The Modulation by Anesthetics and Analgesics of Respiratory Rhythm in the Nervous System


Цитировать

Полный текст

Аннотация

Rhythmic eupneic breathing in mammals depends on the coordinated activities of the neural system that sends cranial and spinal motor outputs to respiratory muscles. These outputs modulate lung ventilation and adjust respiratory airflow, which depends on the upper airway patency and ventilatory musculature. Anesthetics are widely used in clinical practice worldwide. In addition to clinically necessary pharmacological effects, respiratory depression is a critical side effect induced by most general anesthetics. Therefore, understanding how general anesthetics modulate the respiratory system is important for the development of safer general anesthetics. Currently used volatile anesthetics and most intravenous anesthetics induce inhibitory effects on respiratory outputs. Various general anesthetics produce differential effects on respiratory characteristics, including the respiratory rate, tidal volume, airway resistance, and ventilatory response. At the cellular and molecular levels, the mechanisms underlying anesthetic-induced breathing depression mainly include modulation of synaptic transmission of ligand-gated ionotropic receptors (e.g., γ-aminobutyric acid, N-methyl-D-aspartate, and nicotinic acetylcholine receptors) and ion channels (e.g., voltage-gated sodium, calcium, and potassium channels, two-pore domain potassium channels, and sodium leak channels), which affect neuronal firing in brainstem respiratory and peripheral chemoreceptor areas. The present review comprehensively summarizes the modulation of the respiratory system by clinically used general anesthetics, including the effects at the molecular, cellular, anatomic, and behavioral levels. Specifically, analgesics, such as opioids, which cause respiratory depression and the "opioid crisis", are discussed. Finally, underlying strategies of respiratory stimulation that target general anesthetics and/or analgesics are summarized.

Об авторах

Xuechao Hao

Department of Anesthesiology, West China Hospital of Sichuan University

Email: info@benthamscience.net

Yaoxin Yang

Department of Anesthesiology, West China Hospital of Sichuan University

Email: info@benthamscience.net

Jin Liu

Department of Anesthesiology, West China Hospital of Sichuan University

Email: info@benthamscience.net

Donghang Zhang

Department of Anesthesiology, West China Hospital of Sichuan University

Email: info@benthamscience.net

Mengchan Ou

Department of Anesthesiology, West China Hospital of Sichuan University

Email: info@benthamscience.net

Bowen Ke

Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University

Email: info@benthamscience.net

Tao Zhu

Department of Anesthesiology, West China Hospital of Sichuan University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Cheng Zhou

Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Rosenbloom, J.M.; Schonberger, R.B. The outlook of physician histories: J. Marion Sims and ‘The Discovery of Anaesthesia’. Med. Humanit., 2015, 41(2), 102-106. doi: 10.1136/medhum-2015-010680 PMID: 26048369
  2. Hulsman, N.; Hollmann, M.W.; Preckel, B. Newer propofol, ketamine, and etomidate derivatives and delivery systems relevant to anesthesia practice. Baillieres. Best Pract. Res. Clin. Anaesthesiol., 2018, 32(2), 213-221. doi: 10.1016/j.bpa.2018.08.002 PMID: 30322461
  3. Stuth, E.A.; Stucke, A.G.; Brandes, I.F.; Zuperku, E.J. Anesthetic effects on synaptic transmission and gain control in respiratory control. Respir. Physiol. Neurobiol., 2008, 164(1-2), 151-159. doi: 10.1016/j.resp.2008.05.007 PMID: 18583201
  4. Teppema, L.J.; Baby, S. Anesthetics and control of breathing. Respir. Physiol. Neurobiol., 2011, 177(2), 80-92. doi: 10.1016/j.resp.2011.04.006 PMID: 21514403
  5. Hales, T.G.; Lambert, J.J. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones. Br. J. Pharmacol., 1991, 104(3), 619-628. doi: 10.1111/j.1476-5381.1991.tb12479.x PMID: 1665745
  6. Orser, B.A.; Wang, L.Y.; Pennefather, P.S.; MacDonald, J.F. Propofol modulates activation and desensitization of GABAA receptors in cultured murine hippocampal neurons. J. Neurosci., 1994, 14(12), 7747-7760. doi: 10.1523/JNEUROSCI.14-12-07747.1994 PMID: 7996209
  7. Buggy, D.J.; Nicol, B.; Rowbotham, D.J.; Lambert, D.G. Effects of intravenous anesthetic agents on glutamate release: A role for GABAA receptor-mediated inhibition. Anesthesiology, 2000, 92(4), 1067-1073. doi: 10.1097/00000542-200004000-00025 PMID: 10754627
  8. Ponte, J.; Sadler, C.L. Effect of thiopentone, etomidate and propofol on carotid body chemoreceptor activity in the rabbit and the cat. Br. J. Anaesth., 1989, 62(1), 41-45. doi: 10.1093/bja/62.1.41 PMID: 2492814
  9. Akada, S.; Fagerlund, M.J.; Lindahl, S.G.E.; Sakamoto, A.; Prabhakar, N.R.; Eriksson, L.I. Pronounced depression by propofol on carotid body response to CO2 and K+-induced carotid body activation. Respir. Physiol. Neurobiol., 2008, 160(3), 284-288. doi: 10.1016/j.resp.2007.10.011 PMID: 18054527
  10. Yang, J.; Uchida, I. Mechanisms of etomidate potentiation of GABAA receptor-gated currents in cultured postnatal hippocampal neurons. Neuroscience, 1996, 73(1), 69-78. doi: 10.1016/0306-4522(96)00018-8 PMID: 8783230
  11. Zhong, H.; Rüsch, D.; Forman, S.A. Photo-activated azi-etomidate, a general anesthetic photolabel, irreversibly enhances gating and desensitization of gamma-aminobutyric acid type A receptors. Anesthesiology, 2008, 108(1), 103-112. doi: 10.1097/01.anes.0000296074.33999.52 PMID: 18156888
  12. Latson, T.W.; Maire McCarroll, S.; Andrew Mirhej, M.; Hyndman, V.A.; Whitten, C.W.; Lipton, J.M. Effects of three anesthetic induction techniques on heart rate variability. J. Clin. Anesth., 1992, 4(4), 265-276. doi: 10.1016/0952-8180(92)90127-M PMID: 1419006
  13. Gelissen, H.P.M.M.; Epema, A.H.; Henning, R.H.; Krijnen, H.J.; Hennis, P.J.; den Hertog, A. Inotropic effects of propofol, thiopental, midazolam, etomidate, and ketamine on isolated human atrial muscle. Anesthesiology, 1996, 84(2), 397-403. doi: 10.1097/00000542-199602000-00019 PMID: 8602672
  14. Godwin, S.A.; Burton, J.H.; Gerardo, C.J.; Hatten, B.W.; Mace, S.E.; Silvers, S.M.; Fesmire, F.M. Clinical policy: Procedural sedation and analgesia in the emergency department. Ann. Emerg. Med., 2014, 63(2), 247-258.e18. doi: 10.1016/j.annemergmed.2013.10.015 PMID: 24438649
  15. Yang, Y.; Ou, M.; Liu, J.; Zhao, W.; Zhuoma, L.; Liang, Y.; Zhu, T.; Mulkey, D.K.; Zhou, C. Volatile anesthetics activate a leak sodium conductance in retrotrapezoid nucleus neurons to maintain breathing during anesthesia in mice. Anesthesiology, 2020, 133(4), 824-838. doi: 10.1097/ALN.0000000000003493 PMID: 32773689
  16. Pattinson, K.T.S. Opioids and the control of respiration. Br. J. Anaesth., 2008, 100(6), 747-758. doi: 10.1093/bja/aen094 PMID: 18456641
  17. Bachmutsky, I.; Wei, X.P.; Kish, E.; Yackle, K. Opioids depress breathing through two small brainstem sites. eLife, 2020, 9, e52694. doi: 10.7554/eLife.52694 PMID: 32073401
  18. Baby, S.M.; Gruber, R.B.; Young, A.P.; MacFarlane, P.M.; Teppema, L.J.; Lewis, S.J. Bilateral carotid sinus nerve transection exacerbates morphine-induced respiratory depression. Eur. J. Pharmacol., 2018, 834, 17-29. doi: 10.1016/j.ejphar.2018.07.018 PMID: 30012498
  19. Bianchi, A.L.; Denavit-Saubié, M.; Champagnat, J. Central control of breathing in mammals: Neuronal circuitry, membrane properties, and neurotransmitters. Physiol. Rev., 1995, 75(1), 1-45. doi: 10.1152/physrev.1995.75.1.1 PMID: 7831394
  20. Richter, D.W.; Lalley, P.M.; Pierrefiche, O.; Haji, A.; Bischoff, A.M.; Wilken, B.; Hanefeld, F. Intracellular signal pathways controlling respiratory neurons. Respir. Physiol., 1997, 110(2-3), 113-123. doi: 10.1016/S0034-5687(97)00077-7 PMID: 9407605
  21. Ghali, M.G.Z. Respiratory rhythm generation and pattern formation: Oscillators and network mechanisms. J. Integr. Neurosci., 2019, 18(4), 481-517. doi: 10.31083/j.jin.2019.04.188 PMID: 31912709
  22. Morgado-Valle, C.; Beltran-Parrazal, L. Respiratory rhythm generation: The whole is greater than the sum of the parts. Adv. Exp. Med. Biol., 2017, 1015, 147-161. doi: 10.1007/978-3-319-62817-2_9 PMID: 29080026
  23. Molkov, Y.I.; Rubin, J.E.; Rybak, I.A.; Smith, J.C. Computational models of the neural control of breathing. Wiley Interdiscip. Rev. Syst. Biol. Med., 2017, 9(2), 10.1002/wsbm.1371.. doi: 10.1002/wsbm.1371 PMID: 28009109
  24. Yang, C.F.; Feldman, J.L. Efferent projections of excitatory and inhibitory preBötzinger Complex neurons. J. Comp. Neurol., 2018, 526(8), 1389-1402. doi: 10.1002/cne.24415 PMID: 29473167
  25. Bautista, T.G.; Burke, P.G.R.; Sun, Q.J.; Berkowitz, R.G.; Pilowsky, P.M. The generation of post-inspiratory activity in laryngeal motoneurons: A review. Adv. Exp. Med. Biol., 2010, 669, 143-149. doi: 10.1007/978-1-4419-5692-7_29 PMID: 20217338
  26. Umezaki, T.; Shiba, K.; Sugiyama, Y. Intracellular activity of pharyngeal motoneurons during breathing, swallowing, and coughing. J. Neurophysiol., 2020, 124(3), 750-762. doi: 10.1152/jn.00093.2020 PMID: 32727254
  27. van Lunteren, E.; Dick, T.E. Intrinsic properties of pharyngeal and diaphragmatic respiratory motoneurons and muscles. J. Appl. Physiol., 1992, 733, 787-800.
  28. Ramirez, J.M.; Baertsch, N.A. The dynamic basis of respiratory rhythm generation: One breath at a time. Annu. Rev. Neurosci., 2018, 41(1), 475-499. doi: 10.1146/annurev-neuro-080317-061756 PMID: 29709210
  29. Mulkey, D.K.; Stornetta, R.L.; Weston, M.C.; Simmons, J.R.; Parker, A.; Bayliss, D.A.; Guyenet, P.G. Respiratory control by ventral surface chemoreceptor neurons in rats. Nat. Neurosci., 2004, 7(12), 1360-1369. doi: 10.1038/nn1357 PMID: 15558061
  30. Guyenet, P.G.; Mulkey, D.K. Retrotrapezoid nucleus and parafacial respiratory group. Respir. Physiol. Neurobiol., 2010, 173(3), 244-255. doi: 10.1016/j.resp.2010.02.005 PMID: 20188865
  31. Guyenet, P.G.; Stornetta, R.L.; Souza, G.M.P.R.; Abbott, S.B.G.; Shi, Y.; Bayliss, D.A. The retrotrapezoid nucleus: Central chemoreceptor and regulator of breathing automaticity. Trends Neurosci., 2019, 42(11), 807-824. doi: 10.1016/j.tins.2019.09.002 PMID: 31635852
  32. Dutschmann, M.; Paton, J.F.R. Glycinergic inhibition is essential for co-ordinating cranial and spinal respiratory motor outputs in the neonatal rat. J. Physiol., 2002, 543(2), 643-653. doi: 10.1113/jphysiol.2001.013466 PMID: 12205196
  33. Onimaru, H.; Dutschmann, M. Calcium imaging of neuronal activity in the most rostral parafacial respiratory group of the newborn rat. J. Physiol. Sci., 2012, 62(1), 71-77. doi: 10.1007/s12576-011-0179-2 PMID: 22052247
  34. Anderson, T.M.; Garcia, A.J., III; Baertsch, N.A.; Pollak, J.; Bloom, J.C.; Wei, A.D.; Rai, K.G.; Ramirez, J.M. A novel excitatory network for the control of breathing. Nature, 2016, 536(7614), 76-80. doi: 10.1038/nature18944 PMID: 27462817
  35. Haji, A.; Takeda, R.; Okazaki, M. Neuropharmacology of control of respiratory rhythm and pattern in mature mammals. Pharmacol. Ther., 2000, 86(3), 277-304. doi: 10.1016/S0163-7258(00)00059-0 PMID: 10882812
  36. Paydarfar, D.; Eldridge, F.L. Phase resetting and dysrhythmic responses of the respiratory oscillator. Am. J. Physiol., 1987, 252(1 Pt 2), R55-R62. PMID: 3812730
  37. Meza, R.; Huidobro, N.; Moreno-Castillo, M.; Mendez-Fernandez, A.; Flores-Hernandez, J.; Flores, A.; Manjarrez, E. Resetting the respiratory rhythm with a spinal central pattern generator. eNeuro, 2019, 6(2), ENEURO.0116-19.2019.. doi: 10.1523/ENEURO.0116-19.2019 PMID: 31043462
  38. Haji, A.; Ohi, Y.; Kimura, S. Cough-related neurons in the nucleus tractus solitarius of decerebrate cats. Neuroscience, 2012, 218, 100-109. doi: 10.1016/j.neuroscience.2012.05.053 PMID: 22659014
  39. Tian, G.F.; Peever, J.H.; Duffin, J. Bötzinger-complex expiratory neurons monosynaptically inhibit phrenic motoneurons in the decerebrate rat. Exp. Brain Res., 1998, 122(2), 149-156. doi: 10.1007/s002210050502 PMID: 9776513
  40. Haji, A.; Okazaki, M.; Takeda, R. Synaptic interactions between respiratory neurons during inspiratory on-switching evoked by vagal stimulation in decerebrate cats. Neurosci. Res., 1999, 35(2), 85-93. doi: 10.1016/S0168-0102(99)00072-3 PMID: 10616912
  41. Potts, J.T.; Rybak, I.A.; Paton, J.F.R. Respiratory rhythm entrainment by somatic afferent stimulation. J. Neurosci., 2005, 25(8), 1965-1978. doi: 10.1523/JNEUROSCI.3881-04.2005 PMID: 15728836
  42. Ezure, K. Synaptic connections between medullary respiratory neurons and considerations on the genesis of respiratory rhythm. Prog. Neurobiol., 1990, 35(6), 429-450. doi: 10.1016/0301-0082(90)90030-K PMID: 2175923
  43. Richter, D.W. Generation and maintenance of the respiratory rhythm. J. Exp. Biol., 1982, 100(1), 93-107. doi: 10.1242/jeb.100.1.93 PMID: 6757372
  44. Marchenko, V.; Koizumi, H.; Mosher, B.; Koshiya, N.; Tariq, M.F.; Bezdudnaya, T.G.; Zhang, R.; Molkov, Y.I.; Rybak, I.A.; Smith, J.C. Perturbations of respiratory rhythm and pattern by disrupting synaptic inhibition within Pre-Bötzinger and Bötzinger complexes. eNeuro, 2016, 3(2), ENEURO.0011-16.2016.. doi: 10.1523/ENEURO.0011-16.2016 PMID: 27200412
  45. McCrimmon, D.R.; Zuperku, E.J.; Hayashi, F.; Dogas, Z.; Hinrichsen, C.F.L.; Stuth, E.A.; Tonkovic-Capin, M.; Krolo, M.; Hopp, F.A. Modulation of the synaptic drive to respiratory premotor and motor neurons. Respir. Physiol., 1997, 110(2-3), 161-176. doi: 10.1016/S0034-5687(97)00081-9 PMID: 9407609
  46. Souza, G.M.P.R.; Stornetta, R.L.; Stornetta, D.S.; Abbott, S.B.G.; Guyenet, P.G. Contribution of the retrotrapezoid nucleus and carotid bodies to hypercapnia- and hypoxia-induced arousal from sleep. J. Neurosci., 2019, 39(49), 9725-9737. doi: 10.1523/JNEUROSCI.1268-19.2019 PMID: 31641048
  47. Czeisler, C.M.; Silva, T.M.; Fair, S.R.; Liu, J.; Tupal, S.; Kaya, B.; Cowgill, A.; Mahajan, S.; Silva, P.E.; Wang, Y.; Blissett, A.R.; Göksel, M.; Borniger, J.C.; Zhang, N.; Fernandes-Junior, S.A.; Catacutan, F.; Alves, M.J.; Nelson, R.J.; Sundaresean, V.; Rekling, J.; Takakura, A.C.; Moreira, T.S.; Otero, J.J. The role of PHOX2B-derived astrocytes in chemosensory control of breathing and sleep homeostasis. J. Physiol., 2019, 597(8), 2225-2251. doi: 10.1113/JP277082 PMID: 30707772
  48. Mulkey, D.K.; Wenker, I.C. Astrocyte chemoreceptors: mechanisms of H + sensing by astrocytes in the retrotrapezoid nucleus and their possible contribution to respiratory drive. Exp. Physiol., 2011, 96(4), 400-406. doi: 10.1113/expphysiol.2010.053140 PMID: 21169332
  49. Guyenet, P.G. Regulation of breathing and autonomic outflows by chemoreceptors. Compr. Physiol., 2014, 4(4), 1511-1562. doi: 10.1002/cphy.c140004 PMID: 25428853
  50. Dahan, A.; Ward, D.; van den Elsen, M.; Temp, J.; Berkenbosch, A. Influence of reduced carotid body drive during sustained hypoxia on hypoxic depression of ventilation in humans. J. Appl. Physiol., 1996, 81(2), 565-572.
  51. Pijacka, W.; Katayama, P.L.; Salgado, H.C.; Lincevicius, G.S.; Campos, R.R.; McBryde, F.D.; Paton, J.F.R. Variable role of carotid bodies in cardiovascular responses to exercise, hypoxia and hypercapnia in spontaneously hypertensive rats. J. Physiol., 2018, 596(15), 3201-3216. doi: 10.1113/JP275487 PMID: 29313987
  52. Busch, S.A.; Bruce, C.D.; Skow, R.J.; Pfoh, J.R.; Day, T.A.; Davenport, M.H.; Steinback, C.D. Mechanisms of sympathetic regulation during Apnea. Physiol. Rep., 2019, 7(2), e13991. doi: 10.14814/phy2.13991 PMID: 30693670
  53. Steinback, C.D.; Breskovic, T.; Banic, I.; Dujic, Z.; Shoemaker, J.K. Autonomic and cardiovascular responses to chemoreflex stress in apnoea divers. Auton. Neurosci., 2010, 156(1-2), 138-143. doi: 10.1016/j.autneu.2010.05.002 PMID: 20627720
  54. Ghali, M.G.Z.; Beshay, S. Role of fast inhibitory synaptic transmission in neonatal respiratory rhythmogenesis and pattern formation. Mol. Cell. Neurosci., 2019, 100, 103400. doi: 10.1016/j.mcn.2019.103400 PMID: 31472222
  55. Bancalari, E.; Clausen, J. Pathophysiology of changes in absolute lung volumes. Eur. Respir. J., 1998, 12(1), 248-258. doi: 10.1183/09031936.98.12010248 PMID: 9701447
  56. Guyenet, P.G. The 2008 Carl Ludwig Lecture: Retrotrapezoid nucleus, CO2 homeostasis, and breathing automaticity. J. Appl. Physiol. (1985), 2008, 105(2), 404-416.
  57. Pagliardini, S.; Greer, J.J.; Funk, G.D.; Dickson, C.T. State-dependent modulation of breathing in urethane-anesthetized rats. J. Neurosci., 2012, 32(33), 11259-11270. doi: 10.1523/JNEUROSCI.0948-12.2012 PMID: 22895710
  58. Hunter, J.D.; McLeod, J.Z.; Milsom, W.K. Cortical activation states in sleep and anesthesia. II: Respiratory reflexes. Respir. Physiol., 1998, 112(1), 83-94. doi: 10.1016/S0034-5687(98)00020-6 PMID: 9696285
  59. Pagliardini, S.; Funk, G.D.; Dickson, C.T. Breathing and brain state: Urethane anesthesia as a model for natural sleep. Respir. Physiol. Neurobiol., 2013, 188(3), 324-332. doi: 10.1016/j.resp.2013.05.035 PMID: 23751523
  60. Cravero, J.P.; Beach, M.L.; Blike, G.T.; Gallagher, S.M.; Hertzog, J.H. The incidence and nature of adverse events during pediatric sedation/anesthesia with propofol for procedures outside the operating room: a report from the Pediatric Sedation Research Consortium. Anesth. Analg., 2009, 108(3), 795-804. doi: 10.1213/ane.0b013e31818fc334 PMID: 19224786
  61. Muir, W.W., III; Gadawski, J.E. Respiratory depression and apnea induced by propofol in dogs. Am. J. Vet. Res., 1998, 59(2), 157-161. PMID: 9492929
  62. Blouin, R.T.; Conard, P.F.; Gross, J.B. Time course of ventilatory depression following induction doses of propofol and thiopental. Anesthesiology, 1991, 75(6), 940-944. doi: 10.1097/00000542-199112000-00003 PMID: 1741514
  63. Sarton, E.; Teppema, L.J.; Olievier, C.; Nieuwenhuijs, D.; Matthes, H.W.D.; Kieffer, B.L.; Dahan, A. The involvement of the mu-opioid receptor in ketamine-induced respiratory depression and antinociception. Anesth. Analg., 2001, 93(6), 1495-1500. doi: 10.1097/00000539-200112000-00031 PMID: 11726430
  64. Shulman, D.; Bar-Yishay, E.; Godfrey, S. Drive and timing components of respiration in young children following induction of anaesthesia with halo-thane or ketamine. Can. J. Anaesth., 1988, 35(4), 368-374. doi: 10.1007/BF03010858 PMID: 3402014
  65. Yan, J.W.; McLeod, S.L.; Iansavitchene, A. Ketamine-propofol versus propofol alone for procedural sedation in the emergency department: A systematic review and meta-analysis. Acad. Emerg. Med., 2015, 22(9), 1003-1013. doi: 10.1111/acem.12737 PMID: 26292077
  66. Dosani, M. McCORMACK, J.O.N.; Reimer, E.; Brant, R.; Dumont, G.; Lim, J.; Ansermino, J. Slower administration of propofol preserves adequate respiration in children. Paediatr. Anaesth., 2010, 20(11), 1001-1008. doi: 10.1111/j.1460-9592.2010.03398.x PMID: 20880151
  67. Masuda, A.; Ito, Y.; Haji, A.; Takeda, R. The influence of halothane and thiopental on respiratory-related nerve activities in decerebrate cats. Acta Anaesthesiol. Scand., 1989, 33(8), 660-665. doi: 10.1111/j.1399-6576.1989.tb02987.x PMID: 2511728
  68. Forman, S.A.; Warner, D.S. Clinical and molecular pharmacology of etomidate. Anesthesiology, 2011, 114(3), 695-707. doi: 10.1097/ALN.0b013e3181ff72b5 PMID: 21263301
  69. Morgan, M.; Lumley, J.; Whitwam, J.G. Respiratory effects of etomidate. Br. J. Anaesth., 1977, 49(3), 233-236. doi: 10.1093/bja/49.3.233 PMID: 20912
  70. Kim, M.G.; Park, S.W.; Kim, J.H.; Lee, J.; Kae, S.H.; Jang, H.J.; Koh, D.H.; Choi, M.H. Etomidate versus propofol sedation for complex upper endoscopic procedures: A prospective double-blinded randomized controlled trial. Gastrointest. Endosc., 2017, 86(3), 452-461. doi: 10.1016/j.gie.2017.02.033 PMID: 28284883
  71. Prachanpanich, N.; Apinyachon, W.; Ittichaikulthol, W.; Moontripakdi, O.; Jitaree, A. A comparison of dexmedetomidine and propofol in Patients undergoing electrophysiology study. J. Med. Assoc. Thai., 2013, 96(3), 307-311. PMID: 23539933
  72. Bhana, N.; Goa, K.L.; McClellan, K.J. Dexmedetomidine. Drugs, 2000, 59(2), 263-268. doi: 10.2165/00003495-200059020-00012 PMID: 10730549
  73. Furst, S.R.; Weinger, M.B. Dexmedetomidine, a selective alpha 2-agonist, does not potentiate the cardiorespiratory depression of alfentanil in the rat. Anesthesiology, 1990, 72(5), 882-888. doi: 10.1097/00000542-199005000-00019 PMID: 1971163
  74. Steffey, M.A.; Brosnan, R.J.; Steffey, E.P. Assessment of halothane and sevoflurane anesthesia in spontaneously breathing rats. Am. J. Vet. Res., 2003, 64(4), 470-474. doi: 10.2460/ajvr.2003.64.470 PMID: 12693538
  75. Groeben, H.; Meier, S.; Tankersley, C.G.; Mitzner, W.; Brown, R.H. Heritable differences in respiratory drive and breathing pattern in mice during anaesthesia and emergence. Br. J. Anaesth., 2003, 91(4), 541-545. doi: 10.1093/bja/aeg222 PMID: 14504157
  76. Groeben, H.; Meier, S.; Tankersley, C.G.; Mitzner, W.; Brown, R.H. Influence of volatile anaesthetics on hypercapnoeic ventilatory responses in mice with blunted respiratory drive. Br. J. Anaesth., 2004, 92(5), 697-703. doi: 10.1093/bja/aeh124 PMID: 15003977
  77. Hikasa, Y.; Okuyama, K.; Kakuta, T.; Takase, K.; Ogasawara, S. Anesthetic potency and cardiopulmonary effects of sevoflurane in goats: comparison with isoflurane and halothane. Can. J. Vet. Res., 1998, 62(4), 299-306. PMID: 9798097
  78. Lazarenko, R.M.; Fortuna, M.G.; Shi, Y.; Mulkey, D.K.; Takakura, A.C.; Moreira, T.S.; Guyenet, P.G.; Bayliss, D.A. Anesthetic activation of central respiratory chemoreceptor neurons involves inhibition of a THIK-1-like background K(+) current. J. Neurosci., 2010, 30(27), 9324-9334. doi: 10.1523/JNEUROSCI.1956-10.2010 PMID: 20610767
  79. Olofsen, E.; Boom, M.; Nieuwenhuijs, D.; Sarton, E.; Teppema, L.; Aarts, L.; Dahan, A. Modeling the non-steady state respiratory effects of remifentanil in awake and propofol-sedated healthy volunteers. Anesthesiology, 2010, 112(6), 1382-1395. doi: 10.1097/ALN.0b013e3181d69087 PMID: 20461001
  80. Berkenbosch, A.; Bovill, J.G.; Dahan, A.; DeGoede, J.; Olievier, I.C. The ventilatory CO2 sensitivities from Read’s rebreathing method and the steady-state method are not equal in man. J. Physiol., 1989, 411(1), 367-377. doi: 10.1113/jphysiol.1989.sp017578 PMID: 2515274
  81. Read, D.J.; Leigh, J. Blood-brain tissue Pco2 relationships and ventilation during rebreathing. J. Appl. Physiol., 1967, 23(1), 53-70. doi: 10.1152/jappl.1967.23.1.53 PMID: 6028163
  82. Read, D.C. A clinical method for assessing the ventilatory response to carbon dioxide. Australas. Ann. Med., 1967, 16(1), 20-32. doi: 10.1111/imj.1967.16.1.20 PMID: 6032026
  83. Bouillon, T.; Bruhn, J.; Radu-Radulescu, L.; Andresen, C.; Cohane, C.; Shafer, S.L. Mixed-effects modeling of the intrinsic ventilatory depressant potency of propofol in the non-steady state. Anesthesiology, 2004, 100(2), 240-250. doi: 10.1097/00000542-200402000-00010 PMID: 14739795
  84. Pandit, J.J. Effect of low dose inhaled anaesthetic agents on the ventilatory response to carbon dioxide in humans: A quantitative review. Anaesthesia, 2005, 60(5), 461-469. doi: 10.1111/j.1365-2044.2004.04088.x PMID: 15819767
  85. Choi, S.D.; Spaulding, B.C.; Gross, J.B.; Apfelbaum, J.L. Comparison of the ventilatory effects of etomidate and methohexital. Anesthesiology, 1985, 62(4), 442-447. doi: 10.1097/00000542-198504000-00012 PMID: 3920932
  86. Bourke, D.L.; Malit, L.A.; Smith, T.C. Respiratory interactions of ketamine and morphine. Anesthesiology, 1987, 66(2), 153-156. doi: 10.1097/00000542-198702000-00008 PMID: 3101549
  87. Tankersley, C.G.; Elston, R.C.; Schnell, A.H. Genetic determinants of acute hypoxic ventilation: Patterns of inheritance in mice. J. Appl. Physiol. (1985), 2000, 88(6), 2310-2318.
  88. Nishida, T.; Nishimura, M.; Kagawa, K.; Hayashi, Y.; Mashimo, T. The effects of dexmedetomidine on the ventilatory response to hypercapnia in rabbits. Intensive Care Med., 2002, 28(7), 969-975. doi: 10.1007/s00134-002-1338-y PMID: 12122538
  89. Weingarten, T.N.; Sprung, J. Review of postoperative respiratory depression: From recovery room to general care unit. Anesthesiology, 2022, 137(6), 735-741. doi: 10.1097/ALN.0000000000004391 PMID: 36413782
  90. Pandit, J.J. The variable effect of low-dose volatile anaesthetics on the acute ventilatory response to hypoxia in humans: A quantitative review. Anaesthesia, 2002, 57(7), 632-643. doi: 10.1046/j.1365-2044.2002.02604.x PMID: 12059820
  91. Tankersley, C.G.; Fitzgerald, R.S.; Kleeberger, S.R. Differential control of ventilation among inbred strains of mice. Am. J. Physiol., 1994, 267(5 Pt 2), R1371-R1377. PMID: 7977867
  92. Koh, S.O.; Severinghaus, J.W. Effect of halothane on hypoxic and hypercapnic ventilatory responses of goats. Br. J. Anaesth., 1990, 65(5), 713-717. doi: 10.1093/bja/65.5.713 PMID: 2123397
  93. Easton, P.A.; Slykerman, L.J.; Anthonisen, N.R. Ventilatory response to sustained hypoxia in normal adults. J. Appl. Physiol., 1986, 61(3), 906-911.
  94. Teppema, L.J.; Dahan, A. The ventilatory response to hypoxia in mammals: Mechanisms, measurement, and analysis. Physiol. Rev., 2010, 90(2), 675-754. doi: 10.1152/physrev.00012.2009 PMID: 20393196
  95. Gautier, H. Pattern of breathing during hypoxia or hypercapnia of the awake or anesthetized cat. Respir. Physiol., 1976, 27(2), 193-206. doi: 10.1016/0034-5687(76)90074-8 PMID: 959676
  96. O’Donohoe, P.B.; Turner, P.J.; Huskens, N.; Buckler, K.J.; Pandit, J.J. Influence of propofol on isolated neonatal rat carotid body glomus cell response to hypoxia and hypercapnia. Respir. Physiol. Neurobiol., 2019, 260, 17-27. doi: 10.1016/j.resp.2018.10.007 PMID: 30389452
  97. Davies, R.O.; Edwards, M.W., Jr; Lahiri, S. Halothane depresses the response of carotid body chemoreceptors to hypoxia and hypercapnia in the cat. Anesthesiology, 1982, 57(3), 153-159. doi: 10.1097/00000542-198209000-00002 PMID: 7114537
  98. Karanovic, N.; Pecotic, R.; Valic, M.; Jeroncic, A.; Carev, M.; Karanovic, S.; Ujevic, A.; Dogas, Z. The acute hypoxic ventilatory response under halothane, isoflurane, and sevoflurane anaesthesia in rats. Anaesthesia, 2010, 65(3), 227-234. doi: 10.1111/j.1365-2044.2009.06194.x PMID: 20003117
  99. Knill, R.L.; Gelb, A.W. Ventilatory responses to hypoxia and hypercapnia during halothane sedation and anesthesia in man. Anesthesiology, 1978, 49(4), 244-251. doi: 10.1097/00000542-197810000-00004 PMID: 697078
  100. Pandit, J.J. Volatile anaesthetic depression of the carotid body chemoreflex-mediated ventilatory response to hypoxia: Directions for future research. Scientifica, 2014, 2014, 1-15. doi: 10.1155/2014/394270 PMID: 24808974
  101. Weiskopf, R.B.; Raymond, L.W.; Severinghaus, J.W. Effects of halothane on canine respiratory responses to hypoxia with and without hypercarbia. Anesthesiology, 1974, 41(4), 350-359. doi: 10.1097/00000542-197410000-00008 PMID: 4413139
  102. Stuth, E.A.E.; Dogas, Z.; Krolo, M.; Kampine, J.P.; Hopp, F.A.; Zuperku, E.J. Dose-dependent effects of halothane on the phrenic nerve responses to acute hypoxia in vagotomized dogs. Anesthesiology, 1997, 87(6), 1428-1439. doi: 10.1097/00000542-199712000-00022 PMID: 9416728
  103. Knill, R.L.; Clement, J.L. Site of selective action of halothane on the peripheral chemoreflex pathway in humans. Anesthesiology, 1984, 61(2), 121-126. doi: 10.1097/00000542-198408000-00002 PMID: 6465595
  104. Pandit, J.J.; Huskens, N.; O’Donohoe, P.B.; Turner, P.J.; Buckler, K.J. Competitive interactions between halothane and isoflurane at the carotid body and TASK channels. Anesthesiology, 2020, 133(5), 1046-1059. doi: 10.1097/ALN.0000000000003520 PMID: 32826405
  105. Pandit, J.J.; O’Gallagher, K. Effects of volatile anesthetics on carotid body response to hypoxia in animals. Adv. Exp. Med. Biol., 2008, 605, 46-50. doi: 10.1007/978-0-387-73693-8_8 PMID: 18085245
  106. Pandit, J.J.; Winter, V.; Bayliss, R.; Buckler, K.J. Differential effects of halothane and isoflurane on carotid body glomus cell intracellular Ca2+ and background K+ channel responses to hypoxia. Adv. Exp. Med. Biol., 2010, 669, 205-208. doi: 10.1007/978-1-4419-5692-7_41 PMID: 20217350
  107. Pandit, J.J.; Buckler, K.J. Halothane and sevoflurane exert different degrees of inhibition on carotid body glomus cell intracellular Ca2+ response to hypoxia. Adv. Exp. Med. Biol., 2010, 669, 201-204. doi: 10.1007/978-1-4419-5692-7_40 PMID: 20217349
  108. Kubin, L. Neural control of the upper airway: Respiratory and state-dependent mechanisms. Compr. Physiol., 2016, 6(4), 1801-1850. doi: 10.1002/cphy.c160002 PMID: 27783860
  109. Hillman, D.R.; Platt, P.R.; Eastwood, P.R. The upper airway during anaesthesia. Br. J. Anaesth., 2003, 91(1), 31-39. doi: 10.1093/bja/aeg126 PMID: 12821563
  110. Shin, H.J.; Kim, E.Y.; Hwang, J.W.; Do, S.H.; Na, H.S. Comparison of upper airway patency in patients with mild obstructive sleep apnea during dexmedetomidine or propofol sedation: A prospective, randomized, controlled trial. BMC Anesthesiol., 2018, 18(1), 120. doi: 10.1186/s12871-018-0586-5 PMID: 30185146
  111. Del Olmo-Arroyo, F.; Hernandez-Castillo, R.; Soto, A.; Martínez, J.; Rodríguez-Cintrón, W. Perioperative management of obstructive sleep apnea: A survey of Puerto Rico anesthesia providers. Sleep Breath., 2015, 19(4), 1141-1146. doi: 10.1007/s11325-015-1124-z PMID: 25643763
  112. Eikermann, M.; Grosse-Sundrup, M.; Zaremba, S.; Henry, M.E.; Bittner, E.A.; Hoffmann, U.; Chamberlin, N.L. Ketamine activates breathing and abolishes the coupling between loss of consciousness and upper airway dilator muscle dysfunction. Anesthesiology, 2012, 116(1), 35-46. doi: 10.1097/ALN.0b013e31823d010a PMID: 22108392
  113. Eikermann, M.; Fassbender, P.; Zaremba, S.; Jordan, A.S.; Rosow, C.; Malhotra, A.; Chamberlin, N.L. Pentobarbital dose-dependently increases respiratory genioglossus muscle activity while impairing diaphragmatic function in anesthetized rats. Anesthesiology, 2009, 110(6), 1327-1334. doi: 10.1097/ALN.0b013e3181a16337 PMID: 19417601
  114. Park, E.; Younes, M.; Liu, H.; Liu, X.; Horner, R.L. Systemic vs. central administration of common hypnotics reveals opposing effects on genioglossus muscle activity in rats. Sleep, 2008, 31(3), 355-365. doi: 10.1093/sleep/31.3.355 PMID: 18363312
  115. Younes, M.; Park, E.; Horner, R.L. Pentobarbital sedation increases genioglossus respiratory activity in sleeping rats. Sleep, 2007, 30(4), 478-488. doi: 10.1093/sleep/30.4.478 PMID: 17520792
  116. Drummond, G.B. Influence of thiopentone on upper airway muscles. Br. J. Anaesth., 1989, 63(1), 12-21. doi: 10.1093/bja/63.1.12 PMID: 2765337
  117. Mishima, G.; Sanuki, T.; Sato, S.; Kobayashi, M.; Kurata, S.; Ayuse, T. Upper-airway collapsibility and compensatory responses under moderate sedation with ketamine, dexmedetomidine, and propofol in healthy volunteers. Physiol. Rep., 2020, 8(10), e14439. doi: 10.14814/phy2.14439 PMID: 32441458
  118. Lodenius, Å.; Maddison, K.J.; Lawther, B.K.; Scheinin, M.; Eriksson, L.I.; Eastwood, P.R.; Hillman, D.R.; Fagerlund, M.J.; Walsh, J.H. Upper airway collapsibility during dexmedetomidine and propofol sedation in healthy volunteers. Anesthesiology, 2019, 131(5), 962-973. doi: 10.1097/ALN.0000000000002883 PMID: 31403974
  119. Berger, A.J.; Sebe, J. Developmental effects of ketamine on inspiratory hypoglossal nerve activity studied in vivo and in vitro. Respir. Physiol. Neurobiol., 2007, 157(2-3), 206-214. doi: 10.1016/j.resp.2007.01.001 PMID: 17267296
  120. Eikermann, M.; Malhotra, A.; Fassbender, P.; Zaremba, S.; Jordan, A.S.; Gautam, S.; White, D.P.; Chamberlin, N.L. Differential effects of isoflurane and propofol on upper airway dilator muscle activity and breathing. Anesthesiology, 2008, 108(5), 897-906. doi: 10.1097/ALN.0b013e31816c8a60 PMID: 18431126
  121. Nishino, T.; Honda, Y.; Kohchi, T.; Shirahata, M.; Yonezawa, T. Effects of increasing depth of anaesthesia on phrenic nerve and hypoglossal nerve activity during the swallowing reflex in cats. Br. J. Anaesth., 1985, 57(2), 208-213. doi: 10.1093/bja/57.2.208 PMID: 3970801
  122. Ochiai, R.; Guthrie, R.D.; Motoyama, E.K. Effects of varying concentrations of halothane on the activity of the genioglossus, intercostals, and diaphragm in cats: An electromyographic study. Anesthesiology, 1989, 70(5), 812-816. doi: 10.1097/00000542-198905000-00018 PMID: 2719316
  123. Steenland, H.W.; Liu, H.; Horner, R.L. Endogenous glutamatergic control of rhythmically active mammalian respiratory motoneurons in vivo. J. Neurosci., 2008, 28(27), 6826-6835. doi: 10.1523/JNEUROSCI.1019-08.2008 PMID: 18596158
  124. Nandi, P.R.; Charlesworth, C.H.; Taylor, S.J.; Nunn, J.F.; Doré, C.J. Effect of general anaesthesia on the pharynx. Br. J. Anaesth., 1991, 66(2), 157-162. doi: 10.1093/bja/66.2.157 PMID: 1817614
  125. Ouedraogo, N.; Roux, E.; Forestier, F.; Rossetti, M.; Savineau, J.P.; Marthan, R. Effects of intravenous anesthetics on normal and passively sensitized human isolated airway smooth muscle. Anesthesiology, 1998, 88(2), 317-326. doi: 10.1097/00000542-199802000-00008 PMID: 9477050
  126. Cheng, E.Y.; Mazzeo, A.J.; Bosnjak, Z.J.; Coon, R.L.; Kampine, J.P. Direct relaxant effects of intravenous anesthetics on airway smooth muscle. Anesth. Analg., 1996, 83(1), 162-168. doi: 10.1213/00000539-199607000-00028 PMID: 8659728
  127. Zhi, J.; Duan, Q.; Wang, Q.; Du, X.; Yang, D. Dexmedetomidine reduces IL-4 and IgE expression through downregulation of theTLR4/NF-κB signaling pathway to alleviate airway hyperresponsiveness in OVA mice. Pulm. Pharmacol. Ther., 2022, 75, 102147. doi: 10.1016/j.pupt.2022.102147 PMID: 35863724
  128. Eilers, H.; Cattaruzza, F.; Nassini, R.; Materazzi, S.; Andre, E.; Chu, C.; Cottrell, G.S.; Schumacher, M.; Geppetti, P.; Bunnett, N.W. Pungent general anesthetics activate transient receptor potential-A1 to produce hyperalgesia and neurogenic bronchoconstriction. Anesthesiology, 2010, 112(6), 1452-1463. doi: 10.1097/ALN.0b013e3181d94e00 PMID: 20463581
  129. Habre, W.; Peták, F.; Sly, P.D.; Hantos, Z.; Morel, D.R. Protective effects of volatile agents against methacholine-induced bronchoconstriction in rats. Anesthesiology, 2001, 94(2), 348-353. doi: 10.1097/00000542-200102000-00026 PMID: 11176101
  130. Pabelick, C.M.; Ay, B.; Prakash, Y.S.; Sieck, G.C. Effects of volatile anesthetics on store-operated Ca(2+) influx in airway smooth muscle. Anesthesiology, 2004, 101(2), 373-380. doi: 10.1097/00000542-200408000-00018 PMID: 15277920
  131. Hirshman, C.A.; Bergman, N.A. Halothane and enflurane protect against bronchospasm in an asthma dog model. Anesth. Analg., 1978, 57(6), 629-633. doi: 10.1213/00000539-197811000-00009 PMID: 569987
  132. Kong, C.F.; Chew, S.T.H.; Ip-Yam, P.C. Intravenous opioids reduce airway irritation during induction of anaesthesia with desflurane in adults. Br. J. Anaesth., 2000, 85(3), 364-367. doi: 10.1093/bja/85.3.364 PMID: 11103175
  133. Nordmann, G.R.; Read, J.A.; Sale, S.M.; Stoddart, P.A.; Wolf, A.R. Emergence and recovery in children after desflurane and isoflurane anaesthesia: Effect of anaesthetic duration. Br. J. Anaesth., 2006, 96(6), 779-785. doi: 10.1093/bja/ael092 PMID: 16613927
  134. Lerman, J.; Hammer, G.B.; Verghese, S.; Ehlers, M.; Khalil, S.N.; Betts, E.; Trillo, R.; Deutsch, J. Airway responses to desflurane during maintenance of anesthesia and recovery in children with laryngeal mask airways. Paediatr. Anaesth., 2010, 20(6), 495-505. doi: 10.1111/j.1460-9592.2010.03305.x PMID: 20456065
  135. Johnson, S.M.; Koshiya, N.; Smith, J.C. Isolation of the kernel for respiratory rhythm generation in a novel preparation: The pre-Bötzinger complex "island". J. Neurophysiol., 2001, 85(4), 1772-1776. doi: 10.1152/jn.2001.85.4.1772 PMID: 11287498
  136. Kuribayashi, J.; Sakuraba, S.; Kashiwagi, M.; Hatori, E.; Tsujita, M.; Hosokawa, Y.; Takeda, J.; Kuwana, S. Neural mechanisms of sevoflurane-induced respiratory depression in newborn rats. Anesthesiology, 2008, 109(2), 233-242. doi: 10.1097/ALN.0b013e31817f5baf PMID: 18648232
  137. Koizumi, H.; Smerin, S.E.; Yamanishi, T.; Moorjani, B.R.; Zhang, R.; Smith, J.C. TASK channels contribute to the K+-dominated leak current regulating respiratory rhythm generation in vitro. J. Neurosci., 2010, 30(12), 4273-4284. doi: 10.1523/JNEUROSCI.4017-09.2010 PMID: 20335463
  138. Talley, E.M.; Bayliss, D.A. Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: Volatile anesthetics and neurotransmitters share a molecular site of action. J. Biol. Chem., 2002, 277(20), 17733-17742. doi: 10.1074/jbc.M200502200 PMID: 11886861
  139. Bayliss, D.A.; Sirois, J.E.; Talley, E.M. The TASK family: two-pore domain background K+ channels. Mol. Interv., 2003, 3(4), 205-219. doi: 10.1124/mi.3.4.205 PMID: 14993448
  140. Carlà, V.; Moroni, F. General anaesthetics inhibit the responses induced by glutamate receptor agonists in the mouse cortex. Neurosci. Lett., 1992, 146(1), 21-24. doi: 10.1016/0304-3940(92)90162-Z PMID: 1282227
  141. Pace, R.W.; Del Negro, C.A. AMPA and metabotropic glutamate receptors cooperatively generate inspiratory-like depolarization in mouse respiratory neurons in vitro. Eur. J. Neurosci., 2008, 28(12), 2434-2442. doi: 10.1111/j.1460-9568.2008.06540.x PMID: 19032588
  142. Ge, Q.; Feldman, J.L. AMPA receptor activation and phosphatase inhibition affect neonatal rat respiratory rhythm generation. J. Physiol., 1998, 509(Pt 1), 255-266. doi: 10.1111/j.1469-7793.1998.255bo.x
  143. Martel, B.; Guimond, J.C.; Gariépy, J.F.; Gravel, J.; Auclair, F.; Kolta, A.; Lund, J.P.; Dubuc, R. Respiratory rhythms generated in the lamprey rhombencephalon. Neuroscience, 2007, 148(1), 279-293. doi: 10.1016/j.neuroscience.2007.05.023 PMID: 17618060
  144. Dogas, Z.; Stuth, E.A.; Hopp, F.A.; McCrimmon, D.R.; Zuperku, E.J. NMDA receptor-mediated transmission of carotid body chemoreceptor input to expiratory bulbospinal neurones in dogs. J. Physiol., 1995, 487(Pt 3), 639-651. doi: 10.1113/jphysiol.1995.sp020906
  145. Krolo, M.; Stuth, E.A.; Tonkovic-Capin, M.; Hopp, F.A.; McCrimmon, D.R.; Zuperku, E.J. Relative magnitude of tonic and phasic synaptic excitation of medullary inspiratory neurons in dogs. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2000, 279(2), R639-R649. doi: 10.1152/ajpregu.2000.279.2.R639 PMID: 10938255
  146. Shimazu, Y.; Umemura, K.; Kawano, K.; Hokamura, K.; Kawazura, H.; Nakashima, M. Respiratory effects of halothane and AMPA receptor antagonist synergy in rats. Eur. J. Pharmacol., 1998, 342(2-3), 261-265. doi: 10.1016/S0014-2999(97)01484-2 PMID: 9548395
  147. Hoffmann, V.L.H.; Vermeyen, K.M.; Adriaensen, H.F.; Meert, T.F. Effects of NMDA receptor antagonists on opioid-induced respiratory depression and acute antinociception in rats. Pharmacol. Biochem. Behav., 2003, 74(4), 933-941. doi: 10.1016/S0091-3057(03)00020-0 PMID: 12667908
  148. Sears, T.A.; Berger, A.J.; Phillipson, E.A. Reciprocal tonic activation of inspiratory and expiratory motoneurones by chemical drives. Nature, 1982, 299(5885), 728-730. doi: 10.1038/299728a0 PMID: 6811952
  149. Dogas, Z.; Krolo, M.; Stuth, E.A.; Tonkovic-Capin, M.; Hopp, F.A.; McCrimmon, D.R.; Zuperku, E.J. Differential effects of GABAA receptor antagonists in the control of respiratory neuronal discharge patterns. J. Neurophysiol., 1998, 80(5), 2368-2377. doi: 10.1152/jn.1998.80.5.2368 PMID: 9819249
  150. Takita, K.; Morimoto, Y. Effects of sevoflurane on respiratory rhythm oscillators in the medulla oblongata. Respir. Physiol. Neurobiol., 2010, 173(1), 86-94. doi: 10.1016/j.resp.2010.06.016 PMID: 20603230
  151. Doi, M.; Ikeda, K. Postanesthetic respiratory depression in humans: A comparison of sevoflurane, isoflurane and halothane. J. Anesth., 1987, 1(2), 137-142. doi: 10.1007/s0054070010137 PMID: 15235849
  152. Masuda, A.; Haji, A.; Kiriyama, M.; Ito, Y.; Takeda, R. Effects of sevoflurane on respiratory activities in the phrenic nerve of decerebrate cats. Acta Anaesthesiol. Scand., 1995, 39(6), 774-781. doi: 10.1111/j.1399-6576.1995.tb04169.x PMID: 7484033
  153. Stucke, A.G.; Stuth, E.A.E.; Tonkovic-Capin, V.; Tonkovic-Capin, M.; Hopp, F.A.; Kampine, J.P.; Zuperku, E.J. Effects of sevoflurane on excitatory neurotransmission to medullary expiratory neurons and on phrenic nerve activity in a decerebrate dog model. Anesthesiology, 2001, 95(2), 485-491. doi: 10.1097/00000542-200108000-00034 PMID: 11506124
  154. Dahan, A.; Sarton, E.; Teppema, L.; Olievier, C.; Nieuwenhuijs, D.; Matthes, H.W.D.; Kieffer, B.L. Anesthetic potency and influence of morphine and sevoflurane on respiration in mu-opioid receptor knockout mice. Anesthesiology, 2001, 94(5), 824-832. doi: 10.1097/00000542-200105000-00021 PMID: 11388534
  155. Freye, E.; Latasch, L.; Schmidhammer, H.; Portoghese, P. Interaction of S-(+)-ketamine with opiate receptors. Effects on EEG, evoked potentials and respiration in awake dogs. Anaesthesist, 1994, 43(Suppl. 2), S52-S58. PMID: 7840415
  156. Cochet-Bissuel, M.; Lory, P.; Monteil, A. The sodium leak channel, NALCN, in health and disease. Front. Cell. Neurosci., 2014, 8, 132. doi: 10.3389/fncel.2014.00132 PMID: 24904279
  157. Lozic, B.; Johansson, S.; Lovric Kojundzic, S.; Markic, J.; Knappskog, P.M.; Hahn, A.F.; Boman, H. Novel NALCN variant: Altered respiratory and circadian rhythm, anesthetic sensitivity. Ann. Clin. Transl. Neurol., 2016, 3(11), 876-883. doi: 10.1002/acn3.362 PMID: 27844033
  158. Chong, J.X.; McMillin, M.J.; Shively, K.M.; Beck, A.E.; Marvin, C.T.; Armenteros, J.R.; Buckingham, K.J.; Nkinsi, N.T.; Boyle, E.A.; Berry, M.N.; Bocian, M.; Foulds, N.; Uzielli, M.L.G.; Haldeman-Englert, C.; Hennekam, R.C.M.; Kaplan, P.; Kline, A.D.; Mercer, C.L.; Nowaczyk, M.J.M.; Klein Wassink-Ruiter, J.S.; McPherson, E.W.; Moreno, R.A.; Scheuerle, A.E.; Shashi, V.; Stevens, C.A.; Carey, J.C.; Monteil, A.; Lory, P.; Tabor, H.K.; Smith, J.D.; Shendure, J.; Nickerson, D.A.; Bamshad, M.J.; Bamshad, M.J.; Shendure, J.; Nickerson, D.A.; Abecasis, G.R.; Anderson, P.; Blue, E.M.; Annable, M.; Browning, B.L.; Buckingham, K.J.; Chen, C.; Chin, J.; Chong, J.X.; Cooper, G.M.; Davis, C.P.; Frazar, C.; Harrell, T.M.; He, Z.; Jain, P.; Jarvik, G.P.; Jimenez, G.; Johanson, E.; Jun, G.; Kircher, M.; Kolar, T.; Krauter, S.A.; Krumm, N.; Leal, S.M.; Luksic, D.; Marvin, C.T.; McMillin, M.J.; McGee, S.; O’Reilly, P.; Paeper, B.; Patterson, K.; Perez, M.; Phillips, S.W.; Pijoan, J.; Poel, C.; Reinier, F.; Robertson, P.D.; Santos-Cortez, R.; Shaffer, T.; Shephard, C.; Shively, K.M.; Siegel, D.L.; Smith, J.D.; Staples, J.C.; Tabor, H.K.; Tackett, M.; Underwood, J.G.; Wegener, M.; Wang, G.; Wheeler, M.M.; Yi, Q. De novo mutations in NALCN cause a syndrome characterized by congenital contractures of the limbs and face, hypotonia, and developmental delay. Am. J. Hum. Genet., 2015, 96(3), 462-473. doi: 10.1016/j.ajhg.2015.01.003 PMID: 25683120
  159. Oonuma, H.; Iwasawa, K.; Iida, H.; Nagata, T.; Imuta, H.; Morita, Y.; Yamamoto, K.; Nagai, R.; Omata, M.; Nakajima, T. Inward rectifier K(+) current in human bronchial smooth muscle cells: Inhibition with antisense oligonucleotides targeted to Kir2.1 mRNA. Am. J. Respir. Cell Mol. Biol., 2002, 26(3), 371-379. doi: 10.1165/ajrcmb.26.3.4542 PMID: 11867346
  160. Jiang, C.; Xu, H.; Cui, N.; Wu, J. An alternative approach to the identification of respiratory central chemoreceptors in the brainstem. Respir. Physiol., 2001, 129(1-2), 141-157. doi: 10.1016/S0034-5687(01)00301-2 PMID: 11738651
  161. Trapp, S.; Tucker, S.J.; Gourine, A.V. Respiratory responses to hypercapnia and hypoxia in mice with genetic ablation of Kir5.1 (Kcnj16). Exp. Physiol., 2011, 96(4), 451-459. doi: 10.1113/expphysiol.2010.055848 PMID: 21239463
  162. Ou, M.; Kuo, F.S.; Chen, X.; Kahanovitch, U.; Olsen, M.L.; Du, G.; Mulkey, D.K. Isoflurane inhibits a Kir4.1/5.1-like conductance in neonatal rat brainstem astrocytes and recombinant Kir4.1/5.1 channels in a heterologous expression system. J. Neurophysiol., 2020, 124(3), 740-749. doi: 10.1152/jn.00358.2020 PMID: 32727273
  163. Sirois, J.E.; Lei, Q.; Talley, E.M.; Lynch, C., III; Bayliss, D.A. The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalation anesthetics. J. Neurosci., 2000, 20(17), 6347-6354. doi: 10.1523/JNEUROSCI.20-17-06347.2000 PMID: 10964940
  164. Washburn, C.P.; Sirois, J.E.; Talley, E.M.; Guyenet, P.G.; Bayliss, D.A. Serotonergic raphe neurons express TASK channel transcripts and a TASK-like pH- and halothane-sensitive K+ conductance. J. Neurosci., 2002, 22(4), 1256-1265. doi: 10.1523/JNEUROSCI.22-04-01256.2002 PMID: 11850453
  165. Jin, Z.; Choi, M.J.; Park, C.S.; Park, Y.S.; Jin, Y.H. Propofol facilitated excitatory postsynaptic currents frequency on nucleus tractus solitarii (NTS) neurons. Brain Res., 2012, 1432, 1-6. doi: 10.1016/j.brainres.2011.11.018 PMID: 22119393
  166. McDougall, S.J.; Bailey, T.W.; Mendelowitz, D.; Andresen, M.C. Propofol enhances both tonic and phasic inhibitory currents in second-order neurons of the solitary tract nucleus (NTS). Neuropharmacology, 2008, 54(3), 552-563. doi: 10.1016/j.neuropharm.2007.11.001 PMID: 18082229
  167. Fagerlund, M.J.; Kåhlin, J.; Ebberyd, A.; Schulte, G.; Mkrtchian, S.; Eriksson, L.I. The human carotid body: Expression of oxygen sensing and signaling genes of relevance for anesthesia. Anesthesiology, 2010, 113(6), 1270-1279. doi: 10.1097/ALN.0b013e3181fac061 PMID: 20980909
  168. Pandit, J.J.; Buckler, K.J. Differential effects of halothane and sevoflurane on hypoxia-induced intracellular calcium transients of neonatal rat carotid body type I cells. Br. J. Anaesth., 2009, 103(5), 701-710. doi: 10.1093/bja/aep223 PMID: 19700444
  169. Patel, A.J.; Honoré, E. Anesthetic-sensitive 2P domain K+ channels. Anesthesiology, 2001, 95(4), 1013-1021. doi: 10.1097/00000542-200110000-00034 PMID: 11605899
  170. Wu, X.S.; Sun, J.Y.; Evers, A.S.; Crowder, M.; Wu, L.G. Isoflurane inhibits transmitter release and the presynaptic action potential. Anesthesiology, 2004, 100(3), 663-670. doi: 10.1097/00000542-200403000-00029 PMID: 15108983
  171. Speigel, I.A.; Hemmings, H.C., Jr Selective inhibition of gamma aminobutyric acid release from mouse hippocampal interneurone subtypes by the volatile anaesthetic isoflurane. Br. J. Anaesth., 2021, 127(4), 587-599. doi: 10.1016/j.bja.2021.06.042 PMID: 34384592
  172. Stock, L.; Hosoume, J.; Treptow, W. Concentration-dependent binding of small ligands to multiple saturable sites in membrane proteins. Sci. Rep., 2017, 7(1), 5734. doi: 10.1038/s41598-017-05896-8 PMID: 28720769
  173. Stock, L.; Hosoume, J.; Cirqueira, L.; Treptow, W. Binding of the general anesthetic sevoflurane to ion channels. PLOS Comput. Biol., 2018, 14(11), e1006605. doi: 10.1371/journal.pcbi.1006605 PMID: 30475796
  174. Conforti, L.; Bodi, I.; Nisbet, J.W.; Millhorn, D.E. O2-sensitive K+ channels: Role of the Kv1.2 -subunit in mediating the hypoxic response. J. Physiol., 2000, 524(Pt 3), 783-793.
  175. Patel, A.J.; Honoré, E. Molecular physiology of oxygen-sensitive potassium channels. Eur. Respir. J., 2001, 18(1), 221-227. doi: 10.1183/09031936.01.00204001 PMID: 11510795
  176. Marina, N.; Turovsky, E.; Christie, I.N.; Hosford, P.S.; Hadjihambi, A.; Korsak, A.; Ang, R.; Mastitskaya, S.; Sheikhbahaei, S.; Theparambil, S.M.; Gourine, A.V. Brain metabolic sensing and metabolic signaling at the level of an astrocyte. Glia, 2018, 66(6), 1185-1199. doi: 10.1002/glia.23283 PMID: 29274121
  177. Guyenet, P.G.; Bayliss, D.A. Neural control of breathing and CO2 homeostasis. Neuron, 2015, 87(5), 946-961. doi: 10.1016/j.neuron.2015.08.001 PMID: 26335642
  178. Erlichman, J.S.; Leiter, J.C.; Gourine, A.V. ATP, glia and central respiratory control. Respir. Physiol. Neurobiol., 2010, 173(3), 305-311. doi: 10.1016/j.resp.2010.06.009 PMID: 20601205
  179. Kasymov, V.; Larina, O.; Castaldo, C.; Marina, N.; Patrushev, M.; Kasparov, S.; Gourine, A.V. Differential sensitivity of brainstem versus cortical astrocytes to changes in pH reveals functional regional specialization of astroglia. J. Neurosci., 2013, 33(2), 435-441. doi: 10.1523/JNEUROSCI.2813-12.2013 PMID: 23303924
  180. Sheikhbahaei, S.; Turovsky, E.A.; Hosford, P.S.; Hadjihambi, A.; Theparambil, S.M.; Liu, B.; Marina, N.; Teschemacher, A.G.; Kasparov, S.; Smith, J.C.; Gourine, A.V. Astrocytes modulate brainstem respiratory rhythm-generating circuits and determine exercise capacity. Nat. Commun., 2018, 9(1), 370. doi: 10.1038/s41467-017-02723-6 PMID: 29371650
  181. Gourine, A.V.; Kasymov, V.; Marina, N.; Tang, F.; Figueiredo, M.F.; Lane, S.; Teschemacher, A.G.; Spyer, K.M.; Deisseroth, K.; Kasparov, S. Astrocytes control breathing through pH-dependent release of ATP. Science, 2010, 329(5991), 571-575. doi: 10.1126/science.1190721 PMID: 20647426
  182. Turovsky, E.; Theparambil, S.M.; Kasymov, V.; Deitmer, J.W.; del Arroyo, A.G.; Ackland, G.L.; Corneveaux, J.J.; Allen, A.N.; Huentelman, M.J.; Kasparov, S.; Marina, N.; Gourine, A.V. Mechanisms of CO2/H+ sensitivity of astrocytes. J. Neurosci., 2016, 36(42), 10750-10758. doi: 10.1523/JNEUROSCI.1281-16.2016 PMID: 27798130
  183. Zuperku, E.J.; McCrimmon, D.R. Gain modulation of respiratory neurons. Respir. Physiol. Neurobiol., 2002, 131(1-2), 121-133. doi: 10.1016/S1569-9048(02)00042-3 PMID: 12107000
  184. Tonkovic-Capin, V.; Stucke, A.G.; Stuth, E.A.; Tonkovic-Capin, M.; Hopp, F.A.; McCrimmon, D.R.; Zuperku, E.J. Differential processing of excitation by GABAergic gain modulation in canine caudal ventral respiratory group neurons. J. Neurophysiol., 2003, 89(2), 862-870. doi: 10.1152/jn.00761.2002 PMID: 12574464
  185. Stucke, A.G.; Zuperku, E.J.; Tonkovic-Capin, V.; Tonkovic-Capin, M.; Hopp, F.A.; Kampine, J.P.; Stuth, E.A.E. Halothane depresses glutamatergic neurotransmission to brain stem inspiratory premotor neurons in a decerebrate dog model. Anesthesiology, 2003, 98(4), 897-905. doi: 10.1097/00000542-200304000-00016 PMID: 12657851
  186. Stucke, A.G.; Zuperku, E.J.; Tonkovic-Capin, V.; Krolo, M.; Hopp, F.A.; Kampine, J.P.; Stuth, E.A.E. Sevoflurane depresses glutamatergic neurotransmission to brainstem inspiratory premotor neurons but not postsynaptic receptor function in a decerebrate dog model. Anesthesiology, 2005, 103(1), 50-56. doi: 10.1097/00000542-200507000-00011 PMID: 15983456
  187. Stucke, A.G.; Zuperku, E.J.; Tonkovic-Capin, V.; Krolo, M.; Hopp, F.A.; Kampine, J.P.; Stuth, E.A.E. Halothane enhances gamma-aminobutyric acid receptor type A function but does not change overall inhibition in inspiratory premotor neurons in a decerebrate dog model. Anesthesiology, 2003, 99(6), 1303-1312. doi: 10.1097/00000542-200312000-00011 PMID: 14639142
  188. Stucke, A.G.; Stuth, E.A.E.; Tonkovic-Capin, V.; Tonkovic-Capin, M.; Hopp, F.A.; Kampine, J.P.; Zuperku, E.J. Effects of halothane and sevoflurane on inhibitory neurotransmission to medullary expiratory neurons in a decerebrate dog model. Anesthesiology, 2002, 96(4), 955-962. doi: 10.1097/00000542-200204000-00025 PMID: 11964605
  189. Ireland, M.F.; Lenal, F.C.; Lorier, A.R.; Loomes, D.E.; Adachi, T.; Alvares, T.S.; Greer, J.J.; Funk, G.D. Distinct receptors underlie glutamatergic signalling in inspiratory rhythm-generating networks and motor output pathways in neonatal rat. J. Physiol., 2008, 586(9), 2357-2370. doi: 10.1113/jphysiol.2007.150532 PMID: 18339693
  190. Robinson, D.; Ellenberger, H. Distribution of N-methyl-D-aspartate and non-N-methyl-D-aspartate glutamate receptor subunits on respiratory motor and premotor neurons in the rat. J. Comp. Neurol., 1997, 389(1), 94-116. doi: 10.1002/(SICI)1096-9861(19971208)389:13.0.CO;2-9 PMID: 9390762
  191. Dildy-Mayfield, J.E.; Eger, E.I., II; Harris, R.A. Anesthetics produce subunit-selective actions on glutamate receptors. J. Pharmacol. Exp. Ther., 1996, 276(3), 1058-1065. PMID: 8786535
  192. Joo, D.T.; Gong, D.; Sonner, J.M.; Jia, Z.; MacDonald, J.F.; Eger, E.I., II; Orser, B.A. Blockade of AMPA receptors and volatile anesthetics: reduced anesthetic requirements in GluR2 null mutant mice for loss of the righting reflex and antinociception but not minimum alveolar concentration. Anesthesiology, 2001, 94(3), 478-488. doi: 10.1097/00000542-200103000-00020 PMID: 11374610
  193. Mody, I. Distinguishing between GABA(A) receptors responsible for tonic and phasic conductances. Neurochem. Res., 2001, 26(8/9), 907-913. doi: 10.1023/A:1012376215967 PMID: 11699942
  194. Stórustovu, S.; Ebert, B. Pharmacological characterization of agonists at delta-containing GABAA receptors: Functional selectivity for extrasynaptic receptors is dependent on the absence of gamma2. J. Pharmacol. Exp. Ther., 2006, 316(3), 1351-1359. doi: 10.1124/jpet.105.092403 PMID: 16272218
  195. Stuth, E.A.E.; Krolo, M.; Tonkovic-Capin, M.; Hopp, F.A.; Kampine, J.P.; Zuperku, E.J. Effects of halothane on synaptic neurotransmission to medullary expiratory neurons in the ventral respiratory group of dogs. Anesthesiology, 1999, 91(3), 804-814. doi: 10.1097/00000542-199909000-00033 PMID: 10485792
  196. Ou, M.; Zhao, W.; Liu, J.; Liang, P.; Huang, H.; Yu, H.; Zhu, T.; Zhou, C. The general anesthetic isoflurane bilaterally modulates neuronal excitability. iScience, 2020, 23(1), 100760. doi: 10.1016/j.isci.2019.100760 PMID: 31926429
  197. Banks, M.I.; Pearce, R.A. Dual actions of volatile anesthetics on GABA(A) IPSCs: Dissociation of blocking and prolonging effects. Anesthesiology, 1999, 90(1), 120-134. doi: 10.1097/00000542-199901000-00018 PMID: 9915321
  198. Stuth, E.A.E.; Krolo, M.; Stucke, A.G.; Tonkovic-Capin, M.; Tonkovic-Capin, V.; Hopp, F.A.; Kampine, J.P.; Zuperku, E.J. Effects of halothane on excitatory neurotransmission to medullary expiratory neurons in a decerebrate dog model. Anesthesiology, 2000, 93(6), 1474-1481. doi: 10.1097/00000542-200012000-00020 PMID: 11149443
  199. Vanini, G.; Watson, C.J.; Lydic, R.; Baghdoyan, H.A. Gamma-aminobutyric acid-mediated neurotransmission in the pontine reticular formation modulates hypnosis, immobility, and breathing during isoflurane anesthesia. Anesthesiology, 2008, 109(6), 978-988. doi: 10.1097/ALN.0b013e31818e3b1b PMID: 19034094
  200. Westphalen, R.I.; Hemmings, H.C. Jr Selective depression by general anesthetics of glutamate versus GABA release from isolated cortical nerve terminals. J. Pharmacol. Exp. Ther., 2003, 304(3), 1188-1196. doi: 10.1124/jpet.102.044685 PMID: 12604696
  201. Housley, G.D.; Sinclair, J.D. Localization by kainic acid lesions of neurones transmitting the carotid chemoreceptor stimulus for respiration in rat. J. Physiol., 1988, 406(1), 99-114. doi: 10.1113/jphysiol.1988.sp017371 PMID: 3254424
  202. Burton, M.D.; Kazemi, H. Neurotransmitters in central respiratory control. Respir. Physiol., 2000, 122(2-3), 111-121. doi: 10.1016/S0034-5687(00)00153-5 PMID: 10967338
  203. Sirois, J.E.; Lynch, C., III; Bayliss, D.A. Convergent and reciprocal modulation of a leak K + current and Ih by an inhalational anaesthetic and neurotransmitters in rat brainstem motoneurones. J. Physiol., 2002, 541(3), 717-729. doi: 10.1113/jphysiol.2002.018119 PMID: 12068035
  204. Sirois, J.E.; Pancrazio, J.J.; Lynch, C.3rd; Bayliss, D.A. Multiple ionic mechanisms mediate inhibition of rat motoneurones by inhalation anaesthetics. J. Physiol., 1998, 512(Pt 3), 851-862. doi: 10.1111/j.1469-7793.1998.851bd.x
  205. Washburn, C.P.; Bayliss, D.A.; Guyenet, P.G. Cardiorespiratory neurons of the rat ventrolateral medulla contain TASK-1 and TASK-3 channel mRNA. Respir. Physiol. Neurobiol., 2003, 138(1), 19-35. doi: 10.1016/S1569-9048(03)00185-X PMID: 14519375
  206. Brandes, I.F.; Zuperku, E.J.; Stucke, A.G.; Hopp, F.A.; Jakovcevic, D.; Stuth, E.A.E. Isoflurane depresses the response of inspiratory hypoglossal motoneurons to serotonin in vivo. Anesthesiology, 2007, 106(4), 736-745. doi: 10.1097/01.anes.0000264750.93769.99 PMID: 17413911
  207. Montaño, L.M.; Bazán-Perkins, B. Resting calcium influx in airway smooth muscle. Can. J. Physiol. Pharmacol., 2005, 83(8-9), 717-723. doi: 10.1139/y05-063 PMID: 16333373
  208. Perez-Zoghbi, J.F.; Karner, C.; Ito, S.; Shepherd, M.; Alrashdan, Y.; Sanderson, M.J. Ion channel regulation of intracellular calcium and airway smooth muscle function. Pulm. Pharmacol. Ther., 2009, 22(5), 388-397. doi: 10.1016/j.pupt.2008.09.006 PMID: 19007899
  209. Hall, A.C.; Lieb, W.R.; Franks, N.P. Insensitivity of P-type calcium channels to inhalational and intravenous general anesthetics. Anesthesiology, 1994, 81(1), 117-123. doi: 10.1097/00000542-199407000-00017 PMID: 8042779
  210. Reyes-García, J.; Flores-Soto, E.; Carbajal-García, A.; Sommer, B.; Montaño, L.M. Maintenance of intracellular Ca2+ basal concentration in airway smooth muscle (Review). Int. J. Mol. Med. , 2018, 42(6), 2998-3008. PMID: 30280184
  211. Yamakage, M.; Hirshman, C.A.; Croxton, T.L. Volatile anesthetics inhibit voltage-dependent Ca2+ channels in porcine tracheal smooth muscle cells. Am. J. Physiol., 1995, 268(2 Pt 1), L187-L191. PMID: 7864139
  212. Study, R.E. Isoflurane inhibits multiple voltage-gated calcium currents in hippocampal pyramidal neurons. Anesthesiology, 1994, 81(1), 104-116. doi: 10.1097/00000542-199407000-00016 PMID: 8042778
  213. Hemmings, H.C., Jr Sodium channels and the synaptic mechanisms of inhaled anaesthetics. Br. J. Anaesth., 2009, 103(1), 61-69. doi: 10.1093/bja/aep144 PMID: 19508978
  214. Cannon, S.C. Sodium channelopathies of skeletal muscle. Handb. Exp. Pharmacol., 2017, 246, 309-330. doi: 10.1007/164_2017_52 PMID: 28939973
  215. Pechmann, A.; Eckenweiler, M.; Schorling, D.; Stavropoulou, D.; Lochmüller, H.; Kirschner, J. De novo variant in SCN4A causes neonatal sodium channel myotonia with general muscle stiffness and respiratory failure. Neuromuscul. Disord., 2019, 29(11), 907-909. doi: 10.1016/j.nmd.2019.09.001 PMID: 31732390
  216. Ouyang, W.; Wang, G.; Hemmings, H.C., Jr Isoflurane and propofol inhibit voltage-gated sodium channels in isolated rat neurohypophysial nerve terminals. Mol. Pharmacol., 2003, 64(2), 373-381. doi: 10.1124/mol.64.2.373 PMID: 12869642
  217. Bardou, O.; Trinh, N.T.N.; Brochiero, E. Molecular diversity and function of K + channels in airway and alveolar epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 2009, 296(2), L145-L155. doi: 10.1152/ajplung.90525.2008 PMID: 19060226
  218. Miller, J.R.; Zuperku, E.J.; Stuth, E.A.E.; Banerjee, A.; Hopp, F.A.; Stucke, A.G. A subregion of the parabrachial nucleus partially mediates respiratory rate depression from intravenous remifentanil in young and adult rabbits. Anesthesiology, 2017, 127(3), 502-514. doi: 10.1097/ALN.0000000000001719 PMID: 28590302
  219. Montandon, G.; Qin, W.; Liu, H.; Ren, J.; Greer, J.J.; Horner, R.L. PreBotzinger complex neurokinin-1 receptor-expressing neurons mediate opioid-induced respiratory depression. J. Neurosci., 2011, 31(4), 1292-1301. doi: 10.1523/JNEUROSCI.4611-10.2011 PMID: 21273414
  220. Montandon, G.; Horner, R. Crosstalk proposal: The preBötzinger complex is essential for the respiratory depression following systemic administration of opioid analgesics. J. Physiol., 2014, 592(6), 1159-1162. doi: 10.1113/jphysiol.2013.261974 PMID: 24634011
  221. Prkic, I.; Mustapic, S.; Radocaj, T.; Stucke, A.G.; Stuth, E.A.E.; Hopp, F.A.; Dean, C.; Zuperku, E.J. Pontine µ-opioid receptors mediate bradypnea caused by intravenous remifentanil infusions at clinically relevant concentrations in dogs. J. Neurophysiol., 2012, 108(9), 2430-2441. doi: 10.1152/jn.00185.2012 PMID: 22875901
  222. Liu, S.; Kim, D.I.; Oh, T.G.; Pao, G.M.; Kim, J.H.; Palmiter, R.D.; Banghart, M.R.; Lee, K.F.; Evans, R.M.; Han, S. Neural basis of opioid-induced respiratory depression and its rescue. Proc. Natl. Acad. Sci. USA, 2021, 118(23), e2022134118. doi: 10.1073/pnas.2022134118 PMID: 34074761
  223. Varga, A.G.; Reid, B.T.; Kieffer, B.L.; Levitt, E.S. Differential impact of two critical respiratory centres in opioid-induced respiratory depression in awake mice. J. Physiol., 2020, 598(1), 189-205. doi: 10.1113/JP278612 PMID: 31589332
  224. Manzke, T.; Guenther, U.; Ponimaskin, E.G.; Haller, M.; Dutschmann, M.; Schwarzacher, S.; Richter, D.W. 5-HT4(a) receptors avert opioid-induced breathing depression without loss of analgesia. Science, 2003, 301(5630), 226-229. doi: 10.1126/science.1084674 PMID: 12855812
  225. Gray, P.A.; Janczewski, W.A.; Mellen, N.; McCrimmon, D.R.; Feldman, J.L. Normal breathing requires preBötzinger complex neurokinin-1 receptor-expressing neurons. Nat. Neurosci., 2001, 4(9), 927-930. doi: 10.1038/nn0901-927 PMID: 11528424
  226. McKay, L.C.; Feldman, J.L. Unilateral ablation of pre-Botzinger complex disrupts breathing during sleep but not wakefulness. Am. J. Respir. Crit. Care Med., 2008, 178(1), 89-95. doi: 10.1164/rccm.200712-1901OC PMID: 18420958
  227. Kim, D.W.; Joo, J.D.; In, J.H.; Jeon, Y.S.; Jung, H.S.; Jeon, K.B.; Park, J.S.; Choi, J.W. Comparison of the recovery and respiratory effects of aminophylline and doxapram following total intravenous anesthesia with propofol and remifentanil. J. Clin. Anesth., 2013, 25(3), 173-176. doi: 10.1016/j.jclinane.2012.07.005 PMID: 23583458
  228. Roozekrans, M.; van der Schrier, R.; Okkerse, P.; Hay, J.; McLeod, J.F.; Dahan, A. Two studies on reversal of opioid-induced respiratory depression by BK-channel blocker GAL021 in human volunteers. Anesthesiology, 2014, 121(3), 459-468. doi: 10.1097/ALN.0000000000000367 PMID: 25222672
  229. Dahan, A.; van der Schrier, R.; Smith, T.; Aarts, L.; van Velzen, M.; Niesters, M. Averting opioid-induced respiratory depression without affecting analgesia. Anesthesiology, 2018, 128(5), 1027-1037. doi: 10.1097/ALN.0000000000002184 PMID: 29553984
  230. Algera, M.H.; Kamp, J.; van der Schrier, R.; van Velzen, M.; Niesters, M.; Aarts, L.; Dahan, A.; Olofsen, E. Opioid-induced respiratory depression in humans: A review of pharmacokinetic–pharmacodynamic modelling of reversal. Br. J. Anaesth., 2019, 122(6), e168-e179. doi: 10.1016/j.bja.2018.12.023 PMID: 30915997
  231. Ren, J.; Ding, X.; Greer, J.J. 5-HT1A receptor agonist Befiradol reduces fentanyl-induced respiratory depression, analgesia, and sedation in rats. Anesthesiology, 2015, 122(2), 424-434. doi: 10.1097/ALN.0000000000000490 PMID: 25313880
  232. Guenther, U.; Wrigge, H.; Theuerkauf, N.; Boettcher, M.F.; Wensing, G.; Zinserling, J.; Putensen, C.; Hoeft, A. Repinotan, a selective 5-HT1A-R-agonist, antagonizes morphine-induced ventilatory depression in anesthetized rats. Anesth. Analg., 2010, 111(4), 901-907. doi: 10.1213/ANE.0b013e3181eac011 PMID: 20802053
  233. Guenther, U.; Theuerkauf, N.U.; Huse, D.; Boettcher, M.F.; Wensing, G.; Putensen, C.; Hoeft, A. Selective 5-HT(1A)-R-agonist repinotan prevents remifentanil-induced ventilatory depression and prolongs antinociception. Anesthesiology, 2012, 116(1), 56-64. doi: 10.1097/ALN.0b013e31823d08fa PMID: 22082683
  234. Buckler, K.J. Background leak K+-currents and oxygen sensing in carotid body type 1 cells. Respir. Physiol., 1999, 115(2), 179-187. doi: 10.1016/S0034-5687(99)00015-8 PMID: 10385032
  235. Funk, G.D.; Smith, J.C.; Feldman, J.L. Generation and transmission of respiratory oscillations in medullary slices: Role of excitatory amino acids. J. Neurophysiol., 1993, 70(4), 1497-1515. doi: 10.1152/jn.1993.70.4.1497 PMID: 8283211
  236. Lee, K.; Goodman, L.; Fourie, C.; Schenk, S.; Leitch, B.; Montgomery, J.M. AMPA receptors as therapeutic targets for neurological disorders. Adv. Protein Chem. Struct. Biol., 2016, 103, 203-261. doi: 10.1016/bs.apcsb.2015.10.004 PMID: 26920691
  237. ElMallah, M.K.; Pagliardini, S.; Turner, S.M.; Cerreta, A.J.; Falk, D.J.; Byrne, B.J.; Greer, J.J.; Fuller, D.D. Stimulation of respiratory motor output and ventilation in a murine model of Pompe disease by Ampakines. Am. J. Respir. Cell Mol. Biol., 2015, 53(3), 326-335. doi: 10.1165/rcmb.2014-0374OC PMID: 25569118

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024