Transcription Factor EB: A Promising Therapeutic Target for Ischemic Stroke
- 作者: Shao J.1, Lang Y.1, Ding M.1, Yin X.2, Cui L.2
-
隶属关系:
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University,, Jilin University
- 期: 卷 22, 编号 2 (2024)
- 页面: 170-190
- 栏目: Neurology
- URL: https://rjraap.com/1570-159X/article/view/644607
- DOI: https://doi.org/10.2174/1570159X21666230724095558
- ID: 644607
如何引用文章
全文:
详细
Transcription factor EB (TFEB) is an important endogenous defensive protein that responds to ischemic stimuli. Acute ischemic stroke is a growing concern due to its high morbidity and mortality. Most survivors suffer from disabilities such as numbness or weakness in an arm or leg, facial droop, difficulty speaking or understanding speech, confusion, impaired balance or coordination, or loss of vision. Although TFEB plays a neuroprotective role, its potential effect on ischemic stroke remains unclear. This article describes the basic structure, regulation of transcriptional activity, and biological roles of TFEB relevant to ischemic stroke. Additionally, we explore the effects of TFEB on the various pathological processes underlying ischemic stroke and current therapeutic approaches. The information compiled here may inform clinical and basic studies on TFEB, which may be an effective therapeutic drug target for ischemic stroke.
作者简介
Jie Shao
Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University
Email: info@benthamscience.net
Yue Lang
Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University
Email: info@benthamscience.net
Manqiu Ding
Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University
Email: info@benthamscience.net
Xiang Yin
Department of Neurology and Neuroscience Center, The First Hospital of Jilin University,, Jilin University
编辑信件的主要联系方式.
Email: info@benthamscience.net
Li Cui
Department of Neurology and Neuroscience Center, The First Hospital of Jilin University,, Jilin University
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- Mendelson, S.J.; Prabhakaran, S. Diagnosis and management of transient ischemic attack and acute ischemic stroke. JAMA, 2021, 325(11), 1088-1098. doi: 10.1001/jama.2020.26867 PMID: 33724327
- Feigin, V.L.; Norrving, B.; Mensah, G.A. Global burden of stroke. Circ. Res., 2017, 120(3), 439-448. doi: 10.1161/CIRCRESAHA.116.308413 PMID: 28154096
- Donnan, G.A.; Fisher, M.; Macleod, M.; Davis, S.M. Stroke. Lancet, 2008, 371(9624), 1612-1623. doi: 10.1016/S0140-6736(08)60694-7 PMID: 18468545
- Galluzzi, L.; Bravo-San Pedro, J.M.; Levine, B.; Green, D.R.; Kroemer, G. Pharmacological modulation of autophagy: Therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov., 2017, 16(7), 487-511. doi: 10.1038/nrd.2017.22 PMID: 28529316
- Chen, M.Y.; Dai, Y.S.; Liu, S.Y.; Fan, Y.X.; Ding, Z.X.; Li, D. TFEB biology and agonists at a glance. Cells, 2021, 10(2), 333. doi: 10.3390/cells10020333 PMID: 33562649
- Napolitano, G.; Ballabio, A. TFEB at a glance. J. Cell Sci., 2016, 129(13), 2475-2481. PMID: 27252382
- Sardiello, M.; Palmieri, M.; di Ronza, A.; Medina, D.L.; Valenza, M.; Gennarino, V.A.; Di Malta, C.; Donaudy, F.; Embrione, V.; Polishchuk, R.S.; Banfi, S.; Parenti, G.; Cattaneo, E.; Ballabio, A. A gene network regulating lysosomal biogenesis and function. Science, 2009, 325(5939), 473-477. doi: 10.1126/science.1174447 PMID: 19556463
- Medina, D.L.; Fraldi, A.; Bouche, V.; Annunziata, F.; Mansueto, G.; Spampanato, C.; Puri, C.; Pignata, A.; Martina, J.A.; Sardiello, M.; Palmieri, M.; Polishchuk, R.; Puertollano, R.; Ballabio, A. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell, 2011, 21(3), 421-430. doi: 10.1016/j.devcel.2011.07.016 PMID: 21889421
- Settembre, C.; Di Malta, C.; Polito, V.A.; Arencibia, M.G.; Vetrini, F.; Erdin, S.; Erdin, S.U.; Huynh, T.; Medina, D.; Colella, P.; Sardiello, M.; Rubinsztein, D.C.; Ballabio, A. TFEB links autophagy to lysosomal biogenesis. Science, 2011, 332(6036), 1429-1433. doi: 10.1126/science.1204592 PMID: 21617040
- Settembre, C.; De Cegli, R.; Mansueto, G.; Saha, P.K.; Vetrini, F.; Visvikis, O.; Huynh, T.; Carissimo, A.; Palmer, D.; Klisch, T.J.; Wollenberg, A.C.; Di Bernardo, D.; Chan, L.; Irazoqui, J.E.; Ballabio, A. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop (vol 15, pg 647, 2013). Nat. Cell Biol., 2013, 15(8), 1016-1016. doi: 10.1038/ncb2814
- Mansueto, G.; Armani, A.; Viscomi, C.; DOrsi, L.; De Cegli, R.; Polishchuk, E.V.; Lamperti, C.; Di Meo, I.; Romanello, V.; Marchet, S.; Saha, P.K.; Zong, H.; Blaauw, B.; Solagna, F.; Tezze, C.; Grumati, P.; Bonaldo, P.; Pessin, J.E.; Zeviani, M.; Sandri, M.; Ballabio, A. Transcription factor EB controls metabolic flexibility during exercise. Cell Metab., 2017, 25(1), 182-196. doi: 10.1016/j.cmet.2016.11.003 PMID: 28011087
- Fan, Y.; Lu, H.; Liang, W.; Garcia-Barrio, M.T.; Guo, Y.; Zhang, J.; Zhu, T.; Hao, Y.; Zhang, J.; Chen, Y.E. Endothelial TFEB (transcription factor EB) positively regulates postischemic angiogenesis. Circ. Res., 2018, 122(7), 945-957. doi: 10.1161/CIRCRESAHA.118.312672 PMID: 29467198
- Brady, O.A.; Martina, J.A.; Puertollano, R. Emerging roles for TFEB in the immune response and inflammation. Autophagy, 2018, 14(2), 181-189. doi: 10.1080/15548627.2017.1313943 PMID: 28738171
- Gu, S.; Tan, J.; Li, Q.; Liu, S.; Ma, J.; Zheng, Y.; Liu, J.; Bi, W.; Sha, P.; Li, X.; Wei, M.; Cao, N.; Yang, H.T. Downregulation of LAPTM4B contributes to the impairment of the autophagic flux via unopposed activation of mTORC1 signaling during myocardial Ischemia/reperfusion injury. Circ. Res., 2020, 127(7), e148-e165. doi: 10.1161/CIRCRESAHA.119.316388 PMID: 32693673
- Li, M.; Wang, Z.; Wang, P.; Li, H.; Yang, L. TFEB: A emerging regulator in lipid homeostasis for atherosclerosis. Front. Physiol., 2021, 12639920. doi: 10.3389/fphys.2021.639920 PMID: 33679452
- Martini-Stoica, H.; Xu, Y.; Ballabio, A.; Zheng, H. The autophagy-lysosomal pathway in neurodegeneration: A TFEB perspective. Trends Neurosci., 2016, 39(4), 221-234. doi: 10.1016/j.tins.2016.02.002 PMID: 26968346
- Bahrami, A.; Bianconi, V.; Pirro, M.; Orafai, H.M.; Sahebkar, A. The role of TFEB in tumor cell autophagy: Diagnostic and therapeutic opportunities. Life Sci., 2020, 244117341. doi: 10.1016/j.lfs.2020.117341 PMID: 31972208
- Zhang, W.; Li, X.; Wang, S.; Chen, Y.; Liu, H. Regulation of TFEB activity and its potential as a therapeutic target against kidney diseases. Cell Death Discov., 2020, 6(1), 32. doi: 10.1038/s41420-020-0265-4 PMID: 32377395
- Cheli, Y.; Ohanna, M.; Ballotti, R.; Bertolotto, C. Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res., 2010, 23(1), 27-40. doi: 10.1111/j.1755-148X.2009.00653.x PMID: 19995375
- Puertollano, R.; Ferguson, S.M.; Brugarolas, J.; Ballabio, A. The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. EMBO J., 2018, 37(11), e98804. doi: 10.15252/embj.201798804 PMID: 29764979
- Bouché, V.; Espinosa, A.P.; Leone, L.; Sardiello, M.; Ballabio, A.; Botas, J. Drosophila Mitf regulates the V-ATPase and the lysosomal-autophagic pathway. Autophagy, 2016, 12(3), 484-498. doi: 10.1080/15548627.2015.1134081 PMID: 26761346
- Hallsson, J.H.; Haflidadóttir, B.S.; Stivers, C.; Odenwald, W.; Arnheiter, H.; Pignoni, F.; Steingrímsson, E. The basic helix-loop-helix leucine zipper transcription factor Mitf is conserved in Drosophila and functions in eye development. Genetics, 2004, 167(1), 233-241. doi: 10.1534/genetics.167.1.233 PMID: 15166150
- Rehli, M.; Den Elzen, N.; Cassady, A.I.; Ostrowski, M.C.; Hume, D.A. Cloning and characterization of the murine genes for bHLH-ZIP transcription factors TFEC and TFEB reveal a common gene organization for all MiT subfamily members. Genomics, 1999, 56(1), 111-120. doi: 10.1006/geno.1998.5588 PMID: 10036191
- Steingrímsson, E.; Copeland, N.G.; Jenkins, N.A. Melanocytes and the microphthalmia transcription factor network. Annu. Rev. Genet., 2004, 38(1), 365-411. doi: 10.1146/annurev.genet.38.072902.092717 PMID: 15568981
- Pogenberg, V.; Ballesteros-Álvarez, J.; Schober, R.; Sigvaldadóttir, I.; Obarska-Kosinska, A.; Milewski, M.; Schindl, R.; Ögmundsdóttir, M.H.; Steingrímsson, E.; Wilmanns, M. Mechanism of conditional partner selectivity in MITF/TFE family transcription factors with a conserved coiled coil stammer motif. Nucleic Acids Res., 2020, 48(2), 934-948. doi: 10.1093/nar/gkz1104 PMID: 31777941
- La Spina, M.; Contreras, P.S.; Rissone, A.; Meena, N.K.; Jeong, E.; Martina, J.A. MiT/TFE Family of Transcription Factors: An Evolutionary Perspective. Front. Cell Dev. Biol., 2021, 8609683. doi: 10.3389/fcell.2020.609683 PMID: 33490073
- Aksan, I.; Goding, C.R. Targeting the microphthalmia basic helix-loop-helix-leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo. Mol. Cell. Biol., 1998, 18(12), 6930-6938. doi: 10.1128/MCB.18.12.6930 PMID: 9819381
- Pogenberg, V.; Ögmundsdóttir, M.H.; Bergsteinsdóttir, K.; Schepsky, A.; Phung, B.; Deineko, V.; Milewski, M.; Steingrímsson, E.; Wilmanns, M. Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF. Genes Dev., 2012, 26(23), 2647-2658. doi: 10.1101/gad.198192.112 PMID: 23207919
- Napolitano, G.; Esposito, A.; Choi, H.; Matarese, M.; Benedetti, V.; Di Malta, C.; Monfregola, J.; Medina, D.L.; Lippincott-Schwartz, J.; Ballabio, A. mTOR-dependent phosphorylation controls TFEB nuclear export. Nat. Commun., 2018, 9(1), 3312. doi: 10.1038/s41467-018-05862-6 PMID: 30120233
- Zhao, G.Q.; Zhao, Q.; Zhou, X.; Mattei, M.G.; de Crombrugghe, B. TFEC, a basic helix-loop-helix protein, forms heterodimers with TFE3 and inhibits TFE3-dependent transcription activation. Mol. Cell. Biol., 1993, 13(8), 4505-4512. PMID: 8336698
- Martina, J.A.; Chen, Y.; Gucek, M.; Puertollano, R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy, 2012, 8(6), 903-914. doi: 10.4161/auto.19653 PMID: 22576015
- Chen, L.; Wang, K.; Long, A.; Jia, L.; Zhang, Y.; Deng, H.; Li, Y.; Han, J.; Wang, Y. Fasting-induced hormonal regulation of lysosomal function. Cell Res., 2017, 27(6), 748-763. doi: 10.1038/cr.2017.45 PMID: 28374748
- Campbell, G.R.; Rawat, P.; Bruckman, R.S.; Spector, S.A. Human immunodeficiency virus type 1 Nef inhibits autophagy through transcription factor EB sequestration. PLoS Pathog., 2015, 11(6), e1005018. doi: 10.1371/journal.ppat.1005018 PMID: 26115100
- Visvikis, O.; Ihuegbu, N.; Labed, S.A.; Luhachack, L.G.; Alves, A.M.F.; Wollenberg, A.C.; Stuart, L.M.; Stormo, G.D.; Irazoqui, J.E. Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity, 2014, 40(6), 896-909. doi: 10.1016/j.immuni.2014.05.002 PMID: 24882217
- Pastore, N.; Brady, O.A.; Diab, H.I.; Martina, J.A.; Sun, L.; Huynh, T.; Lim, J.A.; Zare, H.; Raben, N.; Ballabio, A.; Puertollano, R. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy, 2016, 12(8), 1240-1258. doi: 10.1080/15548627.2016.1179405 PMID: 27171064
- Gray, M.A.; Choy, C.H.; Dayam, R.M.; Ospina-Escobar, E.; Somerville, A.; Xiao, X.; Ferguson, S.M.; Botelho, R.J. Phagocytosis enhances lysosomal and bactericidal properties by activating the transcription factor TFEB. Curr. Biol., 2016, 26(15), 1955-1964. doi: 10.1016/j.cub.2016.05.070 PMID: 27397893
- Nezich, C.L.; Wang, C.; Fogel, A.I.; Youle, R.J. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J. Cell Biol., 2015, 210(3), 435-450. doi: 10.1083/jcb.201501002 PMID: 26240184
- Martina, J.A.; Diab, H.I.; Brady, O.A.; Puertollano, R. TFEB and TFE 3 are novel components of the integrated stress response. EMBO J., 2016, 35(5), 479-495. doi: 10.15252/embj.201593428 PMID: 26813791
- Nardozzi, J.D.; Lott, K.; Cingolani, G. Phosphorylation meets nuclear import: a review. Cell Commun. Signal., 2010, 8(1), 32. doi: 10.1186/1478-811X-8-32 PMID: 21182795
- Peña-Llopis, S.; Vega-Rubin-de-Celis, S.; Schwartz, J.C.; Wolff, N.C.; Tran, T.A.T.; Zou, L.; Xie, X.J.; Corey, D.R.; Brugarolas, J. Regulation of TFEB and V-ATPases by mTORC1. EMBO J., 2011, 30(16), 3242-3258. doi: 10.1038/emboj.2011.257 PMID: 21804531
- Peña-Llopis, S.; Brugarolas, J. TFEB, a novel mTORC1 effector implicated in lysosome biogenesis, endocytosis and autophagy. Cell Cycle, 2011, 10(23), 3987-3988. doi: 10.4161/cc.10.23.18251 PMID: 22101272
- Szwed, A.; Kim, E.; Jacinto, E. Regulation and metabolic functions of mTORC1 and mTORC2. Physiol. Rev., 2021, 101(3), 1371-1426. doi: 10.1152/physrev.00026.2020 PMID: 33599151
- Vega-Rubin-de-Celis, S.; Peña-Llopis, S.; Konda, M.; Brugarolas, J. Multistep regulation of TFEB by MTORC1. Autophagy, 2017, 13(3), 464-472. doi: 10.1080/15548627.2016.1271514 PMID: 28055300
- Roczniak-Ferguson, A.; Petit, C.S.; Froehlich, F.; Qian, S.; Ky, J.; Angarola, B.; Walther, T.C.; Ferguson, S.M. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal., 2012, 5(228), ra42. doi: 10.1126/scisignal.2002790 PMID: 22692423
- DeYoung, M.P.; Horak, P.; Sofer, A.; Sgroi, D.; Ellisen, L.W. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev., 2008, 22(2), 239-251. doi: 10.1101/gad.1617608 PMID: 18198340
- Kaper, F.; Dornhoefer, N.; Giaccia, A.J. Mutations in the PI3K/PTEN/TSC2 pathway contribute to mammalian target of rapamycin activity and increased translation under hypoxic conditions. Cancer Res., 2006, 66(3), 1561-1569. doi: 10.1158/0008-5472.CAN-05-3375 PMID: 16452213
- Carling, D. AMPK signalling in health and disease. Curr. Opin. Cell Biol., 2017, 45, 31-37. doi: 10.1016/j.ceb.2017.01.005 PMID: 28232179
- Paquette, M.; El-Houjeiri, L. C Zirden, L.; Puustinen, P.; Blanchette, P.; Jeong, H.; Dejgaard, K.; Siegel, P.M.; Pause, A. AMPK-dependent phosphorylation is required for transcriptional activation of TFEB and TFE3. Autophagy, 2021, 17(12), 3957-3975. doi: 10.1080/15548627.2021.1898748 PMID: 33734022
- Manning, B.D.; Toker, A. AKT/PKB Signaling: Navigating the Network. Cell, 2017, 169(3), 381-405. doi: 10.1016/j.cell.2017.04.001 PMID: 28431241
- Palmieri, M.; Pal, R.; Nelvagal, H.R.; Lotfi, P.; Stinnett, G.R.; Seymour, M.L.; Chaudhury, A.; Bajaj, L.; Bondar, V.V.; Bremner, L.; Saleem, U.; Tse, D.Y.; Sanagasetti, D.; Wu, S.M.; Neilson, J.R.; Pereira, F.A.; Pautler, R.G.; Rodney, G.G.; Cooper, J.D.; Sardiello, M. mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat. Commun., 2017, 8, 14338.
- Palmieri, M.; Pal, R.; Sardiello, M. AKT modulates the autophagy-lysosome pathway via TFEB. Cell Cycle, 2017, 16(13), 1237-1238. doi: 10.1080/15384101.2017.1337968 PMID: 28636416
- Li, S.; Song, Y.; Quach, C.; Guo, H.; Jang, G.B.; Maazi, H.; Zhao, S.; Sands, N.A.; Liu, Q. In, G.K.; Peng, D.; Yuan, W.; Machida, K.; Yu, M.; Akbari, O.; Hagiya, A.; Yang, Y.; Punj, V.; Tang, L.; Liang, C. Transcriptional regulation of autophagy-lysosomal function in BRAF-driven melanoma progression and chemoresistance. Nat. Commun., 2019, 10(1), 1693. doi: 10.1038/s41467-019-09634-8 PMID: 30979895
- Wang, L.; Li, J.; Di, L. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med. Res. Rev., 2022, 42(2), 946-982. doi: 10.1002/med.21867 PMID: 34729791
- Costa, A.; Metais, T.; Mouthon, F.; Kerkovich, D.; Charvériat, M. Evaluating and modulating TFEB in the control of autophagy: toward new treatments in CNS disorders. Fundam. Clin. Pharmacol., 2021, 35(3), 539-551. doi: 10.1111/fcp.12634 PMID: 33259088
- Zhang, Y.; Wu, Z.; Huang, Z.; Liu, Y.; Chen, X.; Zhao, X.; He, H.; Deng, Y. GSK-3β inhibition elicits a neuroprotection by restoring lysosomal dysfunction in neurons via facilitation of TFEB nuclear translocation after ischemic stroke. Brain Res., 2022, 1778147768. doi: 10.1016/j.brainres.2021.147768 PMID: 34968440
- Li, Y.; Xu, M.; Ding, X.; Yan, C.; Song, Z.; Chen, L.; Huang, X.; Wang, X.; Jian, Y.; Tang, G.; Tang, C.; Di, Y.; Mu, S.; Liu, X.; Liu, K.; Li, T.; Wang, Y.; Miao, L.; Guo, W.; Hao, X.; Yang, C. Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat. Cell Biol., 2016, 18(10), 1065-1077. doi: 10.1038/ncb3407 PMID: 27617930
- Ferron, M.; Settembre, C.; Shimazu, J.; Lacombe, J.; Kato, S.; Rawlings, D.J.; Ballabio, A.; Karsenty, G. A RANKL-PKCβ-TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts. Genes Dev., 2013, 27(8), 955-969. doi: 10.1101/gad.213827.113 PMID: 23599343
- Tong, Y.; Song, F. Intracellular calcium signaling regulates autophagy via calcineurin-mediated TFEB dephosphorylation. Autophagy, 2015, 11(7), 1192-1195. doi: 10.1080/15548627.2015.1054594 PMID: 26043755
- Medina, D.L.; Di Paola, S.; Peluso, I.; Armani, A.; De Stefani, D.; Venditti, R.; Montefusco, S.; Scotto-Rosato, A.; Prezioso, C.; Forrester, A.; Settembre, C.; Wang, W.; Gao, Q.; Xu, H.; Sandri, M.; Rizzuto, R.; De Matteis, M.A.; Ballabio, A. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol., 2015, 17(3), 288-299. doi: 10.1038/ncb3114 PMID: 25720963
- Silvestrini, M.J.; Johnson, J.R.; Kumar, A.V.; Thakurta, T.G.; Blais, K.; Neill, Z.A.; Marion, S.W.; St Amand, V.; Reenan, R.A.; Lapierre, L.R. Nuclear Export Inhibition Enhances HLH-30/TFEB Activity, Autophagy, and Lifespan. Cell Rep., 2018, 23(7), 1915-1921. doi: 10.1016/j.celrep.2018.04.063 PMID: 29768192
- Li, L.; Friedrichsen, H.J.; Andrews, S.; Picaud, S.; Volpon, L.; Ngeow, K.; Berridge, G.; Fischer, R.; Borden, K.L.B.; Filippakopoulos, P.; Goding, C.R. A TFEB nuclear export signal integrates amino acid supply and glucose availability. Nat. Commun., 2018, 9(1), 2685. doi: 10.1038/s41467-018-04849-7 PMID: 29992949
- Kırlı, K.; Karaca, S.; Dehne, H.J.; Samwer, M.; Pan, K.T.; Lenz, C.; Urlaub, H.; Görlich, D. A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. eLife, 2015, 4, e11466. doi: 10.7554/eLife.11466 PMID: 26673895
- Yang, M.; Zhang, Y.; Ren, J. Acetylation in cardiovascular diseases: Molecular mechanisms and clinical implications. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(10), 165836. doi: 10.1016/j.bbadis.2020.165836 PMID: 32413386
- Wang, Y.; Huang, Y.; Liu, J.; Zhang, J.; Xu, M.; You, Z.; Peng, C.; Gong, Z.; Liu, W. Acetyltransferase GCN5 regulates autophagy and lysosome biogenesis by targeting TFEB. EMBO Rep., 2020, 21(1), e48335. doi: 10.15252/embr.201948335 PMID: 31750630
- Bao, J.; Zheng, L.; Zhang, Q.; Li, X.; Zhang, X.; Li, Z.; Bai, X.; Zhang, Z.; Huo, W.; Zhao, X.; Shang, S.; Wang, Q.; Zhang, C.; Ji, J. Deacetylation of TFEB promotes fibrillar Aβ degradation by upregulating lysosomal biogenesis in microglia. Protein Cell, 2016, 7(6), 417-433. doi: 10.1007/s13238-016-0269-2 PMID: 27209302
- Brijmohan, A.S.; Batchu, S.N.; Majumder, S.; Alghamdi, T.A.; Thieme, K.; McGaugh, S.; Liu, Y.; Advani, S.L.; Bowskill, B.B.; Kabir, M.G.; Geldenhuys, L.; Siddiqi, F.S.; Advani, A. HDAC6 inhibition promotes transcription factor EB activation and is protective in experimental kidney disease. Front. Pharmacol., 2018, 9, 34. doi: 10.3389/fphar.2018.00034 PMID: 29449811
- Meacham, G.C.; Patterson, C.; Zhang, W.; Younger, J.M.; Cyr, D.M. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat. Cell Biol., 2001, 3(1), 100-105. doi: 10.1038/35050509 PMID: 11146634
- Rao, L.; Sha, Y.; Eissa, N.T. The E3 ubiquitin ligase STUB1 regulates autophagy and mitochondrial biogenesis by modulating TFEB activity. Mol. Cell. Oncol., 2017, 4(6), e1372867. doi: 10.1080/23723556.2017.1372867 PMID: 29209655
- Sha, Y.; Rao, L.; Settembre, C.; Ballabio, A.; Eissa, N.T. STUB 1 regulates TFEB‐induced autophagy-lysosome pathway. EMBO J., 2017, 36(17), 2544-2552. doi: 10.15252/embj.201796699 PMID: 28754656
- Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev., 1999, 79(4), 1431-1568. doi: 10.1152/physrev.1999.79.4.1431 PMID: 10508238
- Bonora, M.; Patergnani, S.; Rimessi, A.; De Marchi, E.; Suski, J.M.; Bononi, A.; Giorgi, C.; Marchi, S.; Missiroli, S.; Poletti, F.; Wieckowski, M.R.; Pinton, P. ATP synthesis and storage. Purinergic Signal., 2012, 8(3), 343-357. doi: 10.1007/s11302-012-9305-8 PMID: 22528680
- Tuo, Q.; Zhang, S.; Lei, P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med. Res. Rev., 2022, 42(1), 259-305. doi: 10.1002/med.21817 PMID: 33957000
- Back, T.; Hemmen, T.; Schüler, O.G. Lesion evolution in cerebral ischemia. J. Neurol., 2004, 251(4), 388-397. doi: 10.1007/s00415-004-0399-y PMID: 15083282
- Sifat, A.E.; Nozohouri, S.; Archie, S.R.; Chowdhury, E.A.; Abbruscato, T.J. Brain energy metabolism in ischemic stroke: Effects of smoking and diabetes. Int. J. Mol. Sci., 2022, 23(15), 8512. doi: 10.3390/ijms23158512 PMID: 35955647
- Oakhill, J.S.; Steel, R.; Chen, Z.P.; Scott, J.W.; Ling, N.; Tam, S.; Kemp, B.E. AMPK is a direct adenylate charge-regulated protein kinase. Science, 2011, 332(6036), 1433-1435. doi: 10.1126/science.1200094 PMID: 21680840
- Chun, Y.; Kim, J. AMPK-mTOR signaling and cellular adaptations in hypoxia. Int. J. Mol. Sci., 2021, 22(18), 9765. doi: 10.3390/ijms22189765 PMID: 34575924
- Inoki, K.; Ouyang, H.; Zhu, T.; Lindvall, C.; Wang, Y.; Zhang, X.; Yang, Q.; Bennett, C.; Harada, Y.; Stankunas, K.; Wang, C.; He, X.; MacDougald, O.A.; You, M.; Williams, B.O.; Guan, K.L. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell, 2006, 126(5), 955-968. doi: 10.1016/j.cell.2006.06.055 PMID: 16959574
- Folbergrová, J.; Memezawa, H.; Smith, M.L.; Siesjö, B.K. Focal and perifocal changes in tissue energy state during middle cerebral artery occlusion in normo- and hyperglycemic rats. J. Cereb. Blood Flow Metab., 1992, 12(1), 25-33. doi: 10.1038/jcbfm.1992.4 PMID: 1727140
- Paschen, W.; Oláh, L.; Mies, G. Effect of transient focal ischemia of mouse brain on energy state and NAD levels: no evidence that NAD depletion plays a major role in secondary disturbances of energy metabolism. J. Neurochem., 2000, 75(4), 1675-1680. doi: 10.1046/j.1471-4159.2000.0751675.x PMID: 10987849
- Zoncu, R.; Bar-Peled, L.; Efeyan, A.; Wang, S.; Sancak, Y.; Sabatini, D.M. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science, 2011, 334(6056), 678-683. doi: 10.1126/science.1207056 PMID: 22053050
- Sancak, Y.; Bar-Peled, L.; Zoncu, R.; Markhard, A.L.; Nada, S.; Sabatini, D.M. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell, 2010, 141(2), 290-303. doi: 10.1016/j.cell.2010.02.024 PMID: 20381137
- Sancak, Y.; Peterson, T.R.; Shaul, Y.D.; Lindquist, R.A.; Thoreen, C.C.; Bar-Peled, L.; Sabatini, D.M. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science, 2008, 320(5882), 1496-1501. doi: 10.1126/science.1157535 PMID: 18497260
- Bar-Peled, L.; Schweitzer, L.D.; Zoncu, R.; Sabatini, D.M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell, 2012, 150(6), 1196-1208. doi: 10.1016/j.cell.2012.07.032 PMID: 22980980
- Martina, J.A.; Puertollano, R. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J. Cell Biol., 2013, 200(4), 475-491. doi: 10.1083/jcb.201209135 PMID: 23401004
- Saucedo, L.J.; Gao, X.; Chiarelli, D.A.; Li, L.; Pan, D.; Edgar, B.A. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat. Cell Biol., 2003, 5(6), 566-571. doi: 10.1038/ncb996 PMID: 12766776
- Martina, J.A.; Diab, H.I.; Lishu, L.; Jeong-A, L.; Patange, S.; Raben, N.; Puertollano, R. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci. Signal., 2014, 7(309), ra9. doi: 10.1126/scisignal.2004754 PMID: 24448649
- Settembre, C.; Zoncu, R.; Medina, D.L.; Vetrini, F.; Erdin, S.; Erdin, S.; Huynh, T.; Ferron, M.; Karsenty, G.; Vellard, M.C.; Facchinetti, V.; Sabatini, D.M.; Ballabio, A. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J., 2012, 31(5), 1095-1108. doi: 10.1038/emboj.2012.32 PMID: 22343943
- Tsun, Z.Y.; Bar-Peled, L.; Chantranupong, L.; Zoncu, R.; Wang, T.; Kim, C.; Spooner, E.; Sabatini, D.M. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol. Cell, 2013, 52(4), 495-505. doi: 10.1016/j.molcel.2013.09.016 PMID: 24095279
- Dibble, C.C.; Elis, W.; Menon, S.; Qin, W.; Klekota, J.; Asara, J.M.; Finan, P.M.; Kwiatkowski, D.J.; Murphy, L.O.; Manning, B.D. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol. Cell, 2012, 47(4), 535-546. doi: 10.1016/j.molcel.2012.06.009 PMID: 22795129
- Raben, N.; Puertollano, R. TFEB and TFE3: Linking lysosomes to cellular adaptation to stress. Annu. Rev. Cell Dev. Biol., 2016, 32(1), 255-278. doi: 10.1146/annurev-cellbio-111315-125407 PMID: 27298091
- Evans, T.D.; Zhang, X.; Jeong, S.J.; He, A.; Song, E.; Bhattacharya, S.; Holloway, K.B.; Lodhi, I.J.; Razani, B. TFEB drives PGC-1α expression in adipocytes to protect against diet-induced metabolic dysfunction. Sci. Signal., 2019, 12(606), eaau2281. doi: 10.1126/scisignal.aau2281 PMID: 31690633
- Chen, D.; Xie, J.; Fiskesund, R.; Dong, W.; Liang, X.; Lv, J.; Jin, X.; Liu, J.; Mo, S.; Zhang, T.; Cheng, F.; Zhou, Y.; Zhang, H.; Tang, K.; Ma, J.; Liu, Y.; Huang, B. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat. Commun., 2018, 9(1), 873. doi: 10.1038/s41467-018-03225-9 PMID: 29491374
- Zhang, X.; Wei, M.; Fan, J.; Yan, W.; Zha, X.; Song, H.; Wan, R.; Yin, Y.; Wang, W. Ischemia-induced upregulation of autophagy preludes dysfunctional lysosomal storage and associated synaptic impairments in neurons. Autophagy, 2021, 17(6), 1519-1542. doi: 10.1080/15548627.2020.1840796 PMID: 33111641
- Yang, Y.; Lv, S.Y.; Lyu, S.K.; Wu, D.; Chen, Q. The protective effect of apelin on ischemia/reperfusion injury. Peptides, 2015, 63, 43-46. doi: 10.1016/j.peptides.2014.11.001 PMID: 25447414
- Wang, P.; Shao, B.Z.; Deng, Z.; Chen, S.; Yue, Z.; Miao, C.Y. Autophagy in ischemic stroke. Prog. Neurobiol., 2018, 163-164, 98-117. doi: 10.1016/j.pneurobio.2018.01.001 PMID: 29331396
- Sun, Y.L.; Zhu, Y.H.; Zhong, X.J.; Chen, X.L.; Wang, J.; Ying, G.Z. Crosstalk between autophagy and cerebral ischemia. Front. Neurosci., 2019, 12, 1022. doi: 10.3389/fnins.2018.01022 PMID: 30692904
- Ravikumar, B.; Sarkar, S.; Davies, J.E.; Futter, M.; Garcia-Arencibia, M.; Green-Thompson, Z.W.; Jimenez-Sanchez, M.; Korolchuk, V.I.; Lichtenberg, M.; Luo, S.; Massey, D.C.O.; Menzies, F.M.; Moreau, K.; Narayanan, U.; Renna, M.; Siddiqi, F.H.; Underwood, B.R.; Winslow, A.R.; Rubinsztein, D.C. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev., 2010, 90(4), 1383-1435. doi: 10.1152/physrev.00030.2009 PMID: 20959619
- Liu, Y.; Xue, X.; Zhang, H.; Che, X.; Luo, J.; Wang, P.; Xu, J.; Xing, Z.; Yuan, L.; Liu, Y.; Fu, X.; Su, D.; Sun, S.; Zhang, H.; Wu, C.; Yang, J. Neuronal-targeted TFEB rescues dysfunction of the autophagy-lysosomal pathway and alleviates ischemic injury in permanent cerebral ischemia. Autophagy, 2019, 15(3), 493-509. doi: 10.1080/15548627.2018.1531196 PMID: 30304977
- Chen, J.H.; Kuo, H.C.; Lee, K.F.; Tsai, T.H. Global proteomic analysis of brain tissues in transient ischemia brain damage in rats. Int. J. Mol. Sci., 2015, 16(12), 11873-11891. doi: 10.3390/ijms160611873 PMID: 26016499
- Ahsan, A.; Zheng, Y.; Ma, S.; Liu, M.; Cao, M.; Li, Y.; Zheng, W.; Zhou, X.; Xin, M.; Hu, W.; Chen, Z.; Zhang, X. Tomatidine protects against ischemic neuronal injury by improving lysosomal function. Eur. J. Pharmacol., 2020, 882173280. doi: 10.1016/j.ejphar.2020.173280 PMID: 32580039
- Hossain, M.I.; Marcus, J.M.; Lee, J.H.; Garcia, P.L.; Singh, V.; Shacka, J.J.; Zhang, J.; Gropen, T.I.; Falany, C.N.; Andrabi, S.A. Restoration of CTSD (cathepsin D) and lysosomal function in stroke is neuroprotective. Autophagy, 2021, 17(6), 1330-1348. doi: 10.1080/15548627.2020.1761219 PMID: 32450052
- Bajaj, L.; Lotfi, P.; Pal, R.; Ronza, A.; Sharma, J.; Sardiello, M. Lysosome biogenesis in health and disease. J. Neurochem., 2019, 148(5), 573-589. doi: 10.1111/jnc.14564 PMID: 30092616
- Wu, Z.; Zhang, Y.; Liu, Y.; Chen, X.; Huang, Z.; Zhao, X.; He, H.; Deng, Y. Melibiose confers a neuroprotection against cerebral ischemia/reperfusion injury by ameliorating autophagy flux via facilitation of TFEB nuclear translocation in neurons. Life (Basel), 2021, 11(9), 948. doi: 10.3390/life11090948 PMID: 34575099
- Fu, X.; Liu, Y.; Zhang, H.; Yu, X.; Wang, X.; Wu, C.; Yang, J. Pseudoginsenoside F11 ameliorates the dysfunction of the autophagy-lysosomal pathway by activating calcineurin-mediated TFEB nuclear translocation in neuron during permanent cerebral ischemia. Exp. Neurol., 2021, 338113598. doi: 10.1016/j.expneurol.2021.113598 PMID: 33422553
- Judge, A.; Dodd, M.S. Metabolism. Essays Biochem., 2020, 64(4), 607-647. doi: 10.1042/EBC20190041 PMID: 32830223
- Pastore, N.; Vainshtein, A.; Klisch, T.J.; Armani, A.; Huynh, T.; Herz, N.J.; Polishchuk, E.V.; Sandri, M.; Ballabio, A. TFE 3 regulates whole‐body energy metabolism in cooperation with TFEB. EMBO Mol. Med., 2017, 9(5), 605-621. doi: 10.15252/emmm.201607204 PMID: 28283651
- Smith, R.A.J.; Hartley, R.C.; Cochemé, H.M.; Murphy, M.P. Mitochondrial pharmacology. Trends Pharmacol. Sci., 2012, 33(6), 341-352. doi: 10.1016/j.tips.2012.03.010 PMID: 22521106
- Zeng, M.; He, Y.; Du, H.; Yang, J.; Wan, H. Output regulation and function optimization of mitochondria in eukaryotes. Front. Cell Dev. Biol., 2020, 8, 598112. doi: 10.3389/fcell.2020.598112 PMID: 33330486
- Cunnane, S.C.; Trushina, E.; Morland, C.; Prigione, A.; Casadesus, G.; Andrews, Z.B.; Beal, M.F.; Bergersen, L.H.; Brinton, R.D.; de la Monte, S.; Eckert, A.; Harvey, J.; Jeggo, R.; Jhamandas, J.H.; Kann, O.; la Cour, C.M.; Martin, W.F.; Mithieux, G.; Moreira, P.I.; Murphy, M.P.; Nave, K.A.; Nuriel, T.; Oliet, S.H.R.; Saudou, F.; Mattson, M.P.; Swerdlow, R.H.; Millan, M.J. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov., 2020, 19(9), 609-633. doi: 10.1038/s41573-020-0072-x PMID: 32709961
- Alano, C.C.; Garnier, P.; Ying, W.; Higashi, Y.; Kauppinen, T.M.; Swanson, R.A. NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J. Neurosci., 2010, 30(8), 2967-2978. doi: 10.1523/JNEUROSCI.5552-09.2010 PMID: 20181594
- Sun, J.; Lu, H.; Liang, W.; Zhao, G.; Ren, L.; Hu, D.; Chang, Z.; Liu, Y.; Garcia-Barrio, M.T.; Zhang, J.; Chen, Y.E.; Fan, Y. Endothelial TFEB (transcription factor EB) improves glucose tolerance via upregulation of IRS (insulin receptor substrate) 1 and IRS2. Arterioscler. Thromb. Vasc. Biol., 2021, 41(2), 783-795. doi: 10.1161/ATVBAHA.120.315310 PMID: 33297755
- Li, Y.; Ma, Z.; Jiang, S.; Hu, W.; Li, T.; Di, S.; Wang, D.; Yang, Y. A global perspective on FOXO1 in lipid metabolism and lipid-related diseases. Prog. Lipid Res., 2017, 66, 42-49. doi: 10.1016/j.plipres.2017.04.002 PMID: 28392404
- Thomes, P.G.; Rasineni, K.; Yang, L.; Donohue, T.M., Jr; Kubik, J.L.; McNiven, M.A.; Casey, C.A. Ethanol withdrawal mitigates fatty liver by normalizing lipid catabolism. Am. J. Physiol. Gastrointest. Liver Physiol., 2019, 316(4), G509-G518. doi: 10.1152/ajpgi.00376.2018 PMID: 30714813
- Zechner, R.; Zimmermann, R.; Eichmann, T.O.; Kohlwein, S.D.; Haemmerle, G.; Lass, A.; Madeo, F. FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling. Cell Metab., 2012, 15(3), 279-291. doi: 10.1016/j.cmet.2011.12.018 PMID: 22405066
- Martinez-Lopez, N.; Singh, R. Autophagy and lipid droplets in the liver. Annu. Rev. Nutr., 2015, 35(1), 215-237. doi: 10.1146/annurev-nutr-071813-105336 PMID: 26076903
- Chen, K.; Yuan, R.; Zhang, Y.; Geng, S.; Li, L. Tollip deficiency alters atherosclerosis and steatosis by disrupting lipophagy. J. Am. Heart Assoc., 2017, 6(4), e004078. doi: 10.1161/JAHA.116.004078 PMID: 28396568
- Lundquist, M.R.; Goncalves, M.D.; Loughran, R.M.; Possik, E.; Vijayaraghavan, T.; Yang, A.; Pauli, C.; Ravi, A.; Verma, A.; Yang, Z.; Johnson, J.L.; Wong, J.C.Y.; Ma, Y.; Hwang, K.S.K.; Weinkove, D.; Divecha, N.; Asara, J.M.; Elemento, O.; Rubin, M.A.; Kimmelman, A.C.; Pause, A.; Cantley, L.C.; Emerling, B.M. Phosphatidylinositol-5-phosphate 4-kinases regulate cellular lipid metabolism by facilitating autophagy. Mol. Cell, 2018, 70(3), 531-544.e9. doi: 10.1016/j.molcel.2018.03.037 PMID: 29727621
- Ye, M.; Zhou, J.; Zhong, Y.; Xu, J.; Hou, J.; Wang, X.; Wang, Z.; Guo, D. SR-A-Targeted phase-transition nanoparticles for the detection and treatment of atherosclerotic vulnerable plaques. ACS Appl. Mater. Interfaces, 2019, 11(10), 9702-9715. doi: 10.1021/acsami.8b18190 PMID: 30785263
- Zhu, Z.D.; Yu, T.; Liu, H.J.; Jin, J.; He, J. SOCE induced calcium overload regulates autophagy in acute pancreatitis via calcineurin activation. Cell Death Dis., 2018, 9(2), 50. doi: 10.1038/s41419-017-0073-9 PMID: 29352220
- Maus, M.; Cuk, M.; Patel, B.; Lian, J.; Ouimet, M.; Kaufmann, U.; Yang, J.; Horvath, R.; Hornig-Do, H.T.; Chrzanowska-Lightowlers, Z.M.; Moore, K.J.; Cuervo, A.M.; Feske, S. Store-operated Ca2+ entry controls induction of lipolysis and the transcriptional reprogramming to lipid metabolism. Cell Metab., 2017, 25(3), 698-712. doi: 10.1016/j.cmet.2016.12.021 PMID: 28132808
- Rutkai, I.; Merdzo, I.; Wunnava, S.V.; Curtin, G.T.; Katakam, P.V.G.; Busija, D.W. Cerebrovascular function and mitochondrial bioenergetics after ischemia-reperfusion in male rats. J. Cereb. Blood Flow Metab., 2019, 39(6), 1056-1068. doi: 10.1177/0271678X17745028 PMID: 29215305
- Anderson, M.F.; Sims, N.R. Mitochondrial respiratory function and cell death in focal cerebral ischemia. J. Neurochem., 1999, 73(3), 1189-1199. doi: 10.1046/j.1471-4159.1999.0731189.x PMID: 10461911
- Chouchani, E.T.; Pell, V.R.; James, A.M.; Work, L.M.; Saeb-Parsy, K.; Frezza, C.; Krieg, T.; Murphy, M.P. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metab., 2016, 23(2), 254-263. doi: 10.1016/j.cmet.2015.12.009 PMID: 26777689
- An, H.; Zhou, B.; Ji, X. Mitochondrial quality control in acute ischemic stroke. J. Cereb. Blood Flow Metab., 2021, 41(12), 3157-3170. doi: 10.1177/0271678X211046992 PMID: 34551609
- Chan, D.C. Fusion and fission: interlinked processes critical for mitochondrial health. Annu. Rev. Genet., 2012, 46(1), 265-287. doi: 10.1146/annurev-genet-110410-132529 PMID: 22934639
- Chen, Z.; Li, Y.; Wang, Y.; Qian, J.; Ma, H.; Wang, X.; Jiang, G.; Liu, M.; An, Y.; Ma, L.; Kang, L.; Jia, J.; Yang, C.; Zhang, G.; Chen, Y.; Gao, W.; Fu, M.; Huang, Z.; Tang, H.; Zhu, Y.; Ge, J.; Gong, H.; Zou, Y. Cardiomyocyte-restricted low density lipoprotein receptor-related protein 6 (LRP6) deletion leads to lethal dilated cardiomyopathy partly through Drp1 signaling. Theranostics, 2018, 8(3), 627-643. doi: 10.7150/thno.22177 PMID: 29344294
- Ryter, S.W.; Bhatia, D.; Choi, M.E. Autophagy: A lysosome-dependent process with implications in cellular redox homeostasis and human disease. Antioxid. Redox Signal., 2019, 30(1), 138-159. doi: 10.1089/ars.2018.7518 PMID: 29463101
- Ivankovic, D.; Chau, K.Y.; Schapira, A.H.V.; Gegg, M.E. Mitochondrial and lysosomal biogenesis are activated following PINK 1/parkin‐mediated mitophagy. J. Neurochem., 2016, 136(2), 388-402. doi: 10.1111/jnc.13412 PMID: 26509433
- Settembre, C.; De Cegli, R.; Mansueto, G.; Saha, P.K.; Vetrini, F.; Visvikis, O.; Huynh, T.; Carissimo, A.; Palmer, D.; Jürgen Klisch, T.; Wollenberg, A.C.; Di Bernardo, D.; Chan, L.; Irazoqui, J.E.; Ballabio, A. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol., 2013, 15(6), 647-658. doi: 10.1038/ncb2718 PMID: 23604321
- Wu, L.; Wang, R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol. Rev., 2005, 57(4), 585-630. doi: 10.1124/pr.57.4.3 PMID: 16382109
- Shi, H. Hypoxia inducible factor 1 as a therapeutic target in ischemic stroke. Curr. Med. Chem., 2009, 16(34), 4593-4600. doi: 10.2174/092986709789760779 PMID: 19903149
- Kim, H.J.; Joe, Y.; Rah, S.Y.; Kim, S.K.; Park, S.U.; Park, J.; Kim, J.; Ryu, J.; Cho, G.J.; Surh, Y.J.; Ryter, S.W.; Kim, U.H.; Chung, H.T. Carbon monoxide-induced TFEB nuclear translocation enhances mitophagy/mitochondrial biogenesis in hepatocytes and ameliorates inflammatory liver injury. Cell Death Dis., 2018, 9(11), 1060. doi: 10.1038/s41419-018-1112-x PMID: 30333475
- Saito, A.; Maier, C.M.; Narasimhan, P.; Nishi, T.; Song, Y.S.; Yu, F.; Liu, J.; Lee, Y.S.; Nito, C.; Kamada, H.; Dodd, R.L.; Hsieh, L.B.; Hassid, B.; Kim, E.E.; González, M.; Chan, P.H. Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol. Neurobiol., 2005, 31(1-3), 105-116. doi: 10.1385/MN:31:1-3:105 PMID: 15953815
- Zhang, P.; Cui, J. Neuroprotective effect of fisetin against the cerebral ischemia-reperfusion damage via suppression of oxidative stress and inflammatory parameters. Inflammation, 2021, 44(4), 1490-1506. doi: 10.1007/s10753-021-01434-x PMID: 33616827
- Martina, J.A.; Puertollano, R. Protein phosphatase 2A stimulates activation of TFEB and TFE3 transcription factors in response to oxidative stress. J. Biol. Chem., 2018, 293(32), 12525-12534. doi: 10.1074/jbc.RA118.003471 PMID: 29945972
- Yang, Z.; Huang, C.; Wu, Y.; Chen, B.; Zhang, W.; Zhang, J. Autophagy protects the blood-brain barrier through regulating the dynamic of claudin-5 in short-term starvation. Front. Physiol., 2019, 10, 2. doi: 10.3389/fphys.2019.00002 PMID: 30713499
- Campanella, M.; Klionsky, D.J. Keeping the engine clean. Autophagy, 2013, 9(11), 1647-1647. doi: 10.4161/auto.26915 PMID: 24162014
- Yamamoto, M.; Kensler, T.W.; Motohashi, H. The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev., 2018, 98(3), 1169-1203. doi: 10.1152/physrev.00023.2017 PMID: 29717933
- Li, D.; Shao, R.; Wang, N.; Zhou, N.; Du, K.; Shi, J.; Wang, Y.; Zhao, Z.; Ye, X.; Zhang, X.; Xu, H. Sulforaphane Activates a lysosome-dependent transcriptional program to mitigate oxidative stress. Autophagy, 2021, 17(4), 872-887. doi: 10.1080/15548627.2020.1739442 PMID: 32138578
- Lyman, M.; Lloyd, D.G.; Ji, X.; Vizcaychipi, M.P.; Ma, D. Neuroinflammation: The role and consequences. Neurosci. Res., 2014, 79, 1-12. doi: 10.1016/j.neures.2013.10.004 PMID: 24144733
- Gaire, B.P. Microglia as the critical regulators of neuroprotection and functional recovery in cerebral ischemia. Cell. Mol. Neurobiol., 2021. PMID: 34460037
- Michinaga, S.; Koyama, Y. Pathophysiological responses and roles of astrocytes in traumatic brain injury. Int. J. Mol. Sci., 2021, 22(12), 6418. doi: 10.3390/ijms22126418 PMID: 34203960
- Chen, Y.J.; Nguyen, H.M.; Maezawa, I.; Grössinger, E.M.; Garing, A.L.; Köhler, R.; Jin, L.W.; Wulff, H. The potassium channel KCa3.1 constitutes a pharmacological target for neuroinflammation associated with ischemia/reperfusion stroke. J. Cereb. Blood Flow Metab., 2016, 36(12), 2146-2161. doi: 10.1177/0271678X15611434 PMID: 26661208
- Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol., 2009, 1(6), a001651. doi: 10.1101/cshperspect.a001651 PMID: 20457564
- Wang, X.; Wang, Q.; Li, W.; Zhang, Q.; Jiang, Y.; Guo, D.; Sun, X.; Lu, W.; Li, C.; Wang, Y. TFEB-NF-κB inflammatory signaling axis: a novel therapeutic pathway of Dihydrotanshinone I in doxorubicin-induced cardiotoxicity. J. Exp. Clin. Cancer Res., 2020, 39(1), 93. doi: 10.1186/s13046-020-01595-x PMID: 32448281
- Song, W.; Zhang, C.L.; Gou, L.; He, L.; Gong, Y.Y.; Qu, D.; Zhao, L.; Jin, N.; Chan, T.F.; Wang, L.; Tian, X.Y.; Luo, J.Y.; Huang, Y. Endothelial TFEB (Transcription Factor EB) Restrains IKK (IκB Kinase)-p65 Pathway to Attenuate Vascular Inflammation in Diabetic db/db Mice. Arterioscler. Thromb. Vasc. Biol., 2019, 39(4), 719-730. doi: 10.1161/ATVBAHA.119.312316 PMID: 30816805
- Gong, Z.; Pan, J.R.; Shen, Q.Y.; Li, M.; Peng, Y. Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury. J. Neuroinflammation, 2018, 15(1), 242. doi: 10.1186/s12974-018-1282-6 PMID: 30153825
- Biasizzo, M.; Kopitar-Jerala, N. Interplay Between NLRP3 Inflammasome and Autophagy. Front. Immunol., 2020, 11591803. doi: 10.3389/fimmu.2020.591803 PMID: 33163006
- Nakahira, K.; Haspel, J.A.; Rathinam, V.A.K.; Lee, S.J.; Dolinay, T.; Lam, H.C.; Englert, J.A.; Rabinovitch, M.; Cernadas, M.; Kim, H.P.; Fitzgerald, K.A.; Ryter, S.W.; Choi, A.M.K. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol., 2011, 12(3), 222-230. doi: 10.1038/ni.1980 PMID: 21151103
- Chen, J.; Mao, K.; Yu, H.; Wen, Y.; She, H.; Zhang, H.; Liu, L.; Li, M.; Li, W.; Zou, F. p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinsons disease. J. Neuroinflammation, 2021, 18(1), 295. doi: 10.1186/s12974-021-02349-y PMID: 34930303
- Shi, C.S.; Shenderov, K.; Huang, N.N.; Kabat, J.; Abu-Asab, M.; Fitzgerald, K.A.; Sher, A.; Kehrl, J.H. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol., 2012, 13(3), 255-263. doi: 10.1038/ni.2215 PMID: 22286270
- Harris, J.; Hartman, M.; Roche, C.; Zeng, S.G.; OShea, A.; Sharp, F.A.; Lambe, E.M.; Creagh, E.M.; Golenbock, D.T.; Tschopp, J.; Kornfeld, H.; Fitzgerald, K.A.; Lavelle, E.C. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J. Biol. Chem., 2011, 286(11), 9587-9597. doi: 10.1074/jbc.M110.202911 PMID: 21228274
- Linnik, M.D.; Zobrist, R.H.; Hatfield, M.D. Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke, 1993, 24(12), 2002-2008. doi: 10.1161/01.STR.24.12.2002 PMID: 8248983
- Radak, D.; Katsiki, N.; Resanovic, I.; Jovanovic, A.; Sudar-Milovanovic, E.; Zafirovic, S.; Mousad, S.A.; Isenovic, E.R. Apoptosis and Acute Brain Ischemia in Ischemic Stroke. Curr. Vasc. Pharmacol., 2017, 15(2), 115-122. doi: 10.2174/1570161115666161104095522 PMID: 27823556
- Wang, R.; Dong, Y.; Lu, Y.; Zhang, W.; Brann, D.W.; Zhang, Q. Photobiomodulation for global cerebral ischemia: Targeting mitochondrial dynamics and functions. Mol. Neurobiol., 2019, 56(3), 1852-1869. doi: 10.1007/s12035-018-1191-9 PMID: 29951942
- Landshamer, S.; Hoehn, M.; Barth, N.; Duvezin-Caubet, S.; Schwake, G.; Tobaben, S.; Kazhdan, I.; Becattini, B.; Zahler, S.; Vollmar, A.; Pellecchia, M.; Reichert, A.; Plesnila, N.; Wagner, E.; Culmsee, C. Bid-induced release of AIF from mitochondria causes immediate neuronal cell death. Cell Death Differ., 2008, 15(10), 1553-1563. doi: 10.1038/cdd.2008.78 PMID: 18535584
- Culmsee, C.; Krieglstein, J. Ischaemic brain damage after stroke: new insights into efficient therapeutic strategies. EMBO Rep., 2007, 8(2), 129-133. doi: 10.1038/sj.embor.7400892 PMID: 17218952
- Szabó, M.R.; Pipicz, M.; Csont, T.; Csonka, C. Modulatory effect of myokines on reactive oxygen species in ischemia/reperfusion. Int. J. Mol. Sci., 2020, 21(24), 9382. doi: 10.3390/ijms21249382 PMID: 33317180
- Martin-Villalba, A.; Herr, I.; Jeremias, I.; Hahne, M.; Brandt, R.; Vogel, J.; Schenkel, J.; Herdegen, T.; Debatin, K.M. CD95 ligand (Fas-L/APO-1L) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons. J. Neurosci., 1999, 19(10), 3809-3817. doi: 10.1523/JNEUROSCI.19-10-03809.1999 PMID: 10234013
- Muhammad, I.F.; Borné, Y.; Melander, O.; Orho-Melander, M.; Nilsson, J.; Söderholm, M.; Engström, G. FADD (fas-associated protein with death domain), caspase-3, and caspase-8 and incidence of ischemic stroke. Stroke, 2018, 49(9), 2224-2226. doi: 10.1161/STROKEAHA.118.022063 PMID: 30354994
- Morita-Fujimura, Y.; Fujimura, M.; Yoshimoto, T.; Chan, P.H. Superoxide during reperfusion contributes to caspase-8 expression and apoptosis after transient focal stroke. Stroke, 2001, 32(10), 2356-2361. doi: 10.1161/hs1001.097241 PMID: 11588326
- Plesnila, N.; Zinkel, S.; Le, D.A.; Amin-Hanjani, S.; Wu, Y.; Qiu, J.; Chiarugi, A.; Thomas, S.S.; Kohane, D.S.; Korsmeyer, S.J.; Moskowitz, M.A. BID mediates neuronal cell death after oxygen/glucose deprivation and focal cerebral ischemia. Proc. Natl. Acad. Sci. USA, 2001, 98(26), 15318-15323. doi: 10.1073/pnas.261323298 PMID: 11742085
- Yonekawa, T.; Gamez, G.; Kim, J.; Tan, A.C.; Thorburn, J.; Gump, J.; Thorburn, A.; Morgan, M.J. RIP 1 negatively regulates basal autophagic flux through TFEB to control sensitivity to apoptosis. EMBO Rep., 2015, 16(6), 700-708. doi: 10.15252/embr.201439496 PMID: 25908842
- Lu, H.; Sun, J.; Liang, W.; Chang, Z.; Rom, O.; Zhao, Y.; Zhao, G.; Xiong, W.; Wang, H.; Zhu, T.; Guo, Y.; Chang, L.; Garcia-Barrio, M.T.; Zhang, J.; Chen, Y.E.; Fan, Y. Cyclodextrin prevents abdominal aortic aneurysm via activation of vascular smooth muscle cell transcription factor EB. Circulation, 2020, 142(5), 483-498. doi: 10.1161/CIRCULATIONAHA.119.044803 PMID: 32354235
- Krupinski, J.; Kaluza, J.; Kumar, P.; Wang, M.; Kumar, S. Prognostic value of blood vessel density in ischaemic stroke. Lancet, 1993, 342(8873), 742. doi: 10.1016/0140-6736(93)91734-4 PMID: 8103843
- Steingrímsson, E.; Tessarollo, L.; Reid, S.W.; Jenkins, N.A.; Copeland, N.G. The bHLH-Zip transcription factor Tfeb is essential for placental vascularization. Development, 1998, 125(23), 4607-4616. doi: 10.1242/dev.125.23.4607 PMID: 9806910
- Doronzo, G.; Astanina, E.; Corà, D.; Chiabotto, G.; Comunanza, V.; Noghero, A.; Neri, F.; Puliafito, A.; Primo, L.; Spampanato, C.; Settembre, C.; Ballabio, A.; Camussi, G.; Oliviero, S.; Bussolino, F. TFEB controls vascular development by regulating the proliferation of endothelial cells. EMBO J., 2019, 38(3), e98250. doi: 10.15252/embj.201798250 PMID: 30591554
- Wang, L.; Xiong, X.; Zhang, L.; Shen, J. Neurovascular Unit: A critical role in ischemic stroke. CNS Neurosci. Ther., 2021, 27(1), 7-16. doi: 10.1111/cns.13561 PMID: 33389780
- Davis, C.; Savitz, S.I.; Satani, N. Mesenchymal stem cell derived extracellular vesicles for repairing the neurovascular unit after ischemic stroke. Cells, 2021, 10(4), 767. doi: 10.3390/cells10040767 PMID: 33807314
- Du, H.; Xu, Y.; Zhu, L. Role of semaphorins in ischemic stroke. Front. Mol. Neurosci., 2022, 15, 848506. doi: 10.3389/fnmol.2022.848506 PMID: 35350431
- Eroglu, C.; Barres, B.A. Regulation of synaptic connectivity by glia. Nature, 2010, 468(7321), 223-231. doi: 10.1038/nature09612 PMID: 21068831
- Beard, E.; Lengacher, S.; Dias, S.; Magistretti, P.J.; Finsterwald, C. Astrocytes as key regulators of brain energy metabolism: New therapeutic perspectives. Front. Physiol., 2022, 12825816. doi: 10.3389/fphys.2021.825816 PMID: 35087428
- Guo, H.; Zhang, Z.; Gu, T.; Yu, D.; Shi, Y.; Gao, Z.; Wang, Z.; Liu, W.; Fan, Z.; Hou, W.; Wang, H.; Cai, Y. Astrocytic glycogen mobilization participates in salvianolic acid B-mediated neuroprotection against reperfusion injury after ischemic stroke. Exp. Neurol., 2022, 349, 113966. doi: 10.1016/j.expneurol.2021.113966 PMID: 34973964
- Bednarski, E.; Lauterborn, J.C.; Gall, C.M.; Lynch, G. Lysosomal dysfunction reduces brain-derived neurotrophic factor expression. Exp. Neurol., 1998, 150(1), 128-135. doi: 10.1006/exnr.1997.6747 PMID: 9514826
- Di Malta, C.; Fryer, J.D.; Settembre, C.; Ballabio, A. Astrocyte dysfunction triggers neurodegeneration in a lysosomal storage disorder. Proc. Natl. Acad. Sci. USA, 2012, 109(35), E2334-E2342. doi: 10.1073/pnas.1209577109 PMID: 22826245
- Lee, J.W.; Nam, H.; Kim, L.E.; Jeon, Y.; Min, H.; Ha, S.; Lee, Y.; Kim, S.Y.; Lee, S.J.; Kim, E.K.; Yu, S.W. TLR4 (toll-like receptor 4) activation suppresses autophagy through inhibition of FOXO3 and impairs phagocytic capacity of microglia. Autophagy, 2019, 15(5), 753-770. doi: 10.1080/15548627.2018.1556946 PMID: 30523761
- Saab, A.S.; Nave, K.A. Myelin dynamics: Protecting and shaping neuronal functions. Curr. Opin. Neurobiol., 2017, 47, 104-112. doi: 10.1016/j.conb.2017.09.013 PMID: 29065345
- Garcia-Martin, G.; Alcover-Sanchez, B.; Wandosell, F.; Cubelos, B. Pathways involved in remyelination after cerebral ischemia. Curr. Neuropharmacol., 2022, 20(4), 751-765. doi: 10.2174/1570159X19666210610093658 PMID: 34151767
- Sun, L.O.; Mulinyawe, S.B.; Collins, H.Y.; Ibrahim, A.; Li, Q.; Simon, D.J.; Tessier-Lavigne, M.; Barres, B.A. Spatiotemporal control of CNS myelination by oligodendrocyte programmed cell death through the TFEB-PUMA Axis. Cell, 2018, 175(7), 1811-1826.e21. doi: 10.1016/j.cell.2018.10.044 PMID: 30503207
- Meireles, A.M.; Shen, K.; Zoupi, L.; Iyer, H.; Bouchard, E.L.; Williams, A.; Talbot, W.S. The lysosomal transcription factor TFEB represses myelination downstream of the rag-ragulator complex. Dev. Cell, 2018, 47(3), 319-330.e5. doi: 10.1016/j.devcel.2018.10.003 PMID: 30399334
- Duchemin, S.; Boily, M.; Sadekova, N.; Girouard, H. The complex contribution of NOS interneurons in the physiology of cerebrovascular regulation. Front. Neural Circuits, 2012, 6, 51. doi: 10.3389/fncir.2012.00051 PMID: 22907993
- Yoo, J.; Jeong, I.K.; Ahn, K.J.; Chung, H.Y.; Hwang, Y.C. Fenofibrate, a PPARα agonist, reduces hepatic fat accumulation through the upregulation of TFEB-mediated lipophagy. Metabolism, 2021, 120, 154798. doi: 10.1016/j.metabol.2021.154798 PMID: 33984335
- Fang, Y.; Ji, L.; Zhu, C.; Xiao, Y.; Zhang, J.; Lu, J.; Yin, J.; Wei, L. Liraglutide alleviates hepatic steatosis by activating the TFEB-regulated autophagy-lysosomal pathway. Front. Cell Dev. Biol., 2020, 8, 602574. doi: 10.3389/fcell.2020.602574 PMID: 33330497
- Wu, H.; Ding, J.; Li, S.; Lin, J.; Jiang, R.; Lin, C.; Dai, L.; Xie, C.; Lin, D.; Xu, H.; Gao, W.; Zhou, K. Metformin promotes the survival of random-pattern skin flaps by inducing autophagy via the AMPK-mTOR-TFEB signaling pathway. Int. J. Biol. Sci., 2019, 15(2), 325-340. doi: 10.7150/ijbs.29009 PMID: 30745824
- Chandra, S.; Jana, M.; Pahan, K. Aspirin induces lysosomal biogenesis and attenuates amyloid plaque pathology in a mouse model of Alzheimers disease via PPARα. J. Neurosci., 2018, 38(30), 6682-6699. doi: 10.1523/JNEUROSCI.0054-18.2018 PMID: 29967008
- Li, J.; Xiang, X.; Xu, Z. Cilostazol protects against myocardial ischemia and reperfusion injury by activating transcription factor EB (TFEB). Biotechnol. Appl. Biochem., 2019, 66(4), 555-563. doi: 10.1002/bab.1754 PMID: 30994947
- Bhogal, P.; Brouwer, P.A.; Makalanda, H.L.D. Cilostazol: an antiplatelet agent for the neurointerventionist? J. Neurointerv. Surg., 2016, 8(2), 208-209. doi: 10.1136/neurintsurg-2014-011570 PMID: 25526917
- Zhang, W.; Wang, J.; Yang, C. Celastrol, a TFEB (transcription factor EB) agonist, is a promising drug candidate for Alzheimer disease. Autophagy, 2022, 18(7), 1740-1742. doi: 10.1080/15548627.2022.2046437 PMID: 35253615
- Rusmini, P.; Cortese, K.; Crippa, V.; Cristofani, R.; Cicardi, M.E.; Ferrari, V.; Vezzoli, G.; Tedesco, B.; Meroni, M.; Messi, E.; Piccolella, M.; Galbiati, M.; Garrè, M.; Morelli, E.; Vaccari, T.; Poletti, A. Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy, 2019, 15(4), 631-651. doi: 10.1080/15548627.2018.1535292 PMID: 30335591
- Moskot, M.; Montefusco, S.; Jakóbkiewicz-Banecka, J.; Mozolewski, P.; Węgrzyn, A.; Di Bernardo, D.; Węgrzyn, G.; Medina, D.L.; Ballabio, A.; Gabig-Cimińska, M. The phytoestrogen genistein modulates lysosomal metabolism and transcription factor EB (TFEB) activation. J. Biol. Chem., 2014, 289(24), 17054-17069. doi: 10.1074/jbc.M114.555300 PMID: 24770416
- Jia, Y.; Zhang, L.; Liu, Z.; Mao, C.; Ma, Z.; Li, W.; Yu, F.; Wang, Y.; Huang, Y.; Zhang, W.; Zheng, J.; Wang, X.; Xu, Q.; Zhang, J.; Feng, W.; Yun, C.; Liu, C.; Sun, J.; Fu, Y.; Cui, Q.; Kong, W. Targeting macrophage TFEB-14-3-3 epsilon interface by naringenin inhibits abdominal aortic aneurysm. Cell Discov., 2022, 8(1), 21. doi: 10.1038/s41421-021-00363-1 PMID: 35228523
- Song, J.X.; Sun, Y.R.; Peluso, I.; Zeng, Y.; Yu, X.; Lu, J.H.; Xu, Z.; Wang, M.Z.; Liu, L.F.; Huang, Y.Y.; Chen, L.L.; Durairajan, S.S.K.; Zhang, H.J.; Zhou, B.; Zhang, H.Q.; Lu, A.; Ballabio, A.; Medina, D.L.; Guo, Z.; Li, M. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy, 2016, 12(8), 1372-1389. doi: 10.1080/15548627.2016.1179404 PMID: 27172265
- Cao, S.; Wang, C.; Yan, J.; Li, X.; Wen, J.; Hu, C. Curcumin ameliorates oxidative stress-induced intestinal barrier injury and mitochondrial damage by promoting Parkin dependent mitophagy through AMPK-TFEB signal pathway. Free Radic. Biol. Med., 2020, 147, 8-22. doi: 10.1016/j.freeradbiomed.2019.12.004 PMID: 31816386
- Si, Q.; Wu, G.; Cao, X. Effects of electroacupuncture on acute cerebral infarction. Acupunct. Electrother. Res., 1998, 23(2), 117-124. doi: 10.3727/036012998816356562 PMID: 9789586
- Xiong, L.; Lu, Z.; Hou, L.; Zheng, H.; Zhu, Z.; Wang, Q.; Chen, S. Pretreatment with repeated electroacupuncture attenuates transient focal cerebral ischemic injury in rats. Chin. Med. J. (Engl.), 2003, 116(1), 108-111. PMID: 12667400
- Jing, L.; Zonglu, B.; Yuanhao, D.; Yongfeng, L.; Xuezhu, Z.; Bo, P.; Jingjing, Z.; Li, Y. Effect of Electroacupuncture on expression of Ang/Tie-2 mRNA and protein in rats with acute cerebral infarction. J. Tradit. Chin. Med., 2017, 37(5), 659-666. doi: 10.1016/S0254-6272(17)30320-5 PMID: 32188227
- Zheng, X.; Lin, W.; Jiang, Y.; Lu, K.; Wei, W.; Huo, Q.; Cui, S.; Yang, X.; Li, M.; Xu, N.; Tang, C.; Song, J.X. Electroacupuncture ameliorates beta-amyloid pathology and cognitive impairment in Alzheimer disease via a novel mechanism involving activation of TFEB (transcription factor EB). Autophagy, 2021, 17(11), 3833-3847. doi: 10.1080/15548627.2021.1886720 PMID: 33622188
- Zheng, G.; Chen, B.; Fang, Q.; Yi, H.; Lin, Q.; Chen, L.; Tao, J.; Li, J.; Zheng, X.; Li, M.; Lan, X. Primary prevention for risk factors of ischemic stroke with Baduanjin exercise intervention in the community elder population: Study protocol for a randomized controlled trial. Trials, 2014, 15(1), 113. doi: 10.1186/1745-6215-15-113 PMID: 24712684
- Yasuhara, T.; Anthony, S.S.; Date, I. Limiting exercise inhibits neuronal recovery from neurological disorders. Brain Circ., 2017, 3(3), 124-129. doi: 10.4103/bc.bc_16_17 PMID: 30276313
- Zhang, Y.; Zhang, P.; Shen, X.; Tian, S.; Wu, Y.; Zhu, Y.; Jia, J.; Wu, J.; Hu, Y. Early exercise protects the blood-brain barrier from ischemic brain injury via the regulation of MMP-9 and occludin in rats. Int. J. Mol. Sci., 2013, 14(6), 11096-11112. doi: 10.3390/ijms140611096 PMID: 23708107
- Terashi, T.; Otsuka, S.; Takada, S.; Nakanishi, K.; Ueda, K.; Sumizono, M.; Kikuchi, K.; Sakakima, H. Neuroprotective effects of different frequency preconditioning exercise on neuronal apoptosis after focal brain ischemia in rats. Neurol. Res., 2019, 41(6), 510-518. doi: 10.1080/01616412.2019.1580458 PMID: 30822224
- Bernhardt, J.; Langhorne, P.; Lindley, R.I.; Thrift, A.G.; Ellery, F.; Collier, J.; Churilov, L.; Moodie, M.; Dewey, H.; Donnan, G.; Grp, A.T.C. Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet, 2015, 386(9988), 46-55. doi: 10.1016/S0140-6736(15)60690-0 PMID: 25892679
- MacKay-Lyons, M.; Billinger, S.A.; Eng, J.J.; Dromerick, A.; Giacomantonio, N.; Hafer-Macko, C.; Macko, R.; Nguyen, E.; Prior, P.; Suskin, N.; Tang, A.; Thornton, M.; Unsworth, K. Aerobic Exercise Recommendations to Optimize Best Practices in Care After Stroke: AEROBICS 2019 Update. Phys. Ther., 2020, 100(1), 149-156. doi: 10.1093/ptj/pzz153 PMID: 31596465
- Huang, J.; Wang, X.; Zhu, Y.; Li, Z.; Zhu, Y.T.; Wu, J.C.; Qin, Z.H.; Xiang, M.; Lin, F. Exercise activates lysosomal function in the brain through AMPK‐SIRT1‐TFEB pathway. CNS Neurosci. Ther., 2019, 25(6), 796-807. doi: 10.1111/cns.13114 PMID: 30864262
- Wang, X.; Zhu, Y.T.; Zhu, Y.; Sun, Y.L.; Huang, J.; Li, Z.; Wang, Y.; Wu, J.C.; Qin, Z.H.; Lin, F. Long-term running exercise alleviates cognitive dysfunction in APP/PSEN1 transgenic mice via enhancing brain lysosomal function. Acta Pharmacol. Sin., 2021. PMID: 34272505
- Li, Z.; Cui, X.; Lv, H.; Liu, J.; Di, W.; Jiang, F.; Liu, Y.; Cheng, X. Remote ischemic postconditioning attenuates damage in rats with chronic cerebral ischemia by upregulating the autophagolysosome pathway via the activation of TFEB. Exp. Mol. Pathol., 2020, 115, 104475. doi: 10.1016/j.yexmp.2020.104475 PMID: 32473154
- He, W.; Wang, H.; Zhao, C.; Tian, X.; Li, L.; Wang, H. Role of liraglutide in brain repair promotion through Sirt1‐mediated mitochondrial improvement in stroke. J. Cell. Physiol., 2020, 235(3), 2986-3001. doi: 10.1002/jcp.29204 PMID: 31535381
- Tu, W.J.; Zeng, Q.J.; Wang, K.; Wang, Y.; Sun, B.L.; Zeng, X.W.; Liu, Q. Prestroke metformin use on the 1-year prognosis of intracerebral hemorrhage patients with type 2 diabetes. Oxid. Med. Cell. Longev., 2021, 2021, 2027359. doi: 10.1155/2021/2027359 PMID: 34567407
- Gautier, S.; Ouk, T.; Petrault, M.; Petrault, O.; Berezowski, V.; Bordet, R. PPAR-Alpha agonist used at the acute phase of experimental ischemic stroke reduces occurrence of thrombolysis-induced hemorrhage in rats. PPAR Res., 2015, 2015, 246329. doi: 10.1155/2015/246329 PMID: 26106408
- Toyoda, K.; Omae, K.; Hoshino, H.; Uchiyama, S.; Kimura, K.; Miwa, K.; Minematsu, K.; Yamaguchi, K.; Suda, Y.; Toru, S.; Kitagawa, K.; Ihara, M.; Koga, M.; Yamaguchi, T. Association of timing for starting dual antiplatelet treatment with cilostazol and recurrent stroke. Neurology, 2022, 98(10), e983-e992. doi: 10.1212/WNL.0000000000200064 PMID: 35074890
- Chen, J.; Ji, L.; Tong, X.; Han, M.; Zhao, S.; Qin, Y.; He, Z.; Jiang, Z.; Liu, A. Economic evaluation of ticagrelor plus aspirin versus aspirin alone for acute ischemic stroke and transient ischemic attack. Front. Pharmacol., 2022, 13, 790048. doi: 10.3389/fphar.2022.790048 PMID: 35370758
- Wang, C.; Niederstrasser, H.; Douglas, P.M.; Lin, R.; Jaramillo, J.; Li, Y.; Oswald, N.W.; Zhou, A.; McMillan, E.A.; Mendiratta, S.; Wang, Z.; Zhao, T.; Lin, Z.; Luo, M.; Huang, G.; Brekken, R.A.; Posner, B.A.; MacMillan, J.B.; Gao, J.; White, M.A. Small-molecule TFEB pathway agonists that ameliorate metabolic syndrome in mice and extend C. elegans lifespan. Nat. Commun., 2017, 8(1), 2270. doi: 10.1038/s41467-017-02332-3 PMID: 29273768
- Lai, K.C.; Chen, S.J.; Lin, C.S.; Yang, F.C.; Lin, C.L.; Hsu, C.W.; Huang, W.C.; Kao, C.H. Digoxin and amiodarone on the risk of ischemic stroke in atrial fibrillation: An observational study. Front. Pharmacol., 2018, 9, 448. doi: 10.3389/fphar.2018.00448 PMID: 29867460
- Li, Z.W.; Cui, X.L.; Lv, H.; Liu, J.; Di, W.; Jiang, F.; Liu, Y.; Cheng, X.S. Remote ischemic postconditioning attenuates damage in rats with chronic cerebral ischemia by upregulating the autophagolysosome pathway via the activation of TFEB (vol 115, 104475, 2020). Exp. Mol. Pathol., 2021, 121.
- Wang, M.; Ran, Q.; Chen, H.; Liu, Y.; Yu, H.; Shi, F. Electroacupuncture preconditioning attenuates ischemic brain injury by activation of the adenosine monophosphate-activated protein kinase signaling pathway. Neural Regen. Res., 2015, 10(7), 1069-1075. doi: 10.4103/1673-5374.160095 PMID: 26330828
- Dornbos, D., III; Zwagerman, N.; Guo, M.; Ding, J.Y.; Peng, C.; Esmail, F.; Sikharam, C.; Geng, X.; Guthikonda, M.; Ding, Y. Preischemic exercise reduces brain damage by ameliorating metabolic disorder in ischemia/reperfusion injury. J. Neurosci. Res., 2013, 91(6), 818-827. doi: 10.1002/jnr.23203 PMID: 23553672
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; Elkind, M.S.V.; Evenson, K.R.; Eze-Nliam, C.; Ferguson, J.F.; Generoso, G.; Ho, J.E.; Kalani, R.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Levine, D.A.; Lewis, T.T.; Liu, J.; Loop, M.S.; Ma, J.; Mussolino, M.E.; Navaneethan, S.D.; Perak, A.M.; Poudel, R.; Rezk-Hanna, M.; Roth, G.A.; Schroeder, E.B.; Shah, S.H.; Thacker, E.L.; VanWagner, L.B.; Virani, S.S.; Voecks, J.H.; Wang, N.Y.; Yaffe, K.; Martin, S.S. Heart Disease and Stroke Statistics2022 Update: A Report From the American Heart Association. Circulation, 2022, 145(8), e153-e639. doi: 10.1161/CIR.0000000000001052 PMID: 35078371
- Dong, X. Current strategies for brain drug delivery. Theranostics, 2018, 8(6), 1481-1493. doi: 10.7150/thno.21254 PMID: 29556336
补充文件
