Glucose Metabolism and Sex Hormones in Male Patients with Medication-naïve First-episode Schizophrenia: A Large-scale Cross-sectional Study


如何引用文章

全文:

详细

Background:Schizophrenia (SCZ) usually begins in early adult life. The underlying molecular mechanisms of SCZ remain unclear. There is evidence for the involvement of abnormalities in metabolic and endocrine systems in SCZ, even in drug-naïve first-episode schizophrenia patients (DNFES). However, the association between impaired regulation of glucose metabolism and sex hormones was not studied in SCZ. This study aimed to evaluate the interrelationship between sex hormones and high fasting glucose levels in male DNFES patients.

Methods:A total of 99 patients with SCZ were recruited, and fasting glucose, fasting insulin, the insulin resistance index (HOMA-IR), and sex hormones were measured.

Results:We found that some male patients with SCZ had abnormal levels in glucose metabolism parameters and gonadal hormones that were not within the normal range. Linear regression analysis adjusted for age, waist circumference, and body mass index showed that testosterone levels were negatively associated with fasting insulin in male patients (β = -0.21, t = -2.2, p = 0.03).

Conclusion:Our findings confirm the abnormalities in glucose metabolism parameters and gonadal hormones at the onset of the illness in male DNFES patients with SCZ. In addition, there was an interaction effect between abnormal glucose metabolism and sex hormones in male patients.

作者简介

Meihong Xiu

Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School

Email: info@benthamscience.net

Meng Hao

Department of Psychiatry, First Hospital of Shanxi Medical University,

Email: info@benthamscience.net

Cai Liu

Department of Psychiatry, First Hospital of Shanxi Medical University

Email: info@benthamscience.net

Maodi Sun

, North University of China

Email: info@benthamscience.net

Xiaoe Lang

Department of Psychiatry, First Hospital of Shanxi Medical University

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Pedersen, C.B.; Mors, O.; Bertelsen, A.; Waltoft, B.L.; Agerbo, E.; McGrath, J.J.; Mortensen, P.B.; Eaton, W.W. A comprehensive nationwide study of the incidence rate and lifetime risk for treated mental disorders. JAMA Psychiatry, 2014, 71(5), 573-581. doi: 10.1001/jamapsychiatry.2014.16 PMID: 24806211
  2. Barnett, R. Schizophrenia. Lancet, 2018, 391(10121), 648. doi: 10.1016/S0140-6736(18)30237-X PMID: 29617256
  3. Nguyen, K.D.; Amerio, A.; Aguglia, A.; Magnani, L.; Parise, A.; Conio, B.; Serafini, G.; Amore, M.; Costanza, A. Microglia and other cellular mediators of immunological dysfunction in schizophrenia: A narrative synthesis of clinical findings. Cells, 2023, 12(16), 2099. doi: 10.3390/cells12162099 PMID: 37626909
  4. Mitchell, A.J.; Vancampfort, D.; Sweers, K.; van Winkel, R.; Yu, W.; De Hert, M. Prevalence of metabolic syndrome and metabolic abnormalities in schizophrenia and related disorders: A systematic review and meta-analysis. Schizophr. Bull., 2013, 39(2), 306-318. doi: 10.1093/schbul/sbr148 PMID: 22207632
  5. Correll, C.U.; Solmi, M.; Veronese, N.; Bortolato, B.; Rosson, S.; Santonastaso, P.; Thapa-Chhetri, N.; Fornaro, M.; Gallicchio, D.; Collantoni, E.; Pigato, G.; Favaro, A.; Monaco, F.; Kohler, C.; Vancampfort, D.; Ward, P.B.; Gaughran, F.; Carvalho, A.F.; Stubbs, B. Prevalence, incidence and mortality from cardiovascular disease in patients with pooled and specific severe mental illness: A large‐scale meta‐analysis of 3,211,768 patients and 113,383,368 controls. World Psychiatry, 2017, 16(2), 163-180. doi: 10.1002/wps.20420 PMID: 28498599
  6. Li, S.; Chen, D.; Xiu, M.; Li, J.; Zhang, X.Y. Diabetes mellitus, cognitive deficits and serum BDNF levels in chronic patients with schizophrenia: A case control study. J. Psychiatr. Res., 2021, 134, 39-47. doi: 10.1016/j.jpsychires.2020.12.035 PMID: 33360223
  7. Li, S.; Gao, Y.; Lv, H.; Zhang, M.; Wang, L.; Jiang, R.; Xu, C.; Wang, X.; Gao, M.; He, Y.; Li, J.; Li, W.D. T4 and waist: Hip ratio as biomarkers of antipsychotic-induced weight gain in Han Chinese inpatients with schizophrenia. Psychoneuroendocrinology, 2018, 88, 54-60. doi: 10.1016/j.psyneuen.2017.11.010 PMID: 29175720
  8. Li, S.; Xu, C.; Tian, Y.; Wang, X.; Jiang, R.; Zhang, M.; Wang, L.; Yang, G.; Gao, Y.; Song, C.; He, Y.; Zhang, Y.; Li, J.; Li, W.D. TOX and ADIPOQ gene polymorphisms are associated with antipsychotic-induced weight gain in han chinese. Sci. Rep., 2017, 7(1), 45203. doi: 10.1038/srep45203 PMID: 28327672
  9. Zhu, M.H.; Liu, Z.J.; Hu, Q.Y.; Yang, J.Y.; Jin, Y.; Zhu, N.; Huang, Y.; Shi, D.H.; Liu, M.J.; Tan, H.Y.; Zhao, L.; Lv, Q.Y.; Yi, Z.H.; Wu, F.C.; Li, Z.Z. Amisulpride augmentation therapy improves cognitive performance and psychopathology in clozapine resistant treatment refractory schizophrenia: A 12-week randomized, double-blind, placebo controlled trial. Mil. Med. Res., 2022, 9(1), 59. doi: 10.1186/s40779-022-00420-0 PMID: 36253804
  10. Rajkumar, A.P.; Horsdal, H.T.; Wimberley, T.; Cohen, D.; Mors, O.; Børglum, A.D.; Gasse, C. Endogenous and antipsychotic related risks for diabetes mellitus in young people with schizophrenia: A danish population-based cohort study. Am. J. Psychiatry, 2017, 174(7), 686-694. doi: 10.1176/appi.ajp.2016.16040442 PMID: 28103712
  11. Chen, Y.Q.; Li, X.R.; Zhang, L.; Zhu, W.B.; Wu, Y.Q.; Guan, X.N.; Xiu, M.H.; Zhang, X.Y. Therapeutic response is associated with antipsychoticinduced weight gain in drug naive first episode patients with schizophrenia. J. Clin. Psychiatry, 2021, 82(3), 20m13469. doi: 10.4088/JCP.20m13469 PMID: 34004092
  12. Liu, H.; Yu, R.; Gao, Y.; Li, X.; Guan, X.; Thomas, K.; Xiu, M.; Zhang, X. Antioxidant enzymes and weight gain in drug-naive first-episode schizophrenia patients treated with risperidone for 12 weeks: A prospective longitudinal study. Curr. Neuropharmacol., 2022, 20(9), 1774-1782. doi: 10.2174/1570159X19666210920090547 PMID: 34544343
  13. Liu, H.; Liu, H.; Jiang, S.; Su, L.; Lu, Y.; Chen, Z.; Li, X.; Li, X.; Wang, X.; Xiu, M.; Zhang, X. Sex-specific association between antioxidant defense system and therapeutic response to risperidone in schizophrenia: A prospective longitudinal study. Curr. Neuropharmacol., 2022, 20(9), 1793-1803. doi: 10.2174/1570159X19666211111123918 PMID: 34766896
  14. Greenhalgh, A.M.; Gonzalez-Blanco, L.; Garcia-Rizo, C.; Fernandez-Egea, E.; Miller, B.; Arroyo, M.B.; Kirkpatrick, B. Meta-analysis of glucose tolerance, insulin, and insulin resistance in antipsychotic naïve patients with nonaffective psychosis. Schizophr. Res., 2017, 179, 57-63. doi: 10.1016/j.schres.2016.09.026 PMID: 27743650
  15. Garcia-Rizo, C.; Fernandez-Egea, E.; Oliveira, C.; Meseguer, A.; Cabrera, B.; Mezquida, G.; Bioque, M.; Penades, R.; Parellada, E.; Bernardo, M.; Kirkpatrick, B. Metabolic syndrome or glucose challenge in first episode of psychosis? Eur. Psychiatry, 2017, 41(1), 42-46. doi: 10.1016/j.eurpsy.2016.10.001 PMID: 28049080
  16. Mizuki, Y.; Sakamoto, S.; Okahisa, Y.; Yada, Y.; Hashimoto, N.; Takaki, M.; Yamada, N. Mechanisms underlying the comorbidity of schizophrenia and type 2 diabetes mellitus. Int. J. Neuropsychopharmacol., 2021, 24(5), 367-382. doi: 10.1093/ijnp/pyaa097 PMID: 33315097
  17. Pillinger, T.; Beck, K.; Gobjila, C.; Donocik, J.G.; Jauhar, S.; Howes, O.D. Impaired glucose homeostasis in first-episode schizophrenia. JAMA Psychiatry, 2017, 74(3), 261-269. doi: 10.1001/jamapsychiatry.2016.3803 PMID: 28097367
  18. Agarwal, S.M.; Caravaggio, F.; Costa-Dookhan, K.A.; Castellani, L.; Kowalchuk, C.; Asgariroozbehani, R.; Graff-Guerrero, A.; Hahn, M. Brain insulin action in schizophrenia: Something borrowed and something new. Neuropharmacology, 2020, 163, 107633. doi: 10.1016/j.neuropharm.2019.05.010 PMID: 31077731
  19. Bastemir, M.; Akin, F.; Emral, R.; Alkis, E. Impact of insulin sensitivity in relationship with prolactin and thyroid stimulating hormone. Exp. Clin. Endocrinol. Diabetes, 2007, 115(4), 257-260. doi: 10.1055/s-2007-960492 PMID: 17479443
  20. Li, J.; Rice, M.S.; Huang, T.; Hankinson, S.E.; Clevenger, C.V.; Hu, F.B.; Tworoger, S.S. Circulating prolactin concentrations and risk of type 2 diabetes in US women. Diabetologia, 2018, 61(12), 2549-2560. doi: 10.1007/s00125-018-4733-9 PMID: 30306190
  21. Wagner, R.; Heni, M.; Linder, K.; Ketterer, C.; Peter, A.; Böhm, A.; Hatziagelaki, E.; Stefan, N.; Staiger, H.; Häring, H.U.; Fritsche, A. Age-dependent association of serum prolactin with glycaemia and insulin sensitivity in humans. Acta Diabetol., 2014, 51(1), 71-78. doi: 10.1007/s00592-013-0493-7 PMID: 23836327
  22. Le, T.N.; Celi, F.S.; Wickham, E.P., III Thyrotropin levels are associated with cardiometabolic risk factors in euthyroid adolescents. Thyroid, 2016, 26(10), 1441-1449. doi: 10.1089/thy.2016.0055 PMID: 27599541
  23. Lundbäck, V.; Ekbom, K.; Hagman, E.; Dahlman, I.; Marcus, C. Thyroid-stimulating hormone, degree of obesity, and metabolic risk markers in a cohort of swedish children with obesity. Horm. Res. Paediatr., 2017, 88(2), 140-146. doi: 10.1159/000475993 PMID: 28614818
  24. Pintana, H.; Chattipakorn, N.; Chattipakorn, S. Testosterone deficiency, insulin-resistant obesity and cognitive function. Metab. Brain Dis., 2015, 30(4), 853-876. doi: 10.1007/s11011-015-9655-3 PMID: 25703239
  25. Xia, F.; Xu, X.; Zhai, H.; Meng, Y.; Zhang, H.; Du, S.; Xu, H.; Wu, H.; Lu, Y. Castration-induced testosterone deficiency increases fasting glucose associated with hepatic and extra-hepatic insulin resistance in adult male rats. Reprod. Biol. Endocrinol., 2013, 11(1), 106. doi: 10.1186/1477-7827-11-106 PMID: 24238614
  26. Gupte, A.A.; Pownall, H.J.; Hamilton, D.J. Estrogen: an emerging regulator of insulin action and mitochondrial function. J. Diabetes Res., 2015, 2015, 1-9. doi: 10.1155/2015/916585 PMID: 25883987
  27. Brzezinski-Sinai, N.A.; Brzezinski, A. Schizophrenia and sex hormones: What is the link? Front. Psychiatry, 2020, 11, 693. doi: 10.3389/fpsyt.2020.00693 PMID: 32760302
  28. Gogos, A.; Ney, L.J.; Seymour, N.; Van Rheenen, T.E.; Felmingham, K.L. Sex differences in schizophrenia, bipolar disorder, and post‐traumatic stress disorder: Are gonadal hormones the link? Br. J. Pharmacol., 2019, 176(21), 4119-4135. doi: 10.1111/bph.14584 PMID: 30658014
  29. Phillips, M.R.; Zhang, J.; Shi, Q.; Song, Z.; Ding, Z.; Pang, S.; Li, X.; Zhang, Y.; Wang, Z. Prevalence, treatment, and associated disability of mental disorders in four provinces in China during 2001–05: An epidemiological survey. Lancet, 2009, 373(9680), 2041-2053. doi: 10.1016/S0140-6736(09)60660-7 PMID: 19524780
  30. Lieberman, J.A.; Phillips, M.; Gu, H.; Stroup, S.; Zhang, P.; Kong, L.; Ji, Z.; Koch, G.; Hamer, R.M. Atypical and conventional antipsychotic drugs in treatment naive first episode schizophrenia: A 52-week randomized trial of clozapine vs. chlorpromazine. Neuropsychopharmacology, 2003, 28(5), 995-1003. doi: 10.1038/sj.npp.1300157 PMID: 12700715
  31. Zhang, X.; Yang, M.; Du, X.; Liao, W.; Chen, D.; Fan, F.; Xiu, M.; Jia, Q.; Ning, Y.; Huang, X.; Wu, F.; Soares, J.C.; Cao, B.; Wang, L.; Chen, H. Glucose disturbances, cognitive deficits and white matter abnormalities in first episode drug naive schizophrenia. Mol. Psychiatry, 2020, 25(12), 3220-3230. doi: 10.1038/s41380-019-0478-1 PMID: 31409883
  32. Xiu, M.; Fan, Y.; Liu, Q.; Chen, S.; Wu, F.; Zhang, X. Glucose metabolism, hippocampal subfields and cognition in first episode and never treated schizophrenia. Int. J. Clin. Health Psychol., 2023, 23(4), 100402. doi: 10.1016/j.ijchp.2023.100402 PMID: 37663043
  33. Gao, Z.; Xiu, M.; Liu, J.; Wu, F.; Zhang, X.Y. Obesity, antioxidants and negative symptom improvement in first-episode schizophrenia patients treated with risperidone. Schizophrenia, 2023, 9(1), 17. doi: 10.1038/s41537-023-00346-z PMID: 36949120
  34. Plum, L.; Schubert, M.; Brüning, J.C. The role of insulin receptor signaling in the brain. Trends Endocrinol. Metab., 2005, 16(2), 59-65. doi: 10.1016/j.tem.2005.01.008 PMID: 15734146
  35. Tomasik, J.; Lago, S.G.; Vázquez-Bourgon, J.; Papiol, S.; Suárez-Pinilla, P.; Crespo-Facorro, B.; Bahn, S. Association of insulin resistance with schizophrenia polygenic risk score and response to antipsychotic treatment. JAMA Psychiatry, 2019, 76(8), 864-867. doi: 10.1001/jamapsychiatry.2019.0304 PMID: 30942838
  36. Freeman, L.R.; Haley-Zitlin, V.; Stevens, C.; Granholm, A.C. Diet-induced effects on neuronal and glial elements in the middle-aged rat hippocampus. Nutr. Neurosci., 2011, 14(1), 32-44. doi: 10.1179/174313211X12966635733358 PMID: 21535919
  37. Zhao, Z.; Ksiezak-Reding, H.; Riggio, S.; Haroutunian, V.; Pasinetti, G.M. Insulin receptor deficits in schizophrenia and in cellular and animal models of insulin receptor dysfunction. Schizophr. Res., 2006, 84(1), 1-14. doi: 10.1016/j.schres.2006.02.009 PMID: 16581231
  38. Emamian, E.S.; Hall, D.; Birnbaum, M.J.; Karayiorgou, M.; Gogos, J.A. Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia. Nat. Genet., 2004, 36(2), 131-137. doi: 10.1038/ng1296 PMID: 14745448
  39. Kapogiannis, D.; Dobrowolny, H.; Tran, J.; Mustapic, M.; Frodl, T.; Meyer-Lotz, G.; Schiltz, K.; Schanze, D.; Rietschel, M.; Bernstein, H.G.; Steiner, J. Insulin-signaling abnormalities in drug-naïve first-episode schizophrenia: Transduction protein analyses in extracellular vesicles of putative neuronal origin. Eur. Psychiatry, 2019, 62, 124-129. doi: 10.1016/j.eurpsy.2019.08.012 PMID: 31590015
  40. Wijtenburg, S.A.; Kapogiannis, D.; Korenic, S.A.; Mullins, R.J.; Tran, J.; Gaston, F.E.; Chen, S.; Mustapic, M.; Hong, L.E.; Rowland, L.M. Brain insulin resistance and altered brain glucose are related to memory impairments in schizophrenia. Schizophr. Res., 2019, 208, 324-330. doi: 10.1016/j.schres.2019.01.031 PMID: 30760413
  41. Fünfschilling, U.; Supplie, L.M.; Mahad, D.; Boretius, S.; Saab, A.S.; Edgar, J.; Brinkmann, B.G.; Kassmann, C.M.; Tzvetanova, I.D.; Möbius, W.; Diaz, F.; Meijer, D.; Suter, U.; Hamprecht, B.; Sereda, M.W.; Moraes, C.T.; Frahm, J.; Goebbels, S.; Nave, K.A. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature, 2012, 485(7399), 517-521. doi: 10.1038/nature11007 PMID: 22622581
  42. Steiner, J.; Bernstein, H.G.; Schiltz, K.; Müller, U.J.; Westphal, S.; Drexhage, H.A.; Bogerts, B. Immune system and glucose metabolism interaction in schizophrenia: A chicken–egg dilemma. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2014, 48, 287-294. doi: 10.1016/j.pnpbp.2012.09.016 PMID: 23085507
  43. Peters, A. The selfish brain: Competition for energy resources. Am. J. Hum. Biol., 2011, 23(1), 29-34. doi: 10.1002/ajhb.21106 PMID: 21080380
  44. Veldhuis, J.D. Neuroendocrine mechanisms mediating awakening of the human gonadotropic axis in puberty. Pediatr. Nephrol., 1996, 10(3), 304-317. doi: 10.1007/BF00866767 PMID: 8792395
  45. Hwang, W.J.; Lee, T.Y.; Kim, N.S.; Kwon, J.S. The role of estrogen receptors and their signaling across psychiatric disorders. Int. J. Mol. Sci., 2020, 22(1), 373. doi: 10.3390/ijms22010373 PMID: 33396472
  46. Gonçalves, V.F.; Cuperfain, A.B.; Kennedy, J.L. Sex differences in schizophrenia: estrogen and mitochondria. Neuropsychopharmacology, 2019, 44(1), 216-217. doi: 10.1038/s41386-018-0228-0 PMID: 30294000
  47. Sinclair, D.; Purves-Tyson, T.D.; Allen, K.M.; Weickert, C.S. Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain. Psychopharmacology, 2014, 231(8), 1581-1599. doi: 10.1007/s00213-013-3415-z PMID: 24481565
  48. Cosgrove, K.P.; Mazure, C.M.; Staley, J.K. Evolving knowledge of sex differences in brain structure, function, and chemistry. Biol. Psychiatry, 2007, 62(8), 847-855. doi: 10.1016/j.biopsych.2007.03.001 PMID: 17544382
  49. Kulkarni, J.; Gavrilidis, E.; Worsley, R.; Hayes, E. Role of estrogen treatment in the management of schizophrenia. CNS Drugs, 2012, 26(7), 549-557. doi: 10.2165/11630660-000000000-00000 PMID: 22626057
  50. Brandt, N.; Fester, L.; Rune, G.M. Neural sex steroids and hippocampal synaptic plasticity. Vitam. Horm., 2020, 114, 125-143. doi: 10.1016/bs.vh.2020.06.001 PMID: 32723541
  51. Rocks, D.; Kundakovic, M.J.J.o.N. Hippocampus‐based behavioral, structural, and molecular dynamics across the estrous cycle. J. Neuroendocrinol., 2023, 35(2), e13216. doi: 10.1111/jne.13216
  52. Pratchayasakul, W.; Sa-nguanmoo, P.; Sivasinprasasn, S.; Pintana, H.; Tawinvisan, R.; Sripetchwandee, J.; Kumfu, S.; Chattipakorn, N.; Chattipakorn, S.C. Obesity accelerates cognitive decline by aggravating mitochondrial dysfunction, insulin resistance and synaptic dysfunction under estrogen-deprived conditions. Horm. Behav., 2015, 72, 68-77. doi: 10.1016/j.yhbeh.2015.04.023 PMID: 25989597
  53. Luo, M.; Zeng, Q.; Jiang, K.; Zhao, Y.; Long, Z.; Du, Y.; Wang, K.; He, G. Estrogen deficiency exacerbates learning and memory deficits associated with glucose metabolism disorder in APP/PS1 double transgenic female mice. Genes Dis., 2022, 9(5), 1315-1331. doi: 10.1016/j.gendis.2021.01.007 PMID: 35873026
  54. Redman, B.; Kitchen, C.; Johnson, K.W.; Bezwada, P.; Kelly, D.L. Levels of prolactin and testosterone and associated sexual dysfunction and breast abnormalities in men with schizophrenia treated with antipsychotic medications. J. Psychiatr. Res., 2021, 143, 50-53. doi: 10.1016/j.jpsychires.2021.08.022 PMID: 34450525
  55. Mauvais-Jarvis, F. Role of sex steroids in β cell function, growth, and survival. Trends Endocrinol. Metab., 2016, 27(12), 844-855. doi: 10.1016/j.tem.2016.08.008 PMID: 27640750
  56. Filippi, S.; Vignozzi, L.; Morelli, A.; Chavalmane, A.K.; Sarchielli, E.; Fibbi, B.; Saad, F.; Sandner, P.; Ruggiano, P.; Vannelli, G.B.; Mannucci, E.; Maggi, M. Testosterone partially ameliorates metabolic profile and erectile responsiveness to PDE5 inhibitors in an animal model of male metabolic syndrome. J. Sex. Med., 2009, 6(12), 3274-3288. doi: 10.1111/j.1743-6109.2009.01467.x PMID: 19732305
  57. Ribeiro, D.L.; Pinto, M.E.; Rafacho, A.; Bosqueiro, J.R.; Maeda, S.Y.; Anselmo-Franci, J.A.; Taboga, S.R.; Góes, R.M. High-fat diet obesity associated with insulin resistance increases cell proliferation, estrogen receptor, and PI3K proteins in rat ventral prostate. J. Androl., 2012, 33(5), 854-865. doi: 10.2164/jandrol.111.016089 PMID: 22441765
  58. Vignozzi, L.; Morelli, A.; Sarchielli, E.; Comeglio, P.; Filippi, S.; Cellai, I.; Maneschi, E.; Serni, S.; Gacci, M.; Carini, M.; Piccinni, M.P.; Saad, F.; Adorini, L.; Vannelli, G.B.; Maggi, M. Testosterone protects from metabolic syndrome-associated prostate inflammation: An experimental study in rabbit. J. Endocrinol., 2012, 212(1), 71-84. doi: 10.1530/JOE-11-0289 PMID: 22010203
  59. Vigueras-Villaseñor, R.M.; Rojas-Castañeda, J.C.; Chávez-Saldaña, M.; Gutiérrez-Pérez, O.; García-Cruz, M.E.; Cuevas-Alpuche, O.; Reyes-Romero, M.M.; Zambrano, E. Alterations in the spermatic function generated by obesity in rats. Acta Histochem., 2011, 113(2), 214-220. doi: 10.1016/j.acthis.2009.10.004 PMID: 20149418
  60. Fanelli, G.; Gevi, F.; Belardo, A.; Zolla, L. Metabolic patterns in insulin-sensitive male hypogonadism. Cell Death Dis., 2018, 9(6), 653. doi: 10.1038/s41419-018-0588-8 PMID: 29844353
  61. Souteiro, P.; Belo, S.; Oliveira, S.C.; Neves, J.S.; Magalhães, D.; Pedro, J.; Bettencourt-Silva, R.; Costa, M.M.; Varela, A.; Queirós, J.; Freitas, P.; Carvalho, D. Insulin resistance and sex hormone-binding globulin are independently correlated with low free testosterone levels in obese males. Andrologia, 2018, 50(7), e13035. doi: 10.1111/and.13035 PMID: 29744905
  62. Melcangi, R.C.; Panzica, G.; Garcia-Segura, L.M. Neuroactive steroids: focus on human brain. Neuroscience, 2011, 191, 1-5. doi: 10.1016/j.neuroscience.2011.06.024 PMID: 21704130
  63. Reddy, D.S. Neurosteroids. Prog. Brain Res., 2010, 186, 113-137. doi: 10.1016/B978-0-444-53630-3.00008-7 PMID: 21094889

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024