; Wadsworth, G.; Wald, J.A.; White, T.; Witherington, J.; Woolley, M.L.; Worby, A.; Wilson, D.M. GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer’s disease brain and improves cognitive performance in preclinical models. J. Pharmacol. Exp. Ther., 2007, 321(3), 1032-1045. doi: 10.1124/jpet.107.120311 PMID: 17327487
  98. Giannoni, P.; Passani, M.B.; Nosi, D.; Chazot, P.L.; Shenton, F.C.; Medhurst, A.D.; Munari, L.; Blandina, P. Heterogeneity of histaminergic neurons in the tuberomammillary nucleus of the rat. Eur. J. Neurosci., 2009, 29(12), 2363-2374. doi: 10.1111/j.1460-9568.2009.06765.x PMID: 19490084
  99. Giannoni, P.; Medhurst, A.D.; Passani, M.B.; Giovannini, M.G.; Ballini, C.; Corte, L.D.; Blandina, P. Regional differential effects of the novel histamine H3 receptor antagonist 6-(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy-N-methyl-3-pyridine- carboxamide hydrochloride (GSK189254) on histamine release in the central nervous system of freely moving rats. J. Pharmacol. Exp. Ther., 2010, 332(1), 164-172. doi: 10.1124/jpet.109.158444 PMID: 19815811
  100. Sakata, T.; Ookuma, K.; Fukagawa, K.; Fujimoto, K.; Yoshimatsu, H.; Shiraishi, T.; Wada, H. Blockade of the histamine H1-receptor in the rat ventromedial hypothalamus and feeding elicitation. Brain Res., 1988, 441(1-2), 403-407. doi: 10.1016/0006-8993(88)91423-0 PMID: 3359243
  101. Sakata, T.; Fukagawa, K.; Ookuma, K.; Fujimoto, K.; Yoshimatsu, H.; Yamatodani, A.; Wada, H. Modulation of neuronal histamine in control of food intake. Physiol. Behav., 1988, 44(4-5), 539-543. doi: 10.1016/0031-9384(88)90316-2 PMID: 3237844
  102. Ookuma, K.; Yoshimatsu, H.; Sakata, T.; Fujimoto, K.; Fukagawa, K. Hypothalamic sites of neuronal histamine action on food intake by rats. Brain Res., 1989, 490(2), 268-275. doi: 10.1016/0006-8993(89)90244-8 PMID: 2765863
  103. Morton, G.J.; Cummings, D.E.; Baskin, D.G.; Barsh, G.S.; Schwartz, M.W. Central nervous system control of food intake and body weight. Nature, 2006, 443(7109), 289-295. doi: 10.1038/nature05026 PMID: 16988703
  104. Gao, Q.; Horvath, T.L. Neurobiology of feeding and energy expenditure. Annu. Rev. Neurosci., 2007, 30(1), 367-398. doi: 10.1146/annurev.neuro.30.051606.094324 PMID: 17506645
  105. Stuber, G.D.; Wise, R.A. Lateral hypothalamic circuits for feeding and reward. Nat. Neurosci., 2016, 19(2), 198-205. doi: 10.1038/nn.4220 PMID: 26814589
  106. Wang, Y.; Kim, J.; Schmit, M.B.; Cho, T.S.; Fang, C.; Cai, H. A bed nucleus of stria terminalis microcircuit regulating inflammation-associated modulation of feeding. Nat. Commun., 2019, 10(1), 2769. doi: 10.1038/s41467-019-10715-x PMID: 31235690
  107. Zhao, Z.; Chen, Z.; Xiang, X.; Hu, M.; Xie, H.; Jia, X.; Cai, F.; Cui, Y.; Chen, Z.; Qian, L.; Liu, J.; Shang, C.; Yang, Y.; Ni, X.; Sun, W.; Hu, J.; Cao, P.; Li, H.; Shen, W.L. Zona incerta GABAergic neurons integrate prey-related sensory signals and induce an appetitive drive to promote hunting. Nat. Neurosci., 2019, 22(6), 921-932. doi: 10.1038/s41593-019-0404-5 PMID: 31127258
  108. Luo, S.X.; Huang, J.; Li, Q.; Mohammad, H.; Lee, C.Y.; Krishna, K.; Kok, A.M.Y.; Tan, Y.L.; Lim, J.Y.; Li, H.; Yeow, L.Y.; Sun, J.; He, M.; Grandjean, J.; Sajikumar, S.; Han, W.; Fu, Y. Regulation of feeding by somatostatin neurons in the tuberal nucleus. Science, 2018, 361(6397), 76-81. doi: 10.1126/science.aar4983 PMID: 29976824
  109. Petrovich, G.D. Feeding behavior survival circuit: Anticipation & competition. Curr. Opin. Behav. Sci., 2018, 24, 137-142. doi: 10.1016/j.cobeha.2018.09.007 PMID: 31086808
  110. Sternson, S.M.; Eiselt, A.K. Three pillars for the neural control of appetite. Annu. Rev. Physiol., 2017, 79(1), 401-423. doi: 10.1146/annurev-physiol-021115-104948 PMID: 27912679
  111. Krashes, M.J.; Koda, S.; Ye, C.; Rogan, S.C.; Adams, A.C.; Cusher, D.S.; Maratos-Flier, E.; Roth, B.L.; Lowell, B.B. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest., 2011, 121(4), 1424-1428. doi: 10.1172/JCI46229 PMID: 21364278
  112. Luquet, S.; Perez, F.A.; Hnasko, T.S.; Palmiter, R.D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science, 2005, 310(5748), 683-685. doi: 10.1126/science.1115524
  113. Aponte, Y.; Atasoy, D.; Sternson, S.M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci., 2011, 14(3), 351-355. doi: 10.1038/nn.2739 PMID: 21209617
  114. Livneh, Y.; Ramesh, R.N.; Burgess, C.R.; Levandowski, K.M.; Madara, J.C.; Fenselau, H.; Goldey, G.J.; Diaz, V.E.; Jikomes, N.; Resch, J.M.; Lowell, B.B.; Andermann, M.L. Homeostatic circuits selectively gate food cue responses in insular cortex. Nature, 2017, 546(7660), 611-616. doi: 10.1038/nature22375 PMID: 28614299
  115. Scott, M.M.; Williams, K.W.; Rossi, J.; Lee, C.E.; Elmquist, J.K. Leptin receptor expression in hindbrain Glp-1 neurons regulates food intake and energy balance in mice. J. Clin. Invest., 2011, 121(6), 2413-2421. doi: 10.1172/JCI43703 PMID: 21606595
  116. Zhan, C.; Zhou, J.; Feng, Q.; Zhang, J.; Lin, S.; Bao, J.; Wu, P.; Luo, M. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J. Neurosci., 2013, 33(8), 3624-3632. doi: 10.1523/JNEUROSCI.2742-12.2013 PMID: 23426689
  117. Garfield, A.S.; Li, C.; Madara, J.C.; Shah, B.P.; Webber, E.; Steger, J.S.; Campbell, J.N.; Gavrilova, O.; Lee, C.E.; Olson, D.P.; Elmquist, J.K.; Tannous, B.A.; Krashes, M.J.; Lowell, B.B. A neural basis for melanocortin-4 receptor–regulated appetite. Nat. Neurosci., 2015, 18(6), 863-871. doi: 10.1038/nn.4011 PMID: 25915476
  118. Essner, R.A.; Smith, A.G.; Jamnik, A.A.; Ryba, A.R.; Trutner, Z.D.; Carter, M.E. AgRP neurons can increase food intake during conditions of appetite suppression and inhibit anorexigenic parabrachial neurons. J. Neurosci., 2017, 37(36), 8678-8687. doi: 10.1523/JNEUROSCI.0798-17.2017 PMID: 28821663
  119. Qiu, J.; Rivera, H.M.; Bosch, M.A.; Padilla, S.L.; Stincic, T.L.; Palmiter, R.D.; Kelly, M.J.; Rønnekleiv, O.K. Estrogenic-dependent glutamatergic neurotransmission from kisspeptin neurons governs feeding circuits in females. eLife, 2018, 7, e35656. doi: 10.7554/eLife.35656 PMID: 30079889
  120. Wei, Q.; Krolewski, D.M.; Moore, S.; Kumar, V.; Li, F.; Martin, B.; Tomer, R.; Murphy, G.G.; Deisseroth, K.; Watson, S.J., Jr; Akil, H. Uneven balance of power between hypothalamic peptidergic neurons in the control of feeding. Proc. Natl. Acad. Sci. USA, 2018, 115(40), E9489-E9498. doi: 10.1073/pnas.1802237115 PMID: 30224492
  121. Bouret, S.G.; Draper, S.J.; Simerly, R.B. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J. Neurosci., 2004, 24(11), 2797-2805. doi: 10.1523/JNEUROSCI.5369-03.2004 PMID: 15028773
  122. Minokoshi, Y.; Alquier, T.; Furukawa, N.; Kim, Y.B.; Lee, A.; Xue, B.; Mu, J.; Foufelle, F.; Ferré, P.; Birnbaum, M.J.; Stuck, B.J.; Kahn, B.B. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature, 2004, 428(6982), 569-574. doi: 10.1038/nature02440 PMID: 15058305
  123. Taylor, J.E.; Richelson, E. High affinity binding of tricyclic antidepressants to histamine H1-receptors: Fact and artifact. Eur. J. Pharmacol., 1980, 67(1), 41-46. doi: 10.1016/0014-2999(80)90006-0 PMID: 6106553
  124. Ookuma, K.; Sakata, T.; Fujimoto, K. Evidence for feeding elicited through antihistaminergic effects of tricyclic antidepressants in the rat hypothalamus. Psychopharmacology (Berl.), 1990, 101(4), 481-485. doi: 10.1007/BF02244225 PMID: 1975106
  125. Kim, S.F.; Huang, A.S.; Snowman, A.M.; Teuscher, C.; Snyder, S.H. Antipsychotic drug-induced weight gain mediated by histamine H 1 receptor-linked activation of hypothalamic AMP-kinase. Proc. Natl. Acad. Sci. USA, 2007, 104(9), 3456-3459. doi: 10.1073/pnas.0611417104 PMID: 17360666
  126. Morimoto, T.; Yamamoto, Y.; Yamatodani, A. Brain histamine and feeding behavior. Behav. Brain Res., 2001, 124(2), 145-150. doi: 10.1016/S0166-4328(01)00225-X PMID: 11640967
  127. Tuomisto, J.; Männistö, P. Neurotransmitter regulation of anterior pituitary hormones. Pharmacol. Rev., 1985, 37(3), 249-332. PMID: 2869509
  128. Wu, Z.; Kim, E.R.; Sun, H.; Xu, Y.; Mangieri, L.R.; Li, D.P.; Pan, H.L.; Xu, Y.; Arenkiel, B.R.; Tong, Q. GABAergic projections from lateral hypothalamus to paraventricular hypothalamic nucleus promote feeding. J. Neurosci., 2015, 35(8), 3312-3318. doi: 10.1523/JNEUROSCI.3720-14.2015 PMID: 25716832
  129. Stamatakis, A.M.; Van Swieten, M.; Basiri, M.L.; Blair, G.A.; Kantak, P.; Stuber, G.D. Lateral hypothalamic area glutamatergic neurons and their projections to the lateral habenula regulate feeding and reward. J. Neurosci., 2016, 36(2), 302-311. doi: 10.1523/JNEUROSCI.1202-15.2016 PMID: 26758824
  130. Mangieri, L.R.; Lu, Y.; Xu, Y.; Cassidy, R.M.; Xu, Y.; Arenkiel, B.R.; Tong, Q. A neural basis for antagonistic control of feeding and compulsive behaviors. Nat. Commun., 2018, 9(1), 52. doi: 10.1038/s41467-017-02534-9 PMID: 29302029
  131. Kita, H.; Oomura, Y. Reciprocal connections between the lateral hypothalamus and the frontal cortex in the rat: Electrophysiological and anatomical observations. Brain Res., 1981, 213(1), 1-16. doi: 10.1016/0006-8993(81)91244-0 PMID: 6165439
  132. Lin, J.S.; Sakai, K.; Jouvet, M. Evidence for histaminergic arousal mechanisms in the hypothalamus of cat. Neuropharmacology, 1988, 27(2), 111-122. doi: 10.1016/0028-3908(88)90159-1 PMID: 2965315
  133. Anthony, T.E.; Dee, N.; Bernard, A.; Lerchner, W.; Heintz, N.; Anderson, D.J. Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell, 2014, 156(3), 522-536. doi: 10.1016/j.cell.2013.12.040 PMID: 24485458
  134. Sakurai, T. The neural circuit of orexin (hypocretin): Maintaining sleep and wakefulness. Nat. Rev. Neurosci., 2007, 8(3), 171-181. doi: 10.1038/nrn2092 PMID: 17299454
  135. Yao, L.; Ramirez, A.D.; Roecker, A.J.; Fox, S.V.; Uslaner, J.M.; Smith, S.M.; Hodgson, R.; Coleman, P.J.; Renger, J.J.; Winrow, C.J.; Gotter, A.L. The dual orexin receptor antagonist, DORA-22, lowers histamine levels in the lateral hypothalamus and prefrontal cortex without lowering hippocampal acetylcholine. J. Neurochem., 2017, 142(2), 204-214. doi: 10.1111/jnc.14055 PMID: 28444767
  136. Jones, B.E.; Moore, R.Y. Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Res., 1977, 127(1), 23-53. doi: 10.1016/0006-8993(77)90378-X PMID: 301051
  137. Moore, R.Y.; Halaris, A.E.; Jones, B.E. Serotonin neurons of the midbrain raphe: Ascending projections. J. Comp. Neurol., 1978, 180(3), 417-438. doi: 10.1002/cne.901800302 PMID: 77865
  138. Eriksson, K.S.; Sergeeva, O.; Brown, R.E.; Haas, H.L. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J. Neurosci., 2001, 21(23), 9273-9279. doi: 10.1523/JNEUROSCI.21-23-09273.2001 PMID: 11717361
  139. Li, Y.; Gao, X.B.; Sakurai, T.; van den Pol, A.N. Hypocretin/ Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron, 2002, 36(6), 1169-1181. doi: 10.1016/S0896-6273(02)01132-7 PMID: 12495630
  140. Zeltser, L.M. Feeding circuit development and early-life influences on future feeding behaviour. Nat. Rev. Neurosci., 2018, 19(5), 302-316. doi: 10.1038/nrn.2018.23 PMID: 29662204
  141. Betley, J.N.; Cao, Z.F.H.; Ritola, K.D.; Sternson, S.M. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell, 2013, 155(6), 1337-1350. doi: 10.1016/j.cell.2013.11.002 PMID: 24315102
  142. Chen, Y.; Lin, Y.C.; Zimmerman, C.A.; Essner, R.A.; Knight, Z.A. Hunger neurons drive feeding through a sustained, positive reinforcement signal. eLife, 2016, 5, e18640. doi: 10.7554/eLife.18640 PMID: 27554486
  143. Jennings, J.H.; Rizzi, G.; Stamatakis, A.M.; Ung, R.L.; Stuber, G.D. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science, 2013, 341(6153), 1517-1521. doi: 10.1126/science.1241812
  144. Cumming, P.; Damsma, G.; Fibiger, H.C.; Vincent, S.R. Characterization of extracellular histamine in the striatum and bed nucleus of the stria terminalis of the rat: An in vivo microdialysis study. J. Neurochem., 1991, 56(5), 1797-1803. doi: 10.1111/j.1471-4159.1991.tb02083.x PMID: 1707442
  145. Schneeberger, M.; Gomis, R.; Claret, M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J. Endocrinol., 2014, 220(2), T25-T46. doi: 10.1530/JOE-13-0398 PMID: 24222039
  146. King, B.M. The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol. Behav., 2006, 87(2), 221-244. doi: 10.1016/j.physbeh.2005.10.007 PMID: 16412483
  147. Choi, Y.H.; Fujikawa, T.; Lee, J.; Reuter, A.; Kim, K.W. Revisiting the ventral medial nucleus of the hypothalamus: The roles of SF-1 neurons in energy homeostasis. Front. Neurosci., 2013, 7, 71. doi: 10.3389/fnins.2013.00071 PMID: 23675313
  148. Mieda, M.; Williams, S.C.; Richardson, J.A.; Tanaka, K.; Yanagisawa, M. The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc. Natl. Acad. Sci. USA, 2006, 103(32), 12150-12155. doi: 10.1073/pnas.0604189103 PMID: 16880388
  149. Gooley, J.J.; Schomer, A.; Saper, C.B. The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat. Neurosci., 2006, 9(3), 398-407. doi: 10.1038/nn1651 PMID: 16491082
  150. Garfield, A.S.; Shah, B.P.; Burgess, C.R.; Li, M.M.; Li, C.; Steger, J.S.; Madara, J.C.; Campbell, J.N.; Kroeger, D.; Scammell, T.E.; Tannous, B.A.; Myers, M.G., Jr; Andermann, M.L.; Krashes, M.J.; Lowell, B.B. Dynamic GABAergic afferent modulation of AgRP neurons. Nat. Neurosci., 2016, 19(12), 1628-1635. doi: 10.1038/nn.4392 PMID: 27643429
  151. Otgon-Uul, Z.; Suyama, S.; Onodera, H.; Yada, T. Optogenetic activation of leptin- and glucose-regulated GABAergic neurons in dorsomedial hypothalamus promotes food intake via inhibitory synaptic transmission to paraventricular nucleus of hypothalamus. Mol. Metab., 2016, 5(8), 709-715. doi: 10.1016/j.molmet.2016.06.010 PMID: 27656408
  152. Jeong, J.H.; Lee, D.K.; Jo, Y.H. Cholinergic neurons in the dorsomedial hypothalamus regulate food intake. Mol. Metab., 2017, 6(3), 306-312. doi: 10.1016/j.molmet.2017.01.001 PMID: 28271037
  153. Angeles-Castellanos, M.; Aguilar-Roblero, R.; Escobar, C. c-Fos expression in hypothalamic nuclei of food-entrained rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004, 286(1), R158-R165. doi: 10.1152/ajpregu.00216.2003 PMID: 12933360
  154. Fukagawa, K.; Sakata, T.; Shiraishi, T.; Yoshimatsu, H.; Fujimoto, K.; Ookuma, K.; Wada, H. Neuronal histamine modulates feeding behavior through H1-receptor in rat hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol., 1989, 256(3), R605-R611. doi: 10.1152/ajpregu.1989.256.3.R605 PMID: 2564258
  155. Chou, T.C.; Scammell, T.E.; Gooley, J.J.; Gaus, S.E.; Saper, C.B.; Lu, J. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J. Neurosci., 2003, 23(33), 10691-10702. doi: 10.1523/JNEUROSCI.23-33-10691.2003 PMID: 14627654
  156. Bernardis, L.L.; Bellinger, L.L. The dorsomedial hypothalamic nucleus revisited: 1986 update. Brain Res. Brain Res. Rev., 1987, 12(3), 321-381. doi: 10.1016/0165-0173(87)90004-X PMID: 3300862
  157. Sutton, A.K.; Myers, M.G., Jr; Olson, D.P. The role of PVH circuits in leptin action and energy balance. Annu. Rev. Physiol., 2016, 78(1), 207-221. doi: 10.1146/annurev-physiol-021115-105347 PMID: 26863324
  158. Shorposner, G.; Azar, A.; Insinga, S.; Leibowitz, S. Deficits in the control of food intake after hypothalamic paraventricular nucleus lesions. Physiol. Behav., 1985, 35(6), 883-890. doi: 10.1016/0031-9384(85)90255-0 PMID: 3006098
  159. Leibowitz, S.F.; Hammer, N.J.; Chang, K. Hypothalamic paraventricular nucleus lesions produce overeating and obesity in the rat. Physiol. Behav., 1981, 27(6), 1031-1040. doi: 10.1016/0031-9384(81)90366-8 PMID: 7335803
  160. Sims, J.S.; Lorden, J.F. Effect of paraventricular nucleus lesions on body weight, food intake and insulin levels. Behav. Brain Res., 1986, 22(3), 265-281. doi: 10.1016/0166-4328(86)90071-9 PMID: 3098259
  161. Balthasar, N.; Dalgaard, L.T.; Lee, C.E.; Yu, J.; Funahashi, H.; Williams, T.; Ferreira, M.; Tang, V.; McGovern, R.A.; Kenny, C.D.; Christiansen, L.M.; Edelstein, E.; Choi, B.; Boss, O.; Aschkenasi, C.; Zhang, C.; Mountjoy, K.; Kishi, T.; Elmquist, J.K.; Lowell, B.B. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell, 2005, 123(3), 493-505. doi: 10.1016/j.cell.2005.08.035 PMID: 16269339
  162. Huszar, D.; Lynch, C.A.; Fairchild-Huntress, V.; Dunmore, J.H.; Fang, Q.; Berkemeier, L.R.; Gu, W.; Kesterson, R.A.; Boston, B.A.; Cone, R.D.; Smith, F.J.; Campfield, L.A.; Burn, P.; Lee, F. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell, 1997, 88(1), 131-141. doi: 10.1016/S0092-8674(00)81865-6 PMID: 9019399
  163. Vaisse, C.; Clement, K.; Guy-Grand, B.; Froguel, P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat. Genet., 1998, 20(2), 113-114. doi: 10.1038/2407 PMID: 9771699
  164. Stachniak, T.J.; Ghosh, A.; Sternson, S.M. Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron, 2014, 82(4), 797-808. doi: 10.1016/j.neuron.2014.04.008 PMID: 24768300
  165. Krashes, M.J.; Shah, B.P.; Madara, J.C.; Olson, D.P.; Strochlic, D.E.; Garfield, A.S.; Vong, L.; Pei, H.; Watabe-Uchida, M.; Uchida, N.; Liberles, S.D.; Lowell, B.B. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature, 2014, 507(7491), 238-242. doi: 10.1038/nature12956 PMID: 24487620
  166. Orthen-Gambill, N. Antihistaminic drugs increase feeding, while histidine suppresses feeding in rats. Pharmacol. Biochem. Behav., 1988, 31(1), 81-86. doi: 10.1016/0091-3057(88)90315-2 PMID: 2908065
  167. Orthen-Gambill, N.; Salomon, M. Differential effects of psychotropic drugs on feeding in rats: Is histamine blockade involved? Pharmacol. Biochem. Behav., 1990, 36(4), 837-841. doi: 10.1016/0091-3057(90)90086-W PMID: 2217511
  168. Toftegaard, C.L.; Knigge, U.; Kjær, A.; Warberg, J. The role of hypothalamic histamine in leptin-induced suppression of short-term food intake in fasted rats. Regul. Pept., 2003, 111(1-3), 83-90. doi: 10.1016/S0167-0115(02)00260-4 PMID: 12609753
  169. Jørgensen, E.A.; Knigge, U.; Watanabe, T.; Warberg, J.; Kjaer, A. Histaminergic neurons are involved in the orexigenic effect of orexin-A. Neuroendocrinology, 2005, 82(2), 70-77. doi: 10.1159/000090982 PMID: 16415597
  170. Gotoh, K.; Fukagawa, K.; Fukagawa, T.; Noguchi, H.; Kakuma, T.; Sakata, T.; Yoshimatsu, H. Glucagon‐like peptide‐1, corticotropin‐releasing hormone, and hypothalamic neuronal histamine interact in the leptin‐signaling pathway to regulate feeding behavior. FASEB J., 2005, 19(9), 1131-1133. doi: 10.1096/fj.04-2384fje PMID: 15894564
  171. Herman, A.M.; Ortiz-Guzman, J.; Kochukov, M.; Herman, I.; Quast, K.B.; Patel, J.M.; Tepe, B.; Carlson, J.C.; Ung, K.; Selever, J.; Tong, Q.; Arenkiel, B.R. A cholinergic basal forebrain feeding circuit modulates appetite suppression. Nature, 2016, 538(7624), 253-256. doi: 10.1038/nature19789 PMID: 27698417
  172. Sweeney, P.; Yang, Y. An inhibitory septum to lateral hypothalamus circuit that suppresses feeding. J. Neurosci., 2016, 36(44), 11185-11195. doi: 10.1523/JNEUROSCI.2042-16.2016 PMID: 27807162
  173. Zhang, Y.; Jiang, Y.Y.; Shao, S.; Zhang, C.; Liu, F.Y.; Wan, Y.; Yi, M. Inhibiting medial septal cholinergic neurons with DREADD alleviated anxiety-like behaviors in mice. Neurosci. Lett., 2017, 638, 139-144. doi: 10.1016/j.neulet.2016.12.010 PMID: 27939976
  174. Sweeney, P.; Li, C.; Yang, Y. Appetite suppressive role of medial septal glutamatergic neurons. Proc. Natl. Acad. Sci. USA, 2017, 114(52), 13816-13821. doi: 10.1073/pnas.1707228114 PMID: 29229861
  175. Tabarean, I.V. Histamine receptor signaling in energy homeostasis. Neuropharmacology, 2016, 106, 13-19. doi: 10.1016/j.neuropharm.2015.04.011 PMID: 26107117
  176. Boyden, E.S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci., 2005, 8(9), 1263-1268. doi: 10.1038/nn1525 PMID: 16116447
  177. Feng, G.; Mellor, R.H.; Bernstein, M.; Keller-Peck, C.; Nguyen, Q.T.; Wallace, M.; Nerbonne, J.M.; Lichtman, J.W.; Sanes, J.R. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron, 2000, 28(1), 41-51. doi: 10.1016/S0896-6273(00)00084-2 PMID: 11086982
  178. Zong, H.; Espinosa, J.S.; Su, H.H.; Muzumdar, M.D.; Luo, L. Mosaic analysis with double markers in mice. Cell, 2005, 121(3), 479-492. doi: 10.1016/j.cell.2005.02.012 PMID: 15882628
  179. Chung, K.; Wallace, J.; Kim, S.Y.; Kalyanasundaram, S.; Andalman, A.S.; Davidson, T.J.; Mirzabekov, J.J.; Zalocusky, K.A.; Mattis, J.; Denisin, A.K.; Pak, S.; Bernstein, H.; Ramakrishnan, C.; Grosenick, L.; Gradinaru, V.; Deisseroth, K. Structural and molecular interrogation of intact biological systems. Nature, 2013, 497(7449), 332-337. doi: 10.1038/nature12107 PMID: 23575631
  180. Zecharia, A.Y.; Yu, X.; Götz, T.; Ye, Z.; Carr, D.R.; Wulff, P.; Bettler, B.; Vyssotski, A.L.; Brickley, S.G.; Franks, N.P.; Wisden, W. GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep-wake switch or propofol-induced loss of consciousness. J. Neurosci., 2012, 32(38), 13062-13075. doi: 10.1523/JNEUROSCI.2931-12.2012 PMID: 22993424
  181. Zhang, X.Y.; Peng, S.Y.; Shen, L.P.; Zhuang, Q.X.; Li, B.; Xie, S.T.; Li, Q.X.; Shi, M.R.; Ma, T.Y.; Zhang, Q.; Wang, J.J.; Zhu, J.N. Targeting presynaptic H3 heteroreceptor in nucleus accumbens to improve anxiety and obsessive-compulsive-like behaviors. Proc. Natl. Acad. Sci. USA, 2020, 117(50), 32155-32164. doi: 10.1073/pnas.2008456117 PMID: 33257584
  182. Yu, X.; Ye, Z.; Houston, C.M.; Zecharia, A.Y.; Ma, Y.; Zhang, Z.; Uygun, D.S.; Parker, S.; Vyssotski, A.L.; Yustos, R.; Franks, N.P.; Brickley, S.G.; Wisden, W. Wakefulness is governed by GABA and histamine cotransmission. Neuron, 2015, 87(1), 164-178. doi: 10.1016/j.neuron.2015.06.003 PMID: 26094607
  183. Silva, C.; McNaughton, N. Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review. Prog. Neurobiol., 2019, 177(January), 33-72. doi: 10.1016/j.pneurobio.2019.02.001 PMID: 30786258
  184. Pollard, H.; Moreau, J.; Arrang, J.M.; Schwartz, J.C. A detailed autoradiographic mapping of histamine H3 receptors in rat brain areas. Neuroscience, 1993, 52(1), 169-189. doi: 10.1016/0306-4522(93)90191-H PMID: 8381924
  185. Santos, N.R.; Huston, J.P.; Brandão, M.L. Further evidence for the involvement of histamine H2 receptors in the control of defensive behaviour generated in the midbrain tectum. Behav. Pharmacol., 2002, 13(1), 73-80. doi: 10.1097/00008877-200202000-00007 PMID: 11990721
  186. Santos, N.R.; Huston, J.P.; Brandão, M.L. Blockade of histamine H2 receptors of the periaqueductal gray and inferior colliculus induces fear-like behaviors. Pharmacol. Biochem. Behav., 2003, 75(1), 25-33. doi: 10.1016/S0091-3057(03)00033-9 PMID: 12759110
  187. Santos, N.; Huston, J.P.; Brandão, M.L. Escape behavior under tonic inhibitory control of histamine H2-receptor mediated mechanisms in the midbrain tectum. Behav. Brain Res., 2001, 124(2), 167-175. doi: 10.1016/S0166-4328(01)00228-5 PMID: 11640970
  188. Nalwalk, J.W.; Svokos, K.; Taraschenko, O.; Leurs, R.; Timmerman, H.; Hough, L.B. Activation of brain stem nuclei by improgan, a non-opioid analgesic. Brain Res., 2004, 1021(2), 248-255. doi: 10.1016/j.brainres.2004.06.066 PMID: 15342273
  189. Thoburn, K.K.; Hough, L.B.; Nalwalk, J.W.; Mischler, S.A. Histamine-induced modulation of nociceptive responses. Pain, 1994, 58(1), 29-37. doi: 10.1016/0304-3959(94)90182-1 PMID: 7970837
  190. Liao, R.; Jiang, L.; Wang, R.; Zhao, H.; Chen, Y.; Li, Y.; Wang, L.; Jie, L.Y.; Zhou, Y.; Zhang, X.; Chen, Z.; Hu, W. Histidine provides long-term neuroprotection after cerebral ischemia through promoting astrocyte migration. Sci. Rep., 2015, 5(1), 15356. doi: 10.1038/srep15356 PMID: 26481857
  191. Liao, R.; Chen, Y.; Cheng, L.; Fan, L.; Chen, H.; Wan, Y.; You, Y.; Zheng, Y.; Jiang, L.; Chen, Z.; Zhang, X.; Hu, W. Histamine H1 receptors in neural stem cells are required for the promotion of neurogenesis conferred by H3 receptor antagonism following traumatic brain injury. Stem Cell Reports, 2019, 12(3), 532-544. doi: 10.1016/j.stemcr.2019.01.004 PMID: 30745032
  192. Hösli, L.; Hösli, E.; Schneider, U.; Wiget, W. Evidence for the existence of histamine H1- and H2-receptors on astrocytes of cultured rat central nervous system. Neurosci. Lett., 1984, 48(3), 287-291. doi: 10.1016/0304-3940(84)90052-1 PMID: 6148726
  193. Jurič, D.M.; Kržan, M.; Lipnik-Stangelj, M. Histamine and astrocyte function. Pharmacol. Res., 2016, 111, 774-783. doi: 10.1016/j.phrs.2016.07.035 PMID: 27475882
  194. Inagaki, N.; Fukui, H.; Taguchi, Y.; Wang, N.P.; Yamatodani, A.; Wada, H. Characterization of histamine H1-receptors on astrocytes in primary culture: 3Hmepyramine binding studies. Eur. J. Pharmacol., 1989, 173(1), 43-51. doi: 10.1016/0014-2999(89)90007-1 PMID: 2575040
  195. Xia, P.; Logiacco, F.; Huang, Y.; Kettenmann, H.; Semtner, M. Histamine triggers microglial responses indirectly via astrocytes and purinergic signaling. Glia, 2021, 69(9), 2291-2304. doi: 10.1002/glia.24039 PMID: 34080730
  196. Jung, S.; Pfeiffer, F.; Deitmer, J.W. Histamine‐induced calcium entry in rat cerebellar astrocytes: Evidence for capacitative and non‐capacitative mechanisms. J. Physiol., 2000, 527(3), 549-561. doi: 10.1111/j.1469-7793.2000.00549.x PMID: 10990540
  197. Nakahata, N.; Martin, M.W.; Hughes, A.R.; Hepler, J.R.; Harden, T.K. H1-histamine receptors on human astrocytoma cells. Mol. Pharmacol., 1986, 29(2), 188-195. PMID: 2419744
  198. Kárpáti, A.; Yoshikawa, T.; Nakamura, T.; Iida, T.; Matsuzawa, T.; Kitano, H.; Harada, R.; Yanai, K. Histamine elicits glutamate release from cultured astrocytes. J. Pharmacol. Sci., 2018, 137(2), 122-128. doi: 10.1016/j.jphs.2018.05.002 PMID: 29858014
  199. Jiang, L.; Cheng, L.; Chen, H.; Dai, H.; An, D.; Ma, Q.; Zheng, Y.; Zhang, X.; Hu, W.; Chen, Z. Histamine H2 receptor negatively regulates oligodendrocyte differentiation in neonatal hypoxic-ischemic white matter injury. J. Exp. Med., 2021, 218(1), e20191365. doi: 10.1084/jem.20191365 PMID: 32991666
  200. Cheng, L.; Xu, C.; Wang, L.; An, D.; Jiang, L.; Zheng, Y.; Xu, Y.; Wang, Y.; Wang, Y.; Zhang, K.; Wang, X.; Zhang, X.; Bao, A.; Zhou, Y.; Yang, J.; Duan, S.; Swaab, D.F.; Hu, W.; Chen, Z. Histamine H1 receptor deletion in cholinergic neurons induces sensorimotor gating ability deficit and social impairments in mice. Nat. Commun., 2021, 12(1), 1142. doi: 10.1038/s41467-021-21476-x PMID: 33602941
  201. Toyota, H.; Dugovic, C.; Koehl, M.; Laposky, A.D.; Weber, C.; Ngo, K.; Wu, Y.; Lee, D.H.; Yanai, K.; Sakurai, E.; Watanabe, T.; Liu, C.; Chen, J.; Barbier, A.J.; Turek, F.W.; Fung-Leung, W.P.; Lovenberg, T.W. Behavioral characterization of mice lacking histamine H(3) receptors. Mol. Pharmacol., 2002, 62(2), 389-397. doi: 10.1124/mol.62.2.389 PMID: 12130692
  202. Fülöp, A.K.; Földes, A.; Buzás, E.; Hegyi, K.; Miklós, I.H.; Romics, L.; Kleiber, M.; Nagy, A.; Falus, A.; Kovács, K.J. Hyperleptinemia, visceral adiposity, and decreased glucose tolerance in mice with a targeted disruption of the histidine decarboxylase gene. Endocrinology, 2003, 144(10), 4306-4314. doi: 10.1210/en.2003-0222 PMID: 12960041
  203. Jørgensen, E.A.; Vogelsang, T.W.; Knigge, U.; Watanabe, T.; Warberg, J.; Kjaer, A. Increased susceptibility to diet-induced obesity in histamine-deficient mice. Neuroendocrinology, 2006, 83(5-6), 289-294. doi: 10.1159/000095339 PMID: 16926531
  204. Parmentier, R.; Ohtsu, H.; Djebbara-Hannas, Z.; Valatx, J.L.; Watanabe, T.; Lin, J.S. Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: Evidence for the role of brain histamine in behavioral and sleep-wake control. J. Neurosci., 2002, 22(17), 7695-7711. doi: 10.1523/JNEUROSCI.22-17-07695.2002 PMID: 12196593
  205. Attoub, S.; Moizo, L.; Sobhani, I.; Laigneau, J.P.; Lewin, M.J.M.; Bado, A. The H3 receptor is involved in cholecystokinin inhibition of food intake in rats. Life Sci., 2001, 69(4), 469-478. doi: 10.1016/S0024-3205(01)01138-9 PMID: 11459437
  206. Hancock, A.A.; Brune, M.E. Assessment of pharmacology and potential anti-obesity properties of H3 receptor antagonists/inverse agonists. Expert Opin. Investig. Drugs, 2005, 14(3), 223-241. doi: 10.1517/13543784.14.3.223 PMID: 15833055
  207. Hancock, A.A.; Diehl, M.S.; Faghih, R.; Bush, E.N.; Krueger, K.M.; Krishna, G.; Miller, T.R.; Wilcox, D.M.; Nguyen, P.; Pratt, J.K.; Cowart, M.D.; Esbenshade, T.A.; Jacobson, P.B. In vitro optimization of structure activity relationships of analogues of A-331440 combining radioligand receptor binding assays and micronucleus assays of potential antiobesity histamine H3 receptor antagonists. Pharmacol. Toxicol., 2004, 95(3), 144-152. doi: 10.1111/j.1742-7843.2004.950307.x PMID: 15447739
  208. Kang, D.; Jing, Z.; Li, R.; Hei, G.; Shao, T.; Li, L.; Sun, M.; Yang, Y.; Wang, Y.; Wang, X.; Long, Y.; Huang, X.; Wu, R. Effect of betahistine and metformin on antipsychotic-induced weight gain: An analysis of two clinical trials. Front. Psychiatry, 2018, 9, 620. doi: 10.3389/fpsyt.2018.00620 PMID: 30542300
  209. Mehta, V.S.; Ram, D. Efficacy of ranitidine in olanzapine-induced weight gain: A dose-response study. Early Interv. Psychiatry, 2016, 10(6), 522-527. doi: 10.1111/eip.12205 PMID: 25529756
  210. Poyurovsky, M.; Tal, V.; Maayan, R.; Gil-Ad, I.; Fuchs, C.; Weizman, A. The effect of famotidine addition on olanzapine-induced weight gain in first-episode schizophrenia patients: A double-blind placebo-controlled pilot study. Eur. Neuropsychopharmacol., 2004, 14(4), 332-336. doi: 10.1016/j.euroneuro.2003.10.004 PMID: 15163444
  211. Atmaca, M.; Kuloglu, M.; Tezcan, E.; Ustundag, B. Nizatidine treatment and its relationship with leptin levels in patients with olanzapine-induced weight gain. Hum. Psychopharmacol., 2003, 18(6), 457-461. doi: 10.1002/hup.514 PMID: 12923824
  212. Assunção, S.S.M.; Ruschel, S.I.; Rosa, L.C.R.; Campos, J.A.O.; Alves, M.J.O.; Bracco, O.L.; Lima, M.S. Weight gain management in patients with schizophrenia during treatment with olanzapine in association with nizatidine. Rev. Bras. Psiquiatr., 2006, 28(4), 270-276. doi: 10.1590/S1516-44462006000400005 PMID: 17242805
  213. Cavazzoni, P.; Tanaka, Y.; Roychowdhury, S.M.; Breier, A.; Allison, D.B. Nizatidine for prevention of weight gain with olanzapine: A double-blind placebo-controlled trial. Eur. Neuropsychopharmacol., 2003, 13(2), 81-85. doi: 10.1016/S0924-977X(02)00127-X PMID: 12650950

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024