Effects of Prenatal Methcathinone Exposure on the Neurological Behavior of Adult Offspring


Citar

Texto integral

Resumo

Background:Our previous research has shown that prenatal methcathinone exposure affects the neurodevelopment and neurobehavior of adolescent offspring, but the study on whether these findings continue into adulthood is limited.

Objective:This study aims to explore the effects of prenatal methcathinone exposure on anxiety-like behavior, learning and memory abilities, as well as serum 5-hydroxytryptamine and dopamine concentrations in adult offspring.

Methods:Pregnant rats were injected daily with methcathinone between the 7th and 20th days of gestation. The neurobehavioral performance of both male and female adult offspring rats was evaluated by neurobehavioral tests, including open-field tests, Morris water maze (MWM) tests, and novel object recognition (NOR) tests. The levels of 5-hydroxytryptamine and dopamine concentration in rat serum were detected by ELISA.

Results:Significant differences were found in the length of center distance and time of center duration in the open-field test, as well as the times of crossing the platform in the MWM test, between the prenatal methcathinone exposure group and the control group. Results of the NOR test showed that adult offspring rats exposed to methcathinone need more time to discriminate the novel object. No gender differences were detected in the neurobehavioral tests. The serum concentrations of 5-hydroxytryptamine and dopamine in rats exposed to methcathinone prenatally were lower than that in the control group, and the serum dopamine concentration was independent of gender in each group.

Conclusion:Prenatal methcathinone exposure affects the neurological behavior in adult offspring, and 5-hydroxytryptamine and dopamine might be involved in the process.

Sobre autores

Zhang Youyou

Department of Geriatric Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an Jiaotong University

Autor responsável pela correspondência
Email: info@benthamscience.net

Li Zhaoyang

Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University

Email: info@benthamscience.net

Li Chen

Department of Geriatric Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an Jiaotong University

Email: info@benthamscience.net

Zhao Shuquan

Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University

Email: info@benthamscience.net

Wang Hui

Department of Geriatric Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University,, Xi'an Jiaotong University,

Email: info@benthamscience.net

Bibliografia

  1. Bade, R.; Stockham, P.; Painter, B.; Celma, A.; Bijlsma, L.; Hernandez, F.; White, J.M.; Gerber, C. Investigating the appearance of new psychoactive substances in South Australia using wastewater and forensic data. Drug Test. Anal., 2019, 11(2), 250-256. doi: 10.1002/dta.2484 PMID: 30129282
  2. Sikk, K.; Taba, P. Methcathinone "Kitchen Chemistry" and permanent neurological damage. Int. Rev. Neurobiol., 2015, 120, 257-271. doi: 10.1016/bs.irn.2015.02.002 PMID: 26070761
  3. González-Mariño, I.; Gracia-Lor, E.; Rousis, N.I.; Castrignanò, E.; Thomas, K.V.; Quintana, J.B.; Kasprzyk-Hordern, B.; Zuccato, E.; Castiglioni, S. Wastewater-based epidemiology to monitor synthetic cathinones use in different european countries. Environ. Sci. Technol., 2016, 50(18), 10089-10096. doi: 10.1021/acs.est.6b02644 PMID: 27491628
  4. Abdelwahab, S.I.; Alfaifi, H.; Mohan, S.; Elhassan Taha, M.; Syame, S.; Shaala, L.; Alsanosy, R. Catha edulis Forsk. (Khat): Evaluation of its antidepressant-like Activity. Pharmacogn. Mag., 2017, 13(50)(Suppl. 2), 354. doi: 10.4103/pm.pm_442_16 PMID: 28808405
  5. Goldstone, M.S. ‘Cat’: methcathinone--a new drug of abuse. JAMA, 1993, 269(19), 2508. doi: 10.1001/jama.1993.03500190050033 PMID: 8487412
  6. Emerson, T.S.; Cisek, J.E. Methcathinone: A russian designer amphetamine infiltrates the rural midwest. Ann. Emerg. Med., 1993, 22(12), 1897-1903. doi: 10.1016/S0196-0644(05)80419-6 PMID: 8239113
  7. European Monitoring Centre for Drugs and Drug Addiction. European Drug Report 2023: Trends and Developments Available from: https://www.emcdda.europa.eu/publications/european-drug-report/2023_
  8. United Nations Office on Drug and Crime. 2022 world drug report. Available from: http://www.unodc.org/unodc/en/data-and-analysis/world-drug-report-2022.html
  9. Hasan, M.; Sarker, S.A. New psychoactive substances: A potential threat to developing countries. Addict. Health, 2023, 15(2), 136-143. doi: 10.34172/ahj.2023.1411 PMID: 37560390
  10. Zhang, H.B.; Zhao, D.; Liu, Y.P.; Wang, L.X.; Yang, B.; Yuan, T.F. Problem-solving deficits in methcathinone use disorder. Psychopharmacology (Berl.), 2021, 238(9), 2515-2524. doi: 10.1007/s00213-021-05874-z PMID: 34291307
  11. Zeng, N.; Zheng, H.; Shi, T.; Zhang, H.B.; Wang, L.X.; Liang, Z.Y.; Sun, B.; Liao, Y.; Rao, L.L.; Yang, B.; Yuan, T.F. Impaired delay discounting and time sensitivity in methcathinone use disorder. Eur. Arch. Psychiatry Clin. Neurosci., 2022, 272(8), 1595-1602. doi: 10.1007/s00406-021-01372-7 PMID: 35091796
  12. Ennok, M.; Sikk, K.; Haldre, S.; Taba, P. Cognitive profile of patients with manganese-methcathinone encephalopathy. Neurotoxicology, 2020, 76, 138-143. doi: 10.1016/j.neuro.2019.10.007 PMID: 31678058
  13. Chong, T.T.J.; Bonnelle, V.; Veromann, K.R.; Juurmaa, J.; Taba, P.; Plant, O.; Husain, M. Dissociation of reward and effort sensitivity in methcathinone-induced Parkinsonism. J. Neuropsychol., 2018, 12(2), 291-297. doi: 10.1111/jnp.12122 PMID: 28378511
  14. Wojcieszak, J.; Andrzejczak, D.; Szymańska, B.; Zawilska, J.B. Induction of immediate early genes expression in the mouse striatum following acute administration of synthetic cathinones. Pharmacol. Rep., 2019, 71(6), 977-982. doi: 10.1016/j.pharep.2019.05.011 PMID: 31522019
  15. Anneken, J.H.; Angoa-Perez, M.; Sati, G.C.; Crich, D.; Kuhn, D.M. Dissociation between hypothermia and neurotoxicity caused by mephedrone and methcathinone in TPH2 knockout mice. Psychopharmacology (Berl.), 2019, 236(3), 1097-1106. doi: 10.1007/s00213-018-4991-8 PMID: 30074064
  16. Tusiewicz, K.; Chłopaś-Konowałek, A.; Wachełko, O.; Zawadzki, M.; Szpot, P. A fatal case involving the highest ever reported 4- CMC concentration. J. Forensic Sci., 2023, 68(1), 349-354. doi: 10.1111/1556-4029.15162 PMID: 36286234
  17. Wojcieszak, J.; Andrzejczak, D.; Wojtas, A.; Gołembiowska, K.; Zawilska, J.B. Methcathinone and 3-fluoromethcathinone stimulate spontaneous horizontal locomotor activity in mice and elevate extracellular dopamine and serotonin levels in the mouse striatum. Neurotox. Res., 2019, 35(3), 594-605. doi: 10.1007/s12640-018-9973-4 PMID: 30377956
  18. Asser, A.; Hikima, A.; Raki, M.; Bergström, K.; Rose, S.; Juurmaa, J.; Krispin, V.; Muldmaa, M.; Lilles, S.; Rätsep, H.; Jenner, P.; Kõks, S.; Männistö, P.T.; Taba, P. Subacute administration of both methcathinone and manganese causes basal ganglia damage in mice resembling that in methcathinone abusers. J. Neural Transm. (Vienna), 2020, 127(5), 707-714. doi: 10.1007/s00702-019-02110-z PMID: 31786692
  19. Soares, J.; Costa, V.M.; Gaspar, H.; Santos, S.; de Lourdes Bastos, M.; Carvalho, F.; Capela, J.P. Structure-cytotoxicity relationship profile of 13 synthetic cathinones in differentiated human SH-SY5Y neuronal cells. Neurotoxicology, 2019, 75, 158-173. doi: 10.1016/j.neuro.2019.08.009 PMID: 31473217
  20. Zhou, X.; Bouitbir, J.; Liechti, M.E.; Krähenbühl, S.; Mancuso, R.V. Para-Halogenation of amphetamine and methcathinone increases the mitochondrial toxicity in undifferentiated and differentiated SH-SY5Y cells. Int. J. Mol. Sci., 2020, 21(8), 2841. doi: 10.3390/ijms21082841 PMID: 32325754
  21. Harris, M.T.H.; Laks, J.; Stahl, N.; Bagley, S.M.; Saia, K.; Wechsberg, W.M. Gender dynamics in substance use and treatment: A women’s focused approach. Med. Clin. North Am., 2022, 106(1), 219-234. doi: 10.1016/j.mcna.2021.08.007 PMID: 34823732
  22. Perez, F.A.; Blythe, S.; Wouldes, T.; McNamara, K.; Black, K.I.; Oei, J.L. Prenatal methamphetamine—impact on the mother and child—a review. Addiction, 2022, 117(1), 250-260. doi: 10.1111/add.15509 PMID: 33830539
  23. Paul, S.E.; Hatoum, A.S.; Fine, J.D.; Johnson, E.C.; Hansen, I.; Karcher, N.R.; Moreau, A.L.; Bondy, E.; Qu, Y.; Carter, E.B.; Rogers, C.E.; Agrawal, A.; Barch, D.M.; Bogdan, R. Associations between prenatal cannabis exposure and childhood outcomes: Results from the ABCD study. JAMA Psychiatry, 2021, 78(1), 64-76. doi: 10.1001/jamapsychiatry.2020.2902 PMID: 32965490
  24. Zhang, Y.; Gong, F.; Liu, P.; He, Y.; Wang, H. Effects of prenatal methamphetamine exposure on birth outcomes, brain structure, and neurodevelopmental outcomes. Dev. Neurosci., 2021, 43(5), 271-280. doi: 10.1159/000517753 PMID: 34139695
  25. Youyou, Z.; Yalei, Y.; Yanfei, D.; Shuquan, Z.; Zhaoyang, L.; Liang, R.; Liang, L. Effects of methcathinone exposure during prenatal and lactational periods on the development and the learning and memory abilities of rat offspring. Neurotox. Res., 2020, 38(1), 86-95. doi: 10.1007/s12640-020-00184-2 PMID: 32140923
  26. Soares, J.; Costa, V.M.; Bastos, M.L.; Carvalho, F.; Capela, J.P. An updated review on synthetic cathinones. Arch. Toxicol., 2021, 95(9), 2895-2940. doi: 10.1007/s00204-021-03083-3 PMID: 34100120
  27. Barker, D.J. The fetal and infant origins of adult disease. BMJ, 1990, 301(6761), 1111. doi: 10.1136/bmj.301.6761.1111 PMID: 2252919
  28. Prut, L.; Belzung, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review. Eur. J. Pharmacol., 2003, 463(1-3), 3-33. doi: 10.1016/S0014-2999(03)01272-X PMID: 12600700
  29. Vorhees, C.V.; Williams, M.T. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat. Protoc., 2006, 1(2), 848-858. doi: 10.1038/nprot.2006.116 PMID: 17406317
  30. Bevins, R.A.; Besheer, J. Object recognition in rats and mice: A one-trial non-matching-to-sample learning task to study ‘recognition memory’. Nat. Protoc., 2006, 1(3), 1306-1311. doi: 10.1038/nprot.2006.205 PMID: 17406415
  31. Smith, A.M.; Mioduszewski, O.; Hatchard, T.; Byron-Alhassan, A.; Fall, C.; Fried, P.A. Prenatal marijuana exposure impacts executive functioning into young adulthood: An fMRI study. Neurotoxicol. Teratol., 2016, 58, 53-59. doi: 10.1016/j.ntt.2016.05.010 PMID: 27263090
  32. Day, N.L.; Goldschmidt, L.; Day, R.; Larkby, C.; Richardson, G.A. Prenatal marijuana exposure, age of marijuana initiation, and the development of psychotic symptoms in young adults. Psychol. Med., 2015, 45(8), 1779-1787. doi: 10.1017/S0033291714002906 PMID: 25534593
  33. De Genna, N.M.; Willford, J.A.; Richardson, G.A. Long-term effects of prenatal cannabis exposure: Pathways to adolescent and adult outcomes. Pharmacol. Biochem. Behav., 2022, 214, 173358. doi: 10.1016/j.pbb.2022.173358 PMID: 35216971
  34. Angoa-Pérez, M.; Anneken, J.H.; Kuhn, D.M. Neurotoxicology of synthetic cathinone analogs. Curr. Top. Behav. Neurosci., 2016, 32, 209-230. doi: 10.1007/7854_2016_21 PMID: 27753008
  35. Sparago, M.; Wlos, J.; Yuan, J.; Hatzidimitriou, G.; Tolliver, J.; Dal Cason, T.A.; Katz, J.; Ricaurte, G. Neurotoxic and pharmacologic studies on enantiomers of the N-methylated analog of cathinone (methcathinone): A new drug of abuse. J. Pharmacol. Exp. Ther., 1996, 279(2), 1043-1052. PMID: 8930215
  36. Gygi, M.P.; Gibb, J.W.; Hanson, G.R. Methcathinone: An initial study of its effects on monoaminergic systems. J. Pharmacol. Exp. Ther., 1996, 276(3), 1066-1072. PMID: 8786536
  37. Jones, L.A.; Sun, E.W.; Martin, A.M.; Keating, D.J. The ever-changing roles of serotonin. Int. J. Biochem. Cell Biol., 2020, 125, 105776. doi: 10.1016/j.biocel.2020.105776 PMID: 32479926
  38. Zarrindast, M.R.; Khakpai, F. The modulatory role of dopamine in anxiety-like behavior. Arch. Iran Med., 2015, 18(9), 591-603. PMID: 26317601
  39. Olveracortés, M.; Anguianorodríguez, P.; Lópezvázquez, M.; Alfaro, J. Serotonin/dopamine interaction in learning. Prog. Brain Res., 2008, 172, 567-602. doi: 10.1016/S0079-6123(08)00927-8 PMID: 18772051
  40. Song, Q.; Deng, Y.; Yang, X.; Bai, Y.; Xu, B.; Liu, W.; Zheng, W.; Wang, C.; Zhang, M.; Xu, Z. Manganese-disrupted interaction of dopamine D1 and NMDAR in the striatum to injury learning and memory ability of mice. Mol. Neurobiol., 2016, 53(10), 6745-6758. doi: 10.1007/s12035-015-9602-7 PMID: 26660110
  41. Myhrer, T. Neurotransmitter systems involved in learning and memory in the rat: A meta-analysis based on studies of four behavioral tasks. Brain Res. Brain Res. Rev., 2003, 41(2-3), 268-287. doi: 10.1016/S0165-0173(02)00268-0 PMID: 12663083
  42. Dague, A.; Chavva, H.; Brazeau, D.A.; Denvir, J.; Rorabaugh, B.R. Maternal use of methamphetamine induces SEX-DEPENDENT changes in myocardial gene expression in adult offspring. Physiol. Rep., 2022, 10(22), e15509. doi: 10.14814/phy2.15509 PMID: 36426716
  43. Korchynska, S.; Krassnitzer, M.; Malenczyk, K.; Prasad, R.B.; Tretiakov, E.O.; Rehman, S.; Cinquina, V.; Gernedl, V.; Farlik, M.; Petersen, J.; Hannes, S.; Schachenhofer, J.; Reisinger, S.N.; Zambon, A.; Asplund, O.; Artner, I.; Keimpema, E.; Lubec, G.; Mulder, J.; Bock, C.; Pollak, D.D.; Romanov, R.A.; Pifl, C.; Groop, L.; Hökfelt, T.G.M.; Harkany, T. Life-long impairment of glucose homeostasis upon prenatal exposure to psychostimulants. EMBO J., 2020, 39(1), e100882. doi: 10.15252/embj.2018100882 PMID: 31750562
  44. Šlamberová, R. Review of long-term consequences of maternal methamphetamine exposure. Physiol. Res., 2019, 68(Suppl. 3), S219-S231. doi: 10.33549/physiolres.934360 PMID: 31928040
  45. Itzhak, Y.; Ergui, I.; Young, J.I. Long-term parental methamphetamine exposure of mice influences behavior and hippocampal DNA methylation of the offspring. Mol. Psychiatry, 2015, 20(2), 232-239. doi: 10.1038/mp.2014.7 PMID: 24535458
  46. Burton, G.J.; Fowden, A.L. The placenta: A multifaceted, transient organ. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2015, 370(1663), 20140066. doi: 10.1098/rstb.2014.0066 PMID: 25602070
  47. Rosenfeld, C.S. The placenta-brain-axis. J. Neurosci. Res., 2021, 99(1), 271-283. doi: 10.1002/jnr.24603 PMID: 32108381
  48. Goeden, N.; Velasquez, J.; Arnold, K.A.; Chan, Y.; Lund, B.T.; Anderson, G.M.; Bonnin, A. Maternal inflammation disrupts fetal neurodevelopment via increased placental output of serotonin to the fetal brain. J. Neurosci., 2016, 36(22), 6041-6049. doi: 10.1523/JNEUROSCI.2534-15.2016 PMID: 27251625
  49. Shallie, P.D.; Naicker, T. The placenta as a window to the brain: A review on the role of placental markers in prenatal programming of neurodevelopment. Int. J. Dev. Neurosci., 2019, 73(1), 41-49. doi: 10.1016/j.ijdevneu.2019.01.003 PMID: 30634053
  50. Zhao, C.; Xie, P.; Yong, T.; Huang, W.; Liu, J.; Wu, D.; Ji, F.; Li, M.; Zhang, D.; Li, R.; Dong, C.; Ma, J.; Dong, Z.; Liu, S.; Cai, Z. Airborne fine particulate matter induces cognitive and emotional disorders in offspring mice exposed during pregnancy. Sci. Bull. (Beijing), 2021, 66(6), 578-591. doi: 10.1016/j.scib.2020.08.036 PMID: 36654428

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024