Effects of Prenatal Methcathinone Exposure on the Neurological Behavior of Adult Offspring
- Autores: Youyou Z.1, Zhaoyang L.2, Chen L.1, Shuquan Z.3, Hui W.4
-
Afiliações:
- Department of Geriatric Neurology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an Jiaotong University
- Department of Occupational and Environmental Health, School of Public Health, Xian Jiaotong University
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University
- Department of Geriatric Neurology, The Second Affiliated Hospital of Xian Jiaotong University,, Xi'an Jiaotong University,
- Edição: Volume 22, Nº 13 (2024)
- Páginas: 2256-2262
- Seção: Neurology
- URL: https://rjraap.com/1570-159X/article/view/644505
- DOI: https://doi.org/10.2174/1570159X22666240128004722
- ID: 644505
Citar
Texto integral
Resumo
Background:Our previous research has shown that prenatal methcathinone exposure affects the neurodevelopment and neurobehavior of adolescent offspring, but the study on whether these findings continue into adulthood is limited.
Objective:This study aims to explore the effects of prenatal methcathinone exposure on anxiety-like behavior, learning and memory abilities, as well as serum 5-hydroxytryptamine and dopamine concentrations in adult offspring.
Methods:Pregnant rats were injected daily with methcathinone between the 7th and 20th days of gestation. The neurobehavioral performance of both male and female adult offspring rats was evaluated by neurobehavioral tests, including open-field tests, Morris water maze (MWM) tests, and novel object recognition (NOR) tests. The levels of 5-hydroxytryptamine and dopamine concentration in rat serum were detected by ELISA.
Results:Significant differences were found in the length of center distance and time of center duration in the open-field test, as well as the times of crossing the platform in the MWM test, between the prenatal methcathinone exposure group and the control group. Results of the NOR test showed that adult offspring rats exposed to methcathinone need more time to discriminate the novel object. No gender differences were detected in the neurobehavioral tests. The serum concentrations of 5-hydroxytryptamine and dopamine in rats exposed to methcathinone prenatally were lower than that in the control group, and the serum dopamine concentration was independent of gender in each group.
Conclusion:Prenatal methcathinone exposure affects the neurological behavior in adult offspring, and 5-hydroxytryptamine and dopamine might be involved in the process.
Sobre autores
Zhang Youyou
Department of Geriatric Neurology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an Jiaotong University
Autor responsável pela correspondência
Email: info@benthamscience.net
Li Zhaoyang
Department of Occupational and Environmental Health, School of Public Health, Xian Jiaotong University
Email: info@benthamscience.net
Li Chen
Department of Geriatric Neurology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an Jiaotong University
Email: info@benthamscience.net
Zhao Shuquan
Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University
Email: info@benthamscience.net
Wang Hui
Department of Geriatric Neurology, The Second Affiliated Hospital of Xian Jiaotong University,, Xi'an Jiaotong University,
Email: info@benthamscience.net
Bibliografia
- Bade, R.; Stockham, P.; Painter, B.; Celma, A.; Bijlsma, L.; Hernandez, F.; White, J.M.; Gerber, C. Investigating the appearance of new psychoactive substances in South Australia using wastewater and forensic data. Drug Test. Anal., 2019, 11(2), 250-256. doi: 10.1002/dta.2484 PMID: 30129282
- Sikk, K.; Taba, P. Methcathinone "Kitchen Chemistry" and permanent neurological damage. Int. Rev. Neurobiol., 2015, 120, 257-271. doi: 10.1016/bs.irn.2015.02.002 PMID: 26070761
- González-Mariño, I.; Gracia-Lor, E.; Rousis, N.I.; Castrignanò, E.; Thomas, K.V.; Quintana, J.B.; Kasprzyk-Hordern, B.; Zuccato, E.; Castiglioni, S. Wastewater-based epidemiology to monitor synthetic cathinones use in different european countries. Environ. Sci. Technol., 2016, 50(18), 10089-10096. doi: 10.1021/acs.est.6b02644 PMID: 27491628
- Abdelwahab, S.I.; Alfaifi, H.; Mohan, S.; Elhassan Taha, M.; Syame, S.; Shaala, L.; Alsanosy, R. Catha edulis Forsk. (Khat): Evaluation of its antidepressant-like Activity. Pharmacogn. Mag., 2017, 13(50)(Suppl. 2), 354. doi: 10.4103/pm.pm_442_16 PMID: 28808405
- Goldstone, M.S. Cat: methcathinone--a new drug of abuse. JAMA, 1993, 269(19), 2508. doi: 10.1001/jama.1993.03500190050033 PMID: 8487412
- Emerson, T.S.; Cisek, J.E. Methcathinone: A russian designer amphetamine infiltrates the rural midwest. Ann. Emerg. Med., 1993, 22(12), 1897-1903. doi: 10.1016/S0196-0644(05)80419-6 PMID: 8239113
- European Monitoring Centre for Drugs and Drug Addiction. European Drug Report 2023: Trends and Developments Available from: https://www.emcdda.europa.eu/publications/european-drug-report/2023_
- United Nations Office on Drug and Crime. 2022 world drug report. Available from: http://www.unodc.org/unodc/en/data-and-analysis/world-drug-report-2022.html
- Hasan, M.; Sarker, S.A. New psychoactive substances: A potential threat to developing countries. Addict. Health, 2023, 15(2), 136-143. doi: 10.34172/ahj.2023.1411 PMID: 37560390
- Zhang, H.B.; Zhao, D.; Liu, Y.P.; Wang, L.X.; Yang, B.; Yuan, T.F. Problem-solving deficits in methcathinone use disorder. Psychopharmacology (Berl.), 2021, 238(9), 2515-2524. doi: 10.1007/s00213-021-05874-z PMID: 34291307
- Zeng, N.; Zheng, H.; Shi, T.; Zhang, H.B.; Wang, L.X.; Liang, Z.Y.; Sun, B.; Liao, Y.; Rao, L.L.; Yang, B.; Yuan, T.F. Impaired delay discounting and time sensitivity in methcathinone use disorder. Eur. Arch. Psychiatry Clin. Neurosci., 2022, 272(8), 1595-1602. doi: 10.1007/s00406-021-01372-7 PMID: 35091796
- Ennok, M.; Sikk, K.; Haldre, S.; Taba, P. Cognitive profile of patients with manganese-methcathinone encephalopathy. Neurotoxicology, 2020, 76, 138-143. doi: 10.1016/j.neuro.2019.10.007 PMID: 31678058
- Chong, T.T.J.; Bonnelle, V.; Veromann, K.R.; Juurmaa, J.; Taba, P.; Plant, O.; Husain, M. Dissociation of reward and effort sensitivity in methcathinone-induced Parkinsonism. J. Neuropsychol., 2018, 12(2), 291-297. doi: 10.1111/jnp.12122 PMID: 28378511
- Wojcieszak, J.; Andrzejczak, D.; Szymańska, B.; Zawilska, J.B. Induction of immediate early genes expression in the mouse striatum following acute administration of synthetic cathinones. Pharmacol. Rep., 2019, 71(6), 977-982. doi: 10.1016/j.pharep.2019.05.011 PMID: 31522019
- Anneken, J.H.; Angoa-Perez, M.; Sati, G.C.; Crich, D.; Kuhn, D.M. Dissociation between hypothermia and neurotoxicity caused by mephedrone and methcathinone in TPH2 knockout mice. Psychopharmacology (Berl.), 2019, 236(3), 1097-1106. doi: 10.1007/s00213-018-4991-8 PMID: 30074064
- Tusiewicz, K.; Chłopaś-Konowałek, A.; Wachełko, O.; Zawadzki, M.; Szpot, P. A fatal case involving the highest ever reported 4- CMC concentration. J. Forensic Sci., 2023, 68(1), 349-354. doi: 10.1111/1556-4029.15162 PMID: 36286234
- Wojcieszak, J.; Andrzejczak, D.; Wojtas, A.; Gołembiowska, K.; Zawilska, J.B. Methcathinone and 3-fluoromethcathinone stimulate spontaneous horizontal locomotor activity in mice and elevate extracellular dopamine and serotonin levels in the mouse striatum. Neurotox. Res., 2019, 35(3), 594-605. doi: 10.1007/s12640-018-9973-4 PMID: 30377956
- Asser, A.; Hikima, A.; Raki, M.; Bergström, K.; Rose, S.; Juurmaa, J.; Krispin, V.; Muldmaa, M.; Lilles, S.; Rätsep, H.; Jenner, P.; Kõks, S.; Männistö, P.T.; Taba, P. Subacute administration of both methcathinone and manganese causes basal ganglia damage in mice resembling that in methcathinone abusers. J. Neural Transm. (Vienna), 2020, 127(5), 707-714. doi: 10.1007/s00702-019-02110-z PMID: 31786692
- Soares, J.; Costa, V.M.; Gaspar, H.; Santos, S.; de Lourdes Bastos, M.; Carvalho, F.; Capela, J.P. Structure-cytotoxicity relationship profile of 13 synthetic cathinones in differentiated human SH-SY5Y neuronal cells. Neurotoxicology, 2019, 75, 158-173. doi: 10.1016/j.neuro.2019.08.009 PMID: 31473217
- Zhou, X.; Bouitbir, J.; Liechti, M.E.; Krähenbühl, S.; Mancuso, R.V. Para-Halogenation of amphetamine and methcathinone increases the mitochondrial toxicity in undifferentiated and differentiated SH-SY5Y cells. Int. J. Mol. Sci., 2020, 21(8), 2841. doi: 10.3390/ijms21082841 PMID: 32325754
- Harris, M.T.H.; Laks, J.; Stahl, N.; Bagley, S.M.; Saia, K.; Wechsberg, W.M. Gender dynamics in substance use and treatment: A womens focused approach. Med. Clin. North Am., 2022, 106(1), 219-234. doi: 10.1016/j.mcna.2021.08.007 PMID: 34823732
- Perez, F.A.; Blythe, S.; Wouldes, T.; McNamara, K.; Black, K.I.; Oei, J.L. Prenatal methamphetamineimpact on the mother and childa review. Addiction, 2022, 117(1), 250-260. doi: 10.1111/add.15509 PMID: 33830539
- Paul, S.E.; Hatoum, A.S.; Fine, J.D.; Johnson, E.C.; Hansen, I.; Karcher, N.R.; Moreau, A.L.; Bondy, E.; Qu, Y.; Carter, E.B.; Rogers, C.E.; Agrawal, A.; Barch, D.M.; Bogdan, R. Associations between prenatal cannabis exposure and childhood outcomes: Results from the ABCD study. JAMA Psychiatry, 2021, 78(1), 64-76. doi: 10.1001/jamapsychiatry.2020.2902 PMID: 32965490
- Zhang, Y.; Gong, F.; Liu, P.; He, Y.; Wang, H. Effects of prenatal methamphetamine exposure on birth outcomes, brain structure, and neurodevelopmental outcomes. Dev. Neurosci., 2021, 43(5), 271-280. doi: 10.1159/000517753 PMID: 34139695
- Youyou, Z.; Yalei, Y.; Yanfei, D.; Shuquan, Z.; Zhaoyang, L.; Liang, R.; Liang, L. Effects of methcathinone exposure during prenatal and lactational periods on the development and the learning and memory abilities of rat offspring. Neurotox. Res., 2020, 38(1), 86-95. doi: 10.1007/s12640-020-00184-2 PMID: 32140923
- Soares, J.; Costa, V.M.; Bastos, M.L.; Carvalho, F.; Capela, J.P. An updated review on synthetic cathinones. Arch. Toxicol., 2021, 95(9), 2895-2940. doi: 10.1007/s00204-021-03083-3 PMID: 34100120
- Barker, D.J. The fetal and infant origins of adult disease. BMJ, 1990, 301(6761), 1111. doi: 10.1136/bmj.301.6761.1111 PMID: 2252919
- Prut, L.; Belzung, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review. Eur. J. Pharmacol., 2003, 463(1-3), 3-33. doi: 10.1016/S0014-2999(03)01272-X PMID: 12600700
- Vorhees, C.V.; Williams, M.T. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat. Protoc., 2006, 1(2), 848-858. doi: 10.1038/nprot.2006.116 PMID: 17406317
- Bevins, R.A.; Besheer, J. Object recognition in rats and mice: A one-trial non-matching-to-sample learning task to study recognition memory. Nat. Protoc., 2006, 1(3), 1306-1311. doi: 10.1038/nprot.2006.205 PMID: 17406415
- Smith, A.M.; Mioduszewski, O.; Hatchard, T.; Byron-Alhassan, A.; Fall, C.; Fried, P.A. Prenatal marijuana exposure impacts executive functioning into young adulthood: An fMRI study. Neurotoxicol. Teratol., 2016, 58, 53-59. doi: 10.1016/j.ntt.2016.05.010 PMID: 27263090
- Day, N.L.; Goldschmidt, L.; Day, R.; Larkby, C.; Richardson, G.A. Prenatal marijuana exposure, age of marijuana initiation, and the development of psychotic symptoms in young adults. Psychol. Med., 2015, 45(8), 1779-1787. doi: 10.1017/S0033291714002906 PMID: 25534593
- De Genna, N.M.; Willford, J.A.; Richardson, G.A. Long-term effects of prenatal cannabis exposure: Pathways to adolescent and adult outcomes. Pharmacol. Biochem. Behav., 2022, 214, 173358. doi: 10.1016/j.pbb.2022.173358 PMID: 35216971
- Angoa-Pérez, M.; Anneken, J.H.; Kuhn, D.M. Neurotoxicology of synthetic cathinone analogs. Curr. Top. Behav. Neurosci., 2016, 32, 209-230. doi: 10.1007/7854_2016_21 PMID: 27753008
- Sparago, M.; Wlos, J.; Yuan, J.; Hatzidimitriou, G.; Tolliver, J.; Dal Cason, T.A.; Katz, J.; Ricaurte, G. Neurotoxic and pharmacologic studies on enantiomers of the N-methylated analog of cathinone (methcathinone): A new drug of abuse. J. Pharmacol. Exp. Ther., 1996, 279(2), 1043-1052. PMID: 8930215
- Gygi, M.P.; Gibb, J.W.; Hanson, G.R. Methcathinone: An initial study of its effects on monoaminergic systems. J. Pharmacol. Exp. Ther., 1996, 276(3), 1066-1072. PMID: 8786536
- Jones, L.A.; Sun, E.W.; Martin, A.M.; Keating, D.J. The ever-changing roles of serotonin. Int. J. Biochem. Cell Biol., 2020, 125, 105776. doi: 10.1016/j.biocel.2020.105776 PMID: 32479926
- Zarrindast, M.R.; Khakpai, F. The modulatory role of dopamine in anxiety-like behavior. Arch. Iran Med., 2015, 18(9), 591-603. PMID: 26317601
- Olveracortés, M.; Anguianorodríguez, P.; Lópezvázquez, M.; Alfaro, J. Serotonin/dopamine interaction in learning. Prog. Brain Res., 2008, 172, 567-602. doi: 10.1016/S0079-6123(08)00927-8 PMID: 18772051
- Song, Q.; Deng, Y.; Yang, X.; Bai, Y.; Xu, B.; Liu, W.; Zheng, W.; Wang, C.; Zhang, M.; Xu, Z. Manganese-disrupted interaction of dopamine D1 and NMDAR in the striatum to injury learning and memory ability of mice. Mol. Neurobiol., 2016, 53(10), 6745-6758. doi: 10.1007/s12035-015-9602-7 PMID: 26660110
- Myhrer, T. Neurotransmitter systems involved in learning and memory in the rat: A meta-analysis based on studies of four behavioral tasks. Brain Res. Brain Res. Rev., 2003, 41(2-3), 268-287. doi: 10.1016/S0165-0173(02)00268-0 PMID: 12663083
- Dague, A.; Chavva, H.; Brazeau, D.A.; Denvir, J.; Rorabaugh, B.R. Maternal use of methamphetamine induces SEX-DEPENDENT changes in myocardial gene expression in adult offspring. Physiol. Rep., 2022, 10(22), e15509. doi: 10.14814/phy2.15509 PMID: 36426716
- Korchynska, S.; Krassnitzer, M.; Malenczyk, K.; Prasad, R.B.; Tretiakov, E.O.; Rehman, S.; Cinquina, V.; Gernedl, V.; Farlik, M.; Petersen, J.; Hannes, S.; Schachenhofer, J.; Reisinger, S.N.; Zambon, A.; Asplund, O.; Artner, I.; Keimpema, E.; Lubec, G.; Mulder, J.; Bock, C.; Pollak, D.D.; Romanov, R.A.; Pifl, C.; Groop, L.; Hökfelt, T.G.M.; Harkany, T. Life-long impairment of glucose homeostasis upon prenatal exposure to psychostimulants. EMBO J., 2020, 39(1), e100882. doi: 10.15252/embj.2018100882 PMID: 31750562
- lamberová, R. Review of long-term consequences of maternal methamphetamine exposure. Physiol. Res., 2019, 68(Suppl. 3), S219-S231. doi: 10.33549/physiolres.934360 PMID: 31928040
- Itzhak, Y.; Ergui, I.; Young, J.I. Long-term parental methamphetamine exposure of mice influences behavior and hippocampal DNA methylation of the offspring. Mol. Psychiatry, 2015, 20(2), 232-239. doi: 10.1038/mp.2014.7 PMID: 24535458
- Burton, G.J.; Fowden, A.L. The placenta: A multifaceted, transient organ. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2015, 370(1663), 20140066. doi: 10.1098/rstb.2014.0066 PMID: 25602070
- Rosenfeld, C.S. The placenta-brain-axis. J. Neurosci. Res., 2021, 99(1), 271-283. doi: 10.1002/jnr.24603 PMID: 32108381
- Goeden, N.; Velasquez, J.; Arnold, K.A.; Chan, Y.; Lund, B.T.; Anderson, G.M.; Bonnin, A. Maternal inflammation disrupts fetal neurodevelopment via increased placental output of serotonin to the fetal brain. J. Neurosci., 2016, 36(22), 6041-6049. doi: 10.1523/JNEUROSCI.2534-15.2016 PMID: 27251625
- Shallie, P.D.; Naicker, T. The placenta as a window to the brain: A review on the role of placental markers in prenatal programming of neurodevelopment. Int. J. Dev. Neurosci., 2019, 73(1), 41-49. doi: 10.1016/j.ijdevneu.2019.01.003 PMID: 30634053
- Zhao, C.; Xie, P.; Yong, T.; Huang, W.; Liu, J.; Wu, D.; Ji, F.; Li, M.; Zhang, D.; Li, R.; Dong, C.; Ma, J.; Dong, Z.; Liu, S.; Cai, Z. Airborne fine particulate matter induces cognitive and emotional disorders in offspring mice exposed during pregnancy. Sci. Bull. (Beijing), 2021, 66(6), 578-591. doi: 10.1016/j.scib.2020.08.036 PMID: 36654428
Arquivos suplementares
