Astrocytes and Memory: Implications for the Treatment of Memory-related Disorders


如何引用文章

全文:

详细

:Memory refers to the imprint accumulated in the brain by life experiences and represents the basis for humans to engage in advanced psychological activities such as thinking and imagination. Previously, research activities focused on memory have always targeted neurons. However, in addition to neurons, astrocytes are also involved in the encoding, consolidation, and extinction of memory. In particular, astrocytes are known to affect the recruitment and function of neurons at the level of local synapses and brain networks. Moreover, the involvement of astrocytes in memory and memory-related disorders, especially in Alzheimer’s disease (AD) and post-traumatic stress disorder (PTSD), has been investigated extensively. In this review, we describe the unique contributions of astrocytes to synaptic plasticity and neuronal networks and discuss the role of astrocytes in different types of memory processing. In addition, we also explore the roles of astrocytes in the pathogenesis of memory-related disorders, such as AD, brain aging, PTSD and addiction, thus suggesting that targeting astrocytes may represent a potential strategy to treat memory-related neurological diseases. In conclusion, this review emphasizes that thinking from the perspective of astrocytes will provide new ideas for the diagnosis and therapy of memory-related neurological disorders.

作者简介

Juan Wang

Key Laboratory of Xin’an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine

Email: info@benthamscience.net

Ping Cheng

Key Laboratory of Xin’an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine,

Email: info@benthamscience.net

Yan Qu

Key Laboratory of Xin’an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine

Email: info@benthamscience.net

Guoqi Zhu

Key Laboratory of Xin’an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Haim, L.B.; Rowitch, D.H. Functional diversity of astrocytes in neural circuit regulation. Nat. Rev. Neurosci., 2017, 18(1), 31-41. doi: 10.1038/nrn.2016.159 PMID: 27904142
  2. Chung, W.S.; Allen, N.J.; Eroglu, C. Astrocytes control synapse formation, function, and elimination. Cold Spring Harb. Perspect. Biol., 2015, 7(9), a020370. doi: 10.1101/cshperspect.a020370 PMID: 25663667
  3. Araque, A.; Parpura, V.; Sanzgiri, R.P.; Haydon, P.G. Tripartite synapses: Glia, the unacknowledged partner. Trends Neurosci., 1999, 22(5), 208-215. doi: 10.1016/S0166-2236(98)01349-6 PMID: 10322493
  4. Khakh, B.S.; Deneen, B. The emerging nature of astrocyte diversity. Annu. Rev. Neurosci., 2019, 42(1), 187-207. doi: 10.1146/annurev-neuro-070918-050443 PMID: 31283899
  5. Verkhratsky, A.; Nedergaard, M. Physiology of astroglia. Physiol. Rev., 2018, 98(1), 239-389. doi: 10.1152/physrev.00042.2016 PMID: 29351512
  6. Akther, S.; Hirase, H. Assessment of astrocytes as a mediator of memory and learning in rodents. Glia, 2022, 70(8), 1484-1505. doi: 10.1002/glia.24099 PMID: 34582594
  7. Khaspekov, L.G.; Frumkina, L.E. Molecular mechanisms of astrocyte involvement in synaptogenesis and brain synaptic plasticity. Biochemistry, 2023, 88(4), 502-514. doi: 10.1134/S0006297923040065 PMID: 37080936
  8. Dienel, G.A.; Schousboe, A.; McKenna, M.C.; Rothman, D.L. A tribute to Leif Hertz: The historical context of his pioneering studies of the roles of astrocytes in brain energy metabolism, neurotransmission, cognitive functions, and pharmacology identifies important, unresolved topics for future studies. J. Neurochem., 2023, 15812. doi: 10.1111/jnc.15812 PMID: 36928655
  9. Chen, Y.H.; Jin, S.Y.; Yang, J.M.; Gao, T.M. The memory orchestra: Contribution of astrocytes. Neurosci. Bull., 2023, 39(3), 409-424. doi: 10.1007/s12264-023-01024-x PMID: 36738435
  10. Endo, F.; Kasai, A.; Soto, J.S.; Yu, X.; Qu, Z.; Hashimoto, H.; Gradinaru, V.; Kawaguchi, R.; Khakh, B.S. Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science, 2022, 378(6619), eadc9020. doi: 10.1126/science.adc9020 PMID: 36378959
  11. Arranz, A.M.; De Strooper, B. The role of astroglia in Alzheimer’s disease: Pathophysiology and clinical implications. Lancet Neurol., 2019, 18(4), 406-414. doi: 10.1016/S1474-4422(18)30490-3 PMID: 30795987
  12. Jones, M.E.; Lebonville, C.L.; Paniccia, J.E.; Balentine, M.E.; Reissner, K.J.; Lysle, D.T. Hippocampal interleukin-1 mediates stress-enhanced fear learning: A potential role for astrocyte-derived interleukin-1β. Brain Behav. Immun., 2018, 67, 355-363. doi: 10.1016/j.bbi.2017.09.016 PMID: 28963000
  13. Yang, J.; Chen, J.; Liu, Y.; Chen, K.H.; Baraban, J.M.; Qiu, Z. Ventral tegmental area astrocytes modulate cocaine reward by tonically releasing GABA. Neuron, 2023, 111(7), 1104-1117.e6. doi: 10.1016/j.neuron.2022.12.033 PMID: 36681074
  14. Lee, S.H.; Mak, A.; Verheijen, M.H.G. Comparative assessment of the effects of DREADDs and endogenously expressed GPCRs in hippocampal astrocytes on synaptic activity and memory. Front. Cell. Neurosci., 2023, 17, 1159756. doi: 10.3389/fncel.2023.1159756 PMID: 37051110
  15. Goshen, I. The optogenetic revolution in memory research. Trends Neurosci., 2014, 37(9), 511-522. doi: 10.1016/j.tins.2014.06.002 PMID: 25022518
  16. Yu, X.; Nagai, J.; Khakh, B.S. Improved tools to study astrocytes. Nat. Rev. Neurosci., 2020, 21(3), 121-138. doi: 10.1038/s41583-020-0264-8 PMID: 32042146
  17. Savtchenko, L.P.; Bard, L.; Jensen, T.P.; Reynolds, J.P.; Kraev, I.; Medvedev, N.; Stewart, M.G.; Henneberger, C.; Rusakov, D.A. Disentangling astroglial physiology with a realistic cell model in silico. Nat. Commun., 2018, 9(1), 3554. doi: 10.1038/s41467-018-05896-w PMID: 30177844
  18. Verkhratsky, A.; Reyes, R.C.; Parpura, V. TRP channels coordinate ion signalling in astroglia. Rev. Physiol. Biochem. Pharmacol., 2014, 166, 1-22. PMID: 23784619
  19. Semyanov, A.; Henneberger, C.; Agarwal, A. Making sense of astrocytic calcium signals - from acquisition to interpretation. Nat. Rev. Neurosci., 2020, 21(10), 551-564. doi: 10.1038/s41583-020-0361-8 PMID: 32873937
  20. Agarwal, A.; Wu, P.H.; Hughes, E.G.; Fukaya, M.; Tischfield, M.A.; Langseth, A.J.; Wirtz, D.; Bergles, D.E. Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron, 2017, 93(3), 587-605.e7. doi: 10.1016/j.neuron.2016.12.034 PMID: 28132831
  21. Bojarskaite, L.; Bjørnstad, D.M.; Pettersen, K.H.; Cunen, C.; Hermansen, G.H.; Åbjørsbråten, K.S.; Chambers, A.R.; Sprengel, R.; Vervaeke, K.; Tang, W.; Enger, R.; Nagelhus, E.A. Astrocytic Ca2+ signaling is reduced during sleep and is involved in the regulation of slow wave sleep. Nat. Commun., 2020, 11(1), 3240. doi: 10.1038/s41467-020-17062-2 PMID: 32632168
  22. Wu, Y.W.; Gordleeva, S.; Tang, X.; Shih, P.Y.; Dembitskaya, Y.; Semyanov, A. Morphological profile determines the frequency of spontaneous calcium events in astrocytic processes. Glia, 2019, 67(2), 246-262. doi: 10.1002/glia.23537 PMID: 30565755
  23. Denizot, A.; Arizono, M.; Nägerl, U.V.; Soula, H.; Berry, H. Simulation of calcium signaling in fine astrocytic processes: Effect of spatial properties on spontaneous activity. PLOS Comput. Biol., 2019, 15(8), e1006795. doi: 10.1371/journal.pcbi.1006795 PMID: 31425510
  24. Lines, J.; Martin, E.D.; Kofuji, P.; Aguilar, J.; Araque, A. Astrocytes modulate sensory-evoked neuronal network activity. Nat. Commun., 2020, 11(1), 3689. doi: 10.1038/s41467-020-17536-3 PMID: 32704144
  25. Boddum, K.; Jensen, T.P.; Magloire, V.; Kristiansen, U.; Rusakov, D.A.; Pavlov, I.; Walker, M.C. Astrocytic GABA transporter activity modulates excitatory neurotransmission. Nat. Commun., 2016, 7(1), 13572. doi: 10.1038/ncomms13572 PMID: 27886179
  26. Kofuji, P.; Araque, A. G-protein-coupled receptors in astrocyte-neuron communication. Neuroscience, 2021, 456, 71-84. doi: 10.1016/j.neuroscience.2020.03.025 PMID: 32224231
  27. Bazargani, N.; Attwell, D. Astrocyte calcium signaling: The third wave. Nat. Neurosci., 2016, 19(2), 182-189. doi: 10.1038/nn.4201 PMID: 26814587
  28. Volterra, A.; Liaudet, N.; Savtchouk, I. Astrocyte Ca2+ signalling: An unexpected complexity. Nat. Rev. Neurosci., 2014, 15(5), 327-335. doi: 10.1038/nrn3725 PMID: 24739787
  29. Srinivasan, R.; Huang, B.S.; Venugopal, S.; Johnston, A.D.; Chai, H.; Zeng, H.; Golshani, P.; Khakh, B.S. Ca2+ signaling in astrocytes from Ip3r2−/− mice in brain slices and during startle responses in vivo. Nat. Neurosci., 2015, 18(5), 708-717. doi: 10.1038/nn.4001 PMID: 25894291
  30. Semyanov, A. Spatiotemporal pattern of calcium activity in astrocytic network. Cell Calcium, 2019, 78, 15-25. doi: 10.1016/j.ceca.2018.12.007 PMID: 30579813
  31. Arizono, M.; Inavalli, V.V.G.K.; Panatier, A.; Pfeiffer, T.; Angibaud, J.; Levet, F.; Ter Veer, M.J.T.; Stobart, J.; Bellocchio, L.; Mikoshiba, K.; Marsicano, G.; Weber, B.; Oliet, S.H.R.; Nägerl, U.V. Structural basis of astrocytic Ca2+ signals at tripartite synapses. Nat. Commun., 2020, 11(1), 1906. doi: 10.1038/s41467-020-15648-4 PMID: 32312988
  32. Georgiou, L.; Echeverría, A.; Georgiou, A.; Kuhn, B. Ca 2+ activity maps of astrocytes tagged by axoastrocytic AAV transfer. Sci. Adv., 2022, 8(6), eabe5371. doi: 10.1126/sciadv.abe5371 PMID: 35138891
  33. Stobart, J.L.; Ferrari, K.D.; Barrett, M.J.P.; Glück, C.; Stobart, M.J.; Zuend, M.; Weber, B. Cortical circuit activity evokes rapid astrocyte calcium signals on a similar timescale to neurons. Neuron, 2018, 98(4), 726-735.e4. doi: 10.1016/j.neuron.2018.03.050 PMID: 29706581
  34. Wang, Y.; DelRosso, N.V.; Vaidyanathan, T.V.; Cahill, M.K.; Reitman, M.E.; Pittolo, S.; Mi, X.; Yu, G.; Poskanzer, K.E. Accurate quantification of astrocyte and neurotransmitter fluorescence dynamics for single-cell and population-level physiology. Nat. Neurosci., 2019, 22(11), 1936-1944. doi: 10.1038/s41593-019-0492-2 PMID: 31570865
  35. Zhu, G.; Liu, Y.; Wang, Y.; Bi, X.; Baudry, M. Different patterns of electrical activity lead to long-term potentiation by activating different intracellular pathways. J. Neurosci., 2015, 35(2), 621-633. doi: 10.1523/JNEUROSCI.2193-14.2015 PMID: 25589756
  36. Zhu, G.; Briz, V.; Seinfeld, J.; Liu, Y.; Bi, X.; Baudry, M. Calpain-1 deletion impairs mGluR-dependent LTD and fear memory extinction. Sci. Rep., 2017, 7(1), 42788. doi: 10.1038/srep42788 PMID: 28202907
  37. Frankland, P.W.; Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci., 2005, 6(2), 119-130. doi: 10.1038/nrn1607 PMID: 15685217
  38. Magee, J.C.; Grienberger, C. Synaptic plasticity forms and functions. Annu. Rev. Neurosci., 2020, 43(1), 95-117. doi: 10.1146/annurev-neuro-090919-022842 PMID: 32075520
  39. Allen, N.J.; Lyons, D.A. Glia as architects of central nervous system formation and function. Science, 2018, 362(6411), 181-185. doi: 10.1126/science.aat0473 PMID: 30309945
  40. Bliss, T.V.P.; Lømo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol., 1973, 232(2), 331-356. doi: 10.1113/jphysiol.1973.sp010273 PMID: 4727084
  41. Malenka, R.C.; Bear, M.F. LTP and LTD: An embarrassment of riches. Neuron, 2004, 44(1), 5-21. doi: 10.1016/j.neuron.2004.09.012 PMID: 15450156
  42. Nguyen, P.V.; Abel, T.; Kandel, E.R. Requirement of a critical period of transcription for induction of a late phase of LTP. Science, 1994, 265(5175), 1104-1107. doi: 10.1126/science.8066450 PMID: 8066450
  43. Sherwood, M.W.; Arizono, M.; Hisatsune, C.; Bannai, H.; Ebisui, E.; Sherwood, J.L.; Panatier, A.; Oliet, S.H.R.; Mikoshiba, K. Astrocytic IP3Rs: Contribution to Ca2+ signalling and hippocampal LTP. Glia, 2017, 65(3), 502-513. doi: 10.1002/glia.23107 PMID: 28063222
  44. Navarrete, M.; Perea, G.; de Sevilla, D.F.; Gómez-Gonzalo, M.; Núñez, A.; Martín, E.D.; Araque, A. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol., 2012, 10(2), e1001259. doi: 10.1371/journal.pbio.1001259 PMID: 22347811
  45. Liu, J.H.; Zhang, M.; Wang, Q.; Wu, D.Y.; Jie, W.; Hu, N.Y.; Lan, J.Z.; Zeng, K.; Li, S.J.; Li, X.W.; Yang, J.M.; Gao, T.M. Distinct roles of astroglia and neurons in synaptic plasticity and memory. Mol. Psychiatry, 2022, 27(2), 873-885. doi: 10.1038/s41380-021-01332-6 PMID: 34642458
  46. Requie, L.M.; Gómez-Gonzalo, M.; Speggiorin, M.; Managò, F.; Melone, M.; Congiu, M.; Chiavegato, A.; Lia, A.; Zonta, M.; Losi, G.; Henriques, V.J.; Pugliese, A.; Pacinelli, G.; Marsicano, G.; Papaleo, F.; Muntoni, A.L.; Conti, F.; Carmignoto, G. Astrocytes mediate long-lasting synaptic regulation of ventral tegmental area dopamine neurons. Nat. Neurosci., 2022, 25(12), 1639-1650. doi: 10.1038/s41593-022-01193-4 PMID: 36396976
  47. Henneberger, C.; Papouin, T.; Oliet, S.H.R.; Rusakov, D.A. Long-term potentiation depends on release of d-serine from astrocytes. Nature, 2010, 463(7278), 232-236. doi: 10.1038/nature08673 PMID: 20075918
  48. Mothet, J.P.; Parent, A.T.; Wolosker, H.; Brady, R.O., Jr; Linden, D.J.; Ferris, C.D.; Rogawski, M.A.; Snyder, S.H. D -Serine is an endogenous ligand for the glycine site of the N -methyl- D -aspartate receptor. Proc. Natl. Acad. Sci., 2000, 97(9), 4926-4931. doi: 10.1073/pnas.97.9.4926 PMID: 10781100
  49. Coyle, J.T.; Balu, D.; Wolosker, H. d-serine, the shape-shifting NMDA receptor co-agonist. Neurochem. Res., 2020, 45(6), 1344-1353. doi: 10.1007/s11064-020-03014-1 PMID: 32189130
  50. Wolosker, H.; Balu, D.T.; Coyle, J.T. The rise and fall of the d -serine-mediated gliotransmission hypothesis. Trends Neurosci., 2016, 39(11), 712-721. doi: 10.1016/j.tins.2016.09.007 PMID: 27742076
  51. Papouin, T.; Dunphy, J.M.; Tolman, M.; Dineley, K.T.; Haydon, P.G. Septal cholinergic neuromodulation tunes the astrocyte-dependent gating of hippocampal NMDA receptors to wakefulness. Neuron, 2017, 94(4), 840-854.e7. doi: 10.1016/j.neuron.2017.04.021 PMID: 28479102
  52. Koh, W.; Park, M.; Chun, Y.E.; Lee, J.; Shim, H.S.; Park, M.G.; Kim, S.; Sa, M.; Joo, J.; Kang, H.; Oh, S.J.; Woo, J.; Chun, H.; Lee, S.E.; Hong, J.; Feng, J.; Li, Y.; Ryu, H.; Cho, J.; Lee, C.J. Astrocytes render memory flexible by releasing D-serine and regulating NMDA receptor tone in the hippocampus. Biol. Psychiatry, 2022, 91(8), 740-752. doi: 10.1016/j.biopsych.2021.10.012 PMID: 34952697
  53. Huang, A.Y.S.; Woo, J.; Sardar, D.; Lozzi, B.; Bosquez Huerta, N.A.; Lin, C.C.J.; Felice, D.; Jain, A.; Paulucci-Holthauzen, A.; Deneen, B. Region-specific transcriptional control of astrocyte function oversees local circuit activities. Neuron, 2020, 106(6), 992-1008.e9. doi: 10.1016/j.neuron.2020.03.025 PMID: 32320644
  54. Suzuki, A.; Stern, S.A.; Bozdagi, O.; Huntley, G.W.; Walker, R.H.; Magistretti, P.J.; Alberini, C.M. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell, 2011, 144(5), 810-823. doi: 10.1016/j.cell.2011.02.018 PMID: 21376239
  55. González-Gutiérrez, A.; Ibacache, A.; Esparza, A.; Barros, L.F.; Sierralta, J. Neuronal lactate levels depend on glia‐derived lactate during high brain activity in Drosophila. Glia, 2020, 68(6), 1213-1227. doi: 10.1002/glia.23772 PMID: 31876077
  56. Vezzoli, E.; Calì, C.; De Roo, M.; Ponzoni, L.; Sogne, E.; Gagnon, N.; Francolini, M.; Braida, D.; Sala, M.; Muller, D.; Falqui, A.; Magistretti, P.J. Ultrastructural evidence for a role of astrocytes and glycogen-derived lactate in learning-dependent synaptic stabilization. Cereb. Cortex, 2020, 30(4), 2114-2127. doi: 10.1093/cercor/bhz226 PMID: 31807747
  57. Descalzi, G.; Gao, V.; Steinman, M.Q.; Suzuki, A.; Alberini, C.M. Lactate from astrocytes fuels learning-induced mRNA translation in excitatory and inhibitory neurons. Commun. Biol., 2019, 2(1), 247. doi: 10.1038/s42003-019-0495-2 PMID: 31286064
  58. Herkenham, M.; Lynn, A.B.; Little, M.D.; Johnson, M.R.; Melvin, L.S.; de Costa, B.R.; Rice, K.C. Cannabinoid receptor localization in brain. Proc. Natl. Acad. Sci., 1990, 87(5), 1932-1936. doi: 10.1073/pnas.87.5.1932 PMID: 2308954
  59. Navarrete, M.; Araque, A. Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron, 2010, 68(1), 113-126. doi: 10.1016/j.neuron.2010.08.043 PMID: 20920795
  60. Robin, L.M.; Oliveira da Cruz, J.F.; Langlais, V.C.; Martin-Fernandez, M.; Metna-Laurent, M.; Busquets-Garcia, A.; Bellocchio, L.; Soria-Gomez, E.; Papouin, T.; Varilh, M.; Sherwood, M.W.; Belluomo, I.; Balcells, G.; Matias, I.; Bosier, B.; Drago, F.; Van Eeckhaut, A.; Smolders, I.; Georges, F.; Araque, A.; Panatier, A.; Oliet, S.H.R.; Marsicano, G. Astroglial CB1 receptors determine synaptic d-serine availability to enable recognition memory. Neuron, 2018, 98(5), 935-944.e5. doi: 10.1016/j.neuron.2018.04.034 PMID: 29779943
  61. Zhou, Z.; Okamoto, K.; Onodera, J.; Hiragi, T.; Andoh, M.; Ikawa, M.; Tanaka, K.F.; Ikegaya, Y.; Koyama, R. Astrocytic cAMP modulates memory via synaptic plasticity. Proc. Natl. Acad. Sci., 2021, 118(3), e2016584118. doi: 10.1073/pnas.2016584118 PMID: 33452135
  62. Chi, S.; Cui, Y.; Wang, H.; Jiang, J.; Zhang, T.; Sun, S.; Zhou, Z.; Zhong, Y.; Xiao, B. Astrocytic Piezo1-mediated mechanotransduction determines adult neurogenesis and cognitive functions. Neuron, 2022, 110(18), 2984-2999.e8. doi: 10.1016/j.neuron.2022.07.010 PMID: 35963237
  63. Henneberger, C.; Bard, L.; Panatier, A.; Reynolds, J.P.; Kopach, O.; Medvedev, N.I.; Minge, D.; Herde, M.K.; Anders, S.; Kraev, I.; Heller, J.P.; Rama, S.; Zheng, K.; Jensen, T.P.; Sanchez-Romero, I.; Jackson, C.J.; Janovjak, H.; Ottersen, O.P.; Nagelhus, E.A.; Oliet, S.H.R.; Stewart, M.G.; Nägerl, U.V.; Rusakov, D.A. LTP induction boosts glutamate spillover by driving withdrawal of perisynaptic astroglia. Neuron, 2020, 108(5), 919-936.e11. doi: 10.1016/j.neuron.2020.08.030 PMID: 32976770
  64. Vignoli, B.; Sansevero, G.; Sasi, M.; Rimondini, R.; Blum, R.; Bonaldo, V.; Biasini, E.; Santi, S.; Berardi, N.; Lu, B.; Canossa, M. Astrocytic microdomains from mouse cortex gain molecular control over long-term information storage and memory retention. Commun. Biol., 2021, 4(1), 1152. doi: 10.1038/s42003-021-02678-x PMID: 34611268
  65. Dudek, S.M.; Bear, M.F. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc. Natl. Acad. Sci., 1992, 89(10), 4363-4367. doi: 10.1073/pnas.89.10.4363 PMID: 1350090
  66. Han, J.; Kesner, P.; Metna-Laurent, M.; Duan, T.; Xu, L.; Georges, F.; Koehl, M.; Abrous, D.N.; Mendizabal-Zubiaga, J.; Grandes, P.; Liu, Q.; Bai, G.; Wang, W.; Xiong, L.; Ren, W.; Marsicano, G.; Zhang, X. Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD. Cell, 2012, 148(5), 1039-1050. doi: 10.1016/j.cell.2012.01.037 PMID: 22385967
  67. Navarrete, M.; Araque, A. Endocannabinoids mediate neuron-astrocyte communication. Neuron, 2008, 57(6), 883-893. doi: 10.1016/j.neuron.2008.01.029 PMID: 18367089
  68. Pinto-Duarte, A.; Roberts, A.J.; Ouyang, K.; Sejnowski, T.J. Impairments in remote memory caused by the lack of Type 2 IP 3 receptors. Glia, 2019, 67(10), 1976-1989. doi: 10.1002/glia.23679 PMID: 31348567
  69. Navarrete, M.; Cuartero, M.I.; Palenzuela, R.; Draffin, J.E.; Konomi, A.; Serra, I.; Colié, S.; Castaño-Castaño, S.; Hasan, M.T.; Nebreda, Á.R.; Esteban, J.A. Astrocytic p38α MAPK drives NMDA receptor-dependent long-term depression and modulates long-term memory. Nat. Commun., 2019, 10(1), 2968. doi: 10.1038/s41467-019-10830-9 PMID: 31273206
  70. Soto, M.; Cai, W.; Konishi, M.; Kahn, C.R. Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior. Proc. Natl. Acad. Sci., 2019, 116(13), 6379-6384. doi: 10.1073/pnas.1817391116 PMID: 30765523
  71. Noriega-Prieto, J.A.; Maglio, L.E.; Zegarra-Valdivia, J.A.; Pignatelli, J.; Fernandez, A.M.; Martinez-Rachadell, L.; Fernandes, J.; Núñez, Á.; Araque, A.; Torres-Alemán, I.; Fernández de Sevilla, D. Astrocytic IGF-IRs induce adenosine-mediated inhibitory downregulation and improve sensory discrimination. J. Neurosci., 2021, 41(22), 4768-4781. doi: 10.1523/JNEUROSCI.0005-21.2021 PMID: 33911021
  72. Brzosko, Z.; Mierau, S.B.; Paulsen, O. Neuromodulation of spike-timing-dependent plasticity: Past, present, and future. Neuron, 2019, 103(4), 563-581. doi: 10.1016/j.neuron.2019.05.041 PMID: 31437453
  73. Falcón-Moya, R.; Pérez-Rodríguez, M.; Prius-Mengual, J.; Andrade-Talavera, Y.; Arroyo-García, L.E.; Pérez-Artés, R.; Mateos-Aparicio, P.; Guerra-Gomes, S.; Oliveira, J.F.; Flores, G.; Rodríguez-Moreno, A. Astrocyte-mediated switch in spike timing-dependent plasticity during hippocampal development. Nat. Commun., 2020, 11(1), 4388. doi: 10.1038/s41467-020-18024-4 PMID: 32873805
  74. Martínez-Gallego, I.; Pérez-Rodríguez, M.; Coatl-Cuaya, H.; Flores, G.; Rodríguez-Moreno, A. Adenosine and astrocytes determine the developmental dynamics of spike timing-dependent plasticity in the somatosensory cortex. J. Neurosci., 2022, 42(31), 6038-6052. doi: 10.1523/JNEUROSCI.0115-22.2022 PMID: 35768208
  75. Min, R.; Nevian, T. Astrocyte signaling controls spike timing-dependent depression at neocortical synapses. Nat. Neurosci., 2012, 15(5), 746-753. doi: 10.1038/nn.3075 PMID: 22446881
  76. Jones, E.V.; Bouvier, D.S. Astrocyte-secreted matricellular proteins in CNS remodelling during development and disease. Neural Plast., 2014, 2014, 1-12. doi: 10.1155/2014/321209 PMID: 24551460
  77. Risher, W.C.; Kim, N.; Koh, S.; Choi, J.E.; Mitev, P.; Spence, E.F.; Pilaz, L.J.; Wang, D.; Feng, G.; Silver, D.L.; Soderling, S.H.; Yin, H.H.; Eroglu, C. Thrombospondin receptor α2δ-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1. J. Cell Biol., 2018, 217(10), 3747-3765. doi: 10.1083/jcb.201802057 PMID: 30054448
  78. Takano, T.; Wallace, J.T.; Baldwin, K.T.; Purkey, A.M.; Uezu, A.; Courtland, J.L.; Soderblom, E.J.; Shimogori, T.; Maness, P.F.; Eroglu, C.; Soderling, S.H. Chemico-genetic discovery of astrocytic control of inhibition in vivo. Nature, 2020, 588(7837), 296-302. doi: 10.1038/s41586-020-2926-0 PMID: 33177716
  79. Chung, W.S.; Clarke, L.E.; Wang, G.X.; Stafford, B.K.; Sher, A.; Chakraborty, C.; Joung, J.; Foo, L.C.; Thompson, A.; Chen, C.; Smith, S.J.; Barres, B.A. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature, 2013, 504(7480), 394-400. doi: 10.1038/nature12776 PMID: 24270812
  80. Lee, J.H.; Kim, J.; Noh, S.; Lee, H.; Lee, S.Y.; Mun, J.Y.; Park, H.; Chung, W.S. Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature, 2021, 590(7847), 612-617. doi: 10.1038/s41586-020-03060-3 PMID: 33361813
  81. Vainchtein, I.D.; Chin, G.; Cho, F.S.; Kelley, K.W.; Miller, J.G.; Chien, E.C.; Liddelow, S.A.; Nguyen, P.T.; Nakao-Inoue, H.; Dorman, L.C.; Akil, O.; Joshita, S.; Barres, B.A.; Paz, J.T.; Molofsky, A.B.; Molofsky, A.V. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science, 2018, 359(6381), 1269-1273. doi: 10.1126/science.aal3589 PMID: 29420261
  82. Wang, Y.; Fu, W.Y.; Cheung, K.; Hung, K.W.; Chen, C.; Geng, H.; Yung, W.H.; Qu, J.Y.; Fu, A.K.Y.; Ip, N.Y. Astrocyte-secreted IL-33 mediates homeostatic synaptic plasticity in the adult hippocampus. Proc. Natl. Acad. Sci., 2021, 118(1), e2020810118. doi: 10.1073/pnas.2020810118 PMID: 33443211
  83. Koeppen, J.; Nguyen, A.Q.; Nikolakopoulou, A.M.; Garcia, M.; Hanna, S.; Woodruff, S.; Figueroa, Z.; Obenaus, A.; Ethell, I.M. Functional consequences of synapse remodeling following astrocyte-specific regulation of ephrin-B1 in the adult hippocampus. J. Neurosci., 2018, 38(25), 5710-5726. doi: 10.1523/JNEUROSCI.3618-17.2018 PMID: 29793972
  84. Tan, Z.; Liu, Y.; Xi, W.; Lou, H.; Zhu, L.; Guo, Z.; Mei, L.; Duan, S. Glia-derived ATP inversely regulates excitability of pyramidal and CCK-positive neurons. Nat. Commun., 2017, 8(1), 13772. doi: 10.1038/ncomms13772 PMID: 28128211
  85. Poskanzer, K.E.; Yuste, R. Astrocytes regulate cortical state switching in vivo. Proc. Natl. Acad. Sci., 2016, 113(19), E2675-E2684. doi: 10.1073/pnas.1520759113 PMID: 27122314
  86. Ji, D.; Wilson, M.A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat. Neurosci., 2007, 10(1), 100-107. doi: 10.1038/nn1825 PMID: 17173043
  87. Lee, H.S.; Ghetti, A.; Pinto-Duarte, A.; Wang, X.; Dziewczapolski, G.; Galimi, F.; Huitron-Resendiz, S.; Piña-Crespo, J.C.; Roberts, A.J.; Verma, I.M.; Sejnowski, T.J.; Heinemann, S.F. Astrocytes contribute to gamma oscillations and recognition memory. Proc. Natl. Acad. Sci., 2014, 111(32), E3343-E3352. doi: 10.1073/pnas.1410893111 PMID: 25071179
  88. Brockett, A.T.; Kane, G.A.; Monari, P.K.; Briones, B.A.; Vigneron, P.A.; Barber, G.A.; Bermudez, A.; Dieffenbach, U.; Kloth, A.D.; Buschman, T.J.; Gould, E. Evidence supporting a role for astrocytes in the regulation of cognitive flexibility and neuronal oscillations through the Ca2+ binding protein S100β. PLoS One, 2018, 13(4), e0195726. doi: 10.1371/journal.pone.0195726 PMID: 29664924
  89. Sardinha, V.M.; Guerra-Gomes, S.; Caetano, I.; Tavares, G.; Martins, M.; Reis, J.S.; Correia, J.S.; Teixeira-Castro, A.; Pinto, L.; Sousa, N.; Oliveira, J.F. Astrocytic signaling supports hippocampal–prefrontal theta synchronization and cognitive function. Glia, 2017, 65(12), 1944-1960. doi: 10.1002/glia.23205 PMID: 28885722
  90. Mederos, S.; Sánchez-Puelles, C.; Esparza, J.; Valero, M.; Ponomarenko, A.; Perea, G. GABAergic signaling to astrocytes in the prefrontal cortex sustains goal-directed behaviors. Nat. Neurosci., 2021, 24(1), 82-92. doi: 10.1038/s41593-020-00752-x PMID: 33288910
  91. Luo, L. Architectures of neuronal circuits. Science, 2021, 373(6559), eabg7285. doi: 10.1126/science.abg7285 PMID: 34516844
  92. Martin-Fernandez, M.; Jamison, S.; Robin, L.M.; Zhao, Z.; Martin, E.D.; Aguilar, J.; Benneyworth, M.A.; Marsicano, G.; Araque, A. Synapse-specific astrocyte gating of amygdala-related behavior. Nat. Neurosci., 2017, 20(11), 1540-1548. doi: 10.1038/nn.4649 PMID: 28945222
  93. Serra, I.; Esparza, J.; Delgado, L.; Martín-Monteagudo, C.; Puigròs, M.; Podlesniy, P.; Trullás, R.; Navarrete, M. Ca2+-modulated photoactivatable imaging reveals neuron-astrocyte glutamatergic circuitries within the nucleus accumbens. Nat. Commun., 2022, 13(1), 5272. doi: 10.1038/s41467-022-33020-6 PMID: 36071061
  94. Burgess, N.; Maguire, E.A.; O’Keefe, J. The human hippocampus and spatial and episodic memory. Neuron, 2002, 35(4), 625-641. doi: 10.1016/S0896-6273(02)00830-9 PMID: 12194864
  95. Jourdain, P.; Bergersen, L.H.; Bhaukaurally, K.; Bezzi, P.; Santello, M.; Domercq, M.; Matute, C.; Tonello, F.; Gundersen, V.; Volterra, A. Glutamate exocytosis from astrocytes controls synaptic strength. Nat. Neurosci., 2007, 10(3), 331-339. doi: 10.1038/nn1849 PMID: 17310248
  96. Savtchouk, I.; Di Castro, M.A.; Ali, R.; Stubbe, H.; Luján, R.; Volterra, A. Circuit-specific control of the medial entorhinal inputs to the dentate gyrus by atypical presynaptic NMDARs activated by astrocytes. Proc. Natl. Acad. Sci., 2019, 116(27), 13602-13610. doi: 10.1073/pnas.1816013116 PMID: 31152131
  97. Zhao, J.; Sun, J.; Zheng, Y.; Zheng, Y.; Shao, Y.; Li, Y.; Fei, F.; Xu, C.; Liu, X.; Wang, S.; Ruan, Y.; Liu, J.; Duan, S.; Chen, Z.; Wang, Y. Activated astrocytes attenuate neocortical seizures in rodent models through driving Na+-K+-ATPase. Nat. Commun., 2022, 13(1), 7136. doi: 10.1038/s41467-022-34662-2 PMID: 36414629
  98. Kol, A.; Adamsky, A.; Groysman, M.; Kreisel, T.; London, M.; Goshen, I. Astrocytes contribute to remote memory formation by modulating hippocampal-cortical communication during learning. Nat. Neurosci., 2020, 23(10), 1229-1239. doi: 10.1038/s41593-020-0679-6 PMID: 32747787
  99. Hasan, M.; Kanna, M.S.; Jun, W.; Ramkrishnan, A.S.; Iqbal, Z.; Lee, Y.; Li, Y. Schema‐like learning and memory consolidation acting through myelination. FASEB J., 2019, 33(11), 11758-11775. doi: 10.1096/fj.201900910R PMID: 31366238
  100. Liu, S.; Wong, H.Y.; Xie, L.; Iqbal, Z.; Lei, Z.; Fu, Z.; Lam, Y.Y.; Ramkrishnan, A.S.; Li, Y. Astrocytes in CA1 modulate schema establishment in the hippocampal-cortical neuron network. BMC Biol., 2022, 20(1), 250. doi: 10.1186/s12915-022-01445-6 PMID: 36352395
  101. Lei, Z.; Xie, L.; Li, C.H.; Lam, Y.Y.; Ramkrishnan, A.S.; Fu, Z.; Zeng, X.; Liu, S.; Iqbal, Z.; Li, Y. Chemogenetic activation of astrocytes in the basolateral amygdala contributes to fear memory formation by modulating the amygdala-prefrontal cortex communication. Int. J. Mol. Sci., 2022, 23(11), 6092. doi: 10.3390/ijms23116092 PMID: 35682767
  102. Doron, A.; Rubin, A.; Benmelech-Chovav, A.; Benaim, N.; Carmi, T.; Refaeli, R.; Novick, N.; Kreisel, T.; Ziv, Y.; Goshen, I. Hippocampal astrocytes encode reward location. Nature, 2022, 609(7928), 772-778. doi: 10.1038/s41586-022-05146-6 PMID: 36045289
  103. Curreli, S.; Bonato, J.; Romanzi, S.; Panzeri, S.; Fellin, T. Complementary encoding of spatial information in hippocampal astrocytes. PLoS Biol., 2022, 20(3), e3001530. doi: 10.1371/journal.pbio.3001530 PMID: 35239646
  104. Bellmund, J.L.S.; Gärdenfors, P.; Moser, E.I.; Doeller, C.F. Navigating cognition: Spatial codes for human thinking. Science, 2018, 362(6415), eaat6766. doi: 10.1126/science.aat6766 PMID: 30409861
  105. Hartley, T.; Lever, C.; Burgess, N.; O’Keefe, J. Space in the brain: How the hippocampal formation supports spatial cognition. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1635), 20120510. doi: 10.1098/rstb.2012.0510 PMID: 24366125
  106. Nagai, J.; Bellafard, A.; Qu, Z.; Yu, X.; Ollivier, M.; Gangwani, M.R.; Diaz-Castro, B.; Coppola, G.; Schumacher, S.M.; Golshani, P.; Gradinaru, V.; Khakh, B.S. Specific and behaviorally consequential astrocyte Gq GPCR signaling attenuation in vivo with iβARK. Neuron, 2021, 109(14), 2256-2274.e9. doi: 10.1016/j.neuron.2021.05.023 PMID: 34139149
  107. Pannasch, U.; Vargová, L.; Reingruber, J.; Ezan, P.; Holcman, D.; Giaume, C.; Syková, E.; Rouach, N. Astroglial networks scale synaptic activity and plasticity. Proc. Natl. Acad. Sci., 2011, 108(20), 8467-8472. doi: 10.1073/pnas.1016650108 PMID: 21536893
  108. Hösli, L.; Binini, N.; Ferrari, K.D.; Thieren, L.; Looser, Z.J.; Zuend, M.; Zanker, H.S.; Berry, S.; Holub, M.; Möbius, W.; Ruhwedel, T.; Nave, K.A.; Giaume, C.; Weber, B.; Saab, A.S. Decoupling astrocytes in adult mice impairs synaptic plasticity and spatial learning. Cell Rep., 2022, 38(10), 110484. doi: 10.1016/j.celrep.2022.110484 PMID: 35263595
  109. Tao, X.D.; Liu, Z.R.; Zhang, Y.Q.; Zhang, X.H. Connexin43 hemichannels contribute to working memory and excitatory synaptic transmission of pyramidal neurons in the prefrontal cortex of rats. Life Sci., 2021, 286, 120049. doi: 10.1016/j.lfs.2021.120049 PMID: 34662549
  110. Herzine, A.; Sekkat, G.; Kaminski, S.; Calcagno, G.; Boschi-Muller, S.; Safi, H.; Corbier, C.; Siest, S.; Claudepierre, T.; Yen, F.T. Lipolysis-stimulated lipoprotein receptor acts as sensor to regulate apoe release in astrocytes. Int. J. Mol. Sci., 2022, 23(15), 8630. doi: 10.3390/ijms23158630 PMID: 35955777
  111. El Hajj, A.; Herzine, A.; Calcagno, G.; Désor, F.; Djelti, F.; Bombail, V.; Denis, I.; Oster, T.; Malaplate, C.; Vigier, M.; Kaminski, S.; Pauron, L.; Corbier, C.; Yen, F.T.; Lanhers, M.C.; Claudepierre, T. Targeted suppression of lipoprotein receptor LSR in astrocytes leads to olfactory and memory deficits in mice. Int. J. Mol. Sci., 2022, 23(4), 2049. doi: 10.3390/ijms23042049 PMID: 35216163
  112. Baier, M.P.; Nagaraja, R.Y.; Yarbrough, H.P.; Owen, D.B.; Masingale, A.M.; Ranjit, R.; Stiles, M.A.; Murphy, A.; Agbaga, M.P.; Ahmad, M.; Sherry, D.M.; Kinter, M.T.; Van Remmen, H.; Logan, S. Selective ablation of Sod2 in astrocytes induces sex-specific effects on cognitive function, d-serine availability, and astrogliosis. J. Neurosci., 2022, 42(31), 5992-6006. doi: 10.1523/JNEUROSCI.2543-21.2022 PMID: 35760531
  113. Curie, A.; Sacco, S.; Bussy, G.; de Saint Martin, A.; Boddaert, N.; Chanraud, S.; Meresse, I.; Chelly, J.; Zilbovicius, M.; des Portes, V. Impairment of cerebello-thalamo-frontal pathway in Rab-GDI mutated patients with pure mental deficiency. Eur. J. Med. Genet., 2009, 52(1), 6-13. doi: 10.1016/j.ejmg.2008.09.003 PMID: 18992375
  114. Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol., 2009, 10(8), 513-525. doi: 10.1038/nrm2728 PMID: 19603039
  115. D’Adamo, P.; Horvat, A.; Gurgone, A.; Mignogna, M.L.; Bianchi, V.; Masetti, M.; Ripamonti, M.; Taverna, S.; Velebit, J.; Malnar, M.; Muhič, M.; Fink, K.; Bachi, A.; Restuccia, U.; Belloli, S.; Moresco, R.M.; Mercalli, A.; Piemonti, L.; Potokar, M.; Bobnar, S.T.; Kreft, M.; Chowdhury, H.H.; Stenovec, M.; Vardjan, N.; Zorec, R. Inhibiting glycolysis rescues memory impairment in an intellectual disability Gdi1-null mouse. Metabolism, 2021, 116, 154463. doi: 10.1016/j.metabol.2020.154463 PMID: 33309713
  116. Adamsky, A.; Kol, A.; Kreisel, T.; Doron, A.; Ozeri-Engelhard, N.; Melcer, T.; Refaeli, R.; Horn, H.; Regev, L.; Groysman, M.; London, M.; Goshen, I. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell, 2018, 174(1), 59-71.e14. doi: 10.1016/j.cell.2018.05.002 PMID: 29804835
  117. Li, Y.; Li, L.; Wu, J.; Zhu, Z.; Feng, X.; Qin, L.; Zhu, Y.; Sun, L.; Liu, Y.; Qiu, Z.; Duan, S.; Yu, Y.Q. Activation of astrocytes in hippocampus decreases fear memory through adenosine A1 receptors. eLife, 2020, 9, e57155. doi: 10.7554/eLife.57155 PMID: 32869747
  118. Fan, X.C.; Ma, C.N.; Song, J.C.; Liao, Z.H.; Huang, N.; Liu, X.; Ma, L. Rac1 signaling in amygdala astrocytes regulates fear memory acquisition and retrieval. Neurosci. Bull., 2021, 37(7), 947-958. doi: 10.1007/s12264-021-00677-w PMID: 33909243
  119. Li, W.P.; Su, X.H.; Hu, N.Y.; Hu, J.; Li, X.W.; Yang, J.M.; Gao, T.M. Astrocytes mediate cholinergic regulation of adult hippocampal neurogenesis and memory through M1 muscarinic receptor. Biol. Psychiatry, 2022, 92(12), 984-998. doi: 10.1016/j.biopsych.2022.04.019 PMID: 35787318
  120. Badia-Soteras, A.; Heistek, T.S.; Kater, M.S.J.; Mak, A.; Negrean, A.; van den Oever, M.C.; Mansvelder, H.D.; Khakh, B.S.; Min, R.; Smit, A.B.; Verheijen, M.H.G. Retraction of astrocyte leaflets from the synapse enhances fear memory. Biol. Psychiatry, 2023, 94(3), 226-238. doi: 10.1016/j.biopsych.2022.10.013 PMID: 36702661
  121. Zhang, K.; Förster, R.; He, W.; Liao, X.; Li, J.; Yang, C.; Qin, H.; Wang, M.; Ding, R.; Li, R.; Jian, T.; Wang, Y.; Zhang, J.; Yang, Z.; Jin, W.; Zhang, Y.; Qin, S.; Lu, Y.; Chen, T.; Stobart, J.; Weber, B.; Adelsberger, H.; Konnerth, A.; Chen, X. Fear learning induces α7-nicotinic acetylcholine receptor-mediated astrocytic responsiveness that is required for memory persistence. Nat. Neurosci., 2021, 24(12), 1686-1698. doi: 10.1038/s41593-021-00949-8 PMID: 34782794
  122. Tertil, M.; Skupio, U.; Barut, J.; Dubovyk, V.; Wawrzczak-Bargiela, A.; Soltys, Z.; Golda, S.; Kudla, L.; Wiktorowska, L.; Szklarczyk, K.; Korostynski, M.; Przewlocki, R.; Slezak, M. Glucocorticoid receptor signaling in astrocytes is required for aversive memory formation. Transl. Psychiatry, 2018, 8(1), 255. doi: 10.1038/s41398-018-0300-x PMID: 30487639
  123. Iqbal, Z.; Liu, S.; Lei, Z.; Ramkrishnan, A.S.; Akter, M.; Li, Y. Astrocyte L-Lactate signaling in the acc regulates visceral pain aversive memory in rats. Cells, 2022, 12(1), 26. doi: 10.3390/cells12010026 PMID: 36611820
  124. Iqbal, Z.; Lei, Z.; Ramkrishnan, A.S.; Liu, S.; Hasan, M.; Akter, M.; Lam, Y.Y.; Li, Y. Adrenergic signalling to astrocytes in anterior cingulate cortex contributes to pain-related aversive memory in rats. Commun. Biol., 2023, 6(1), 10. doi: 10.1038/s42003-022-04405-6 PMID: 36604595
  125. Cheung, G.; Bataveljic, D.; Visser, J.; Kumar, N.; Moulard, J.; Dallérac, G.; Mozheiko, D.; Rollenhagen, A.; Ezan, P.; Mongin, C.; Chever, O.; Bemelmans, A.P.; Lübke, J.; Leray, I.; Rouach, N. Physiological synaptic activity and recognition memory require astroglial glutamine. Nat. Commun., 2022, 13(1), 753. doi: 10.1038/s41467-022-28331-7 PMID: 35136061
  126. Ray, S.; Valekunja, U.K.; Stangherlin, A.; Howell, S.A.; Snijders, A.P.; Damodaran, G.; Reddy, A.B. Circadian rhythms in the absence of the clock gene Bmal1. Science, 2020, 367(6479), 800-806. doi: 10.1126/science.aaw7365 PMID: 32054765
  127. Barca-Mayo, O.; Pons-Espinal, M.; Follert, P.; Armirotti, A.; Berdondini, L.; De Pietri Tonelli, D. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat. Commun., 2017, 8(1), 14336. doi: 10.1038/ncomms14336 PMID: 28186121
  128. Sofroniew, M.V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci., 2009, 32(12), 638-647. doi: 10.1016/j.tins.2009.08.002 PMID: 19782411
  129. Bellaver, B.; Souza, D.G.; Souza, D.O.; Quincozes-Santos, A. Hippocampal astrocyte cultures from adult and aged rats reproduce changes in glial functionality observed in the aging brain. Mol. Neurobiol., 2017, 54(4), 2969-2985. doi: 10.1007/s12035-016-9880-8 PMID: 27026184
  130. Murphy-Royal, C.; Gordon, G.R.; Bains, J.S. Stress‐induced structural and functional modifications of astrocytes—Further implicating glia in the central response to stress. Glia, 2019, 67(10), 1806-1820. doi: 10.1002/glia.23610 PMID: 30889320
  131. Tynan, R.J.; Beynon, S.B.; Hinwood, M.; Johnson, S.J.; Nilsson, M.; Woods, J.J.; Walker, F.R. Chronic stress-induced disruption of the astrocyte network is driven by structural atrophy and not loss of astrocytes. Acta Neuropathol., 2013, 126(1), 75-91. doi: 10.1007/s00401-013-1102-0 PMID: 23512378
  132. Jo, S.; Yarishkin, O.; Hwang, Y.J.; Chun, Y.E.; Park, M.; Woo, D.H.; Bae, J.Y.; Kim, T.; Lee, J.; Chun, H.; Park, H.J.; Lee, D.Y.; Hong, J.; Kim, H.Y.; Oh, S.J.; Park, S.J.; Lee, H.; Yoon, B.E.; Kim, Y.; Jeong, Y.; Shim, I.; Bae, Y.C.; Cho, J.; Kowall, N.W.; Ryu, H.; Hwang, E.; Kim, D.; Lee, C.J. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat. Med., 2014, 20(8), 886-896. doi: 10.1038/nm.3639 PMID: 24973918
  133. Chun, H.; Im, H.; Kang, Y.J.; Kim, Y.; Shin, J.H.; Won, W.; Lim, J.; Ju, Y.; Park, Y.M.; Kim, S.; Lee, S.E.; Lee, J.; Woo, J.; Hwang, Y.; Cho, H.; Jo, S.; Park, J.H.; Kim, D.; Kim, D.Y.; Seo, J.S.; Gwag, B.J.; Kim, Y.S.; Park, K.D.; Kaang, B.K.; Cho, H.; Ryu, H.; Lee, C.J. Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer’s disease via H2O2− production. Nat. Neurosci., 2020, 23(12), 1555-1566. doi: 10.1038/s41593-020-00735-y PMID: 33199896
  134. Pereira, J.B.; Janelidze, S.; Smith, R.; Mattsson-Carlgren, N.; Palmqvist, S.; Teunissen, C.E.; Zetterberg, H.; Stomrud, E.; Ashton, N.J.; Blennow, K.; Hansson, O. Plasma GFAP is an early marker of amyloid-β but not tau pathology in Alzheimer’s disease. Brain, 2021, 144(11), 3505-3516. doi: 10.1093/brain/awab223 PMID: 34259835
  135. Bettcher, B.M.; Olson, K.E.; Carlson, N.E.; McConnell, B.V.; Boyd, T.; Adame, V.; Solano, D.A.; Anton, P.; Markham, N.; Thaker, A.A.; Jensen, A.M.; Dallmann, E.N.; Potter, H.; Coughlan, C. Astrogliosis and episodic memory in late life: Higher GFAP is related to worse memory and white matter microstructure in healthy aging and Alzheimer’s disease. Neurobiol. Aging, 2021, 103, 68-77. doi: 10.1016/j.neurobiolaging.2021.02.012 PMID: 33845398
  136. Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; Nagelhus, E.A.; Nedergaard, M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med., 2012, 4(147), 147ra111. doi: 10.1126/scitranslmed.3003748 PMID: 22896675
  137. Xu, Z.; Xiao, N.; Chen, Y.; Huang, H.; Marshall, C.; Gao, J.; Cai, Z.; Wu, T.; Hu, G.; Xiao, M. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits. Mol. Neurodegener., 2015, 10(1), 58. doi: 10.1186/s13024-015-0056-1 PMID: 26526066
  138. Du, Z.; Song, Y.; Chen, X.; Zhang, W.; Zhang, G.; Li, H.; Chang, L.; Wu, Y. Knockdown of astrocytic Grin2a aggravates β‐amyloid‐induced memory and cognitive deficits through regulating nerve growth factor. Aging Cell, 2021, 20(8), e13437. doi: 10.1111/acel.13437 PMID: 34291567
  139. Ju, Y.H.; Bhalla, M.; Hyeon, S.J.; Oh, J.E.; Yoo, S.; Chae, U.; Kwon, J.; Koh, W.; Lim, J.; Park, Y.M.; Lee, J.; Cho, I.J.; Lee, H.; Ryu, H.; Lee, C.J. Astrocytic urea cycle detoxifies Aβ-derived ammonia while impairing memory in Alzheimer’s disease. Cell Metab., 2022, 34(8), 1104-1120.e8. doi: 10.1016/j.cmet.2022.05.011 PMID: 35738259
  140. Richetin, K.; Steullet, P.; Pachoud, M.; Perbet, R.; Parietti, E.; Maheswaran, M.; Eddarkaoui, S.; Bégard, S.; Pythoud, C.; Rey, M.; Caillierez, R.; Q Do, K.; Halliez, S.; Bezzi, P.; Buée, L.; Leuba, G.; Colin, M.; Toni, N.; Déglon, N. Tau accumulation in astrocytes of the dentate gyrus induces neuronal dysfunction and memory deficits in Alzheimer’s disease. Nat. Neurosci., 2020, 23(12), 1567-1579. doi: 10.1038/s41593-020-00728-x PMID: 33169029
  141. Holtzman, D.M.; Herz, J.; Bu, G. Apolipoprotein E and apolipoprotein E receptors: Normal biology and roles in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(3), a006312. doi: 10.1101/cshperspect.a006312 PMID: 22393530
  142. Pitas, R.E.; Boyles, J.K.; Lee, S.H.; Foss, D.; Mahley, R.W. Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim. Biophys. Acta. Lipids Lipid Metab., 1987, 917(1), 148-161. doi: 10.1016/0005-2760(87)90295-5 PMID: 3539206
  143. Montagne, A.; Nation, D.A.; Sagare, A.P.; Barisano, G.; Sweeney, M.D.; Chakhoyan, A.; Pachicano, M.; Joe, E.; Nelson, A.R.; D’Orazio, L.M.; Buennagel, D.P.; Harrington, M.G.; Benzinger, T.L.S.; Fagan, A.M.; Ringman, J.M.; Schneider, L.S.; Morris, J.C.; Reiman, E.M.; Caselli, R.J.; Chui, H.C.; Tcw, J.; Chen, Y.; Pa, J.; Conti, P.S.; Law, M.; Toga, A.W.; Zlokovic, B.V. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature, 2020, 581(7806), 71-76. doi: 10.1038/s41586-020-2247-3 PMID: 32376954
  144. Sienski, G.; Narayan, P.; Bonner, J.M.; Kory, N.; Boland, S.; Arczewska, A.A.; Ralvenius, W.T.; Akay, L.; Lockshin, E.; He, L.; Milo, B.; Graziosi, A.; Baru, V.; Lewis, C.A.; Kellis, M.; Sabatini, D.M.; Tsai, L.H.; Lindquist, S. APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. Sci. Transl. Med., 2021, 13(583), eaaz4564. doi: 10.1126/scitranslmed.aaz4564 PMID: 33658354
  145. Saroja, S.R.; Gorbachev, K.; Julia, T.C.W.; Goate, A.M.; Pereira, A.C. Astrocyte-secreted glypican-4 drives APOE4-dependent tau hyperphosphorylation. Proc. Natl. Acad. Sci., 2022, 119(34), e2108870119. doi: 10.1073/pnas.2108870119 PMID: 35969759
  146. Tcw, J.; Qian, L.; Pipalia, N.H.; Chao, M.J.; Liang, S.A.; Shi, Y.; Jain, B.R.; Bertelsen, S.E.; Kapoor, M.; Marcora, E.; Sikora, E.; Andrews, E.J.; Martini, A.C.; Karch, C.M.; Head, E.; Holtzman, D.M.; Zhang, B.; Wang, M.; Maxfield, F.R.; Poon, W.W.; Goate, A.M. Cholesterol and matrisome pathways dysregulated in astrocytes and microglia. Cell, 2022, 185(13), 2213-2233.e25. doi: 10.1016/j.cell.2022.05.017 PMID: 35750033
  147. Wang, C.; Xiong, M.; Gratuze, M.; Bao, X.; Shi, Y.; Andhey, P.S.; Manis, M.; Schroeder, C.; Yin, Z.; Madore, C.; Butovsky, O.; Artyomov, M.; Ulrich, J.D.; Holtzman, D.M. Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia. Neuron, 2021, 109(10), 1657-1674. doi: 10.1016/j.neuron.2021.03.024
  148. Le Douce, J.; Maugard, M.; Veran, J.; Matos, M.; Jégo, P.; Vigneron, P.A.; Faivre, E.; Toussay, X.; Vandenberghe, M.; Balbastre, Y.; Piquet, J.; Guiot, E.; Tran, N.T.; Taverna, M.; Marinesco, S.; Koyanagi, A.; Furuya, S.; Gaudin-Guérif, M.; Goutal, S.; Ghettas, A.; Pruvost, A.; Bemelmans, A.P.; Gaillard, M.C.; Cambon, K.; Stimmer, L.; Sazdovitch, V.; Duyckaerts, C.; Knott, G.; Hérard, A.S.; Delzescaux, T.; Hantraye, P.; Brouillet, E.; Cauli, B.; Oliet, S.H.R.; Panatier, A.; Bonvento, G. Impairment of glycolysis-derived l-serine production in astrocytes contributes to cognitive deficits in alzheimer’s disease. Cell Metab., 2020, 31(3), 503-517.e8. doi: 10.1016/j.cmet.2020.02.004 PMID: 32130882
  149. Bosson, A.; Paumier, A.; Boisseau, S.; Jacquier-Sarlin, M.; Buisson, A.; Albrieux, M. TRPA1 channels promote astrocytic Ca2+ hyperactivity and synaptic dysfunction mediated by oligomeric forms of amyloid-β peptide. Mol. Neurodegener., 2017, 12(1), 53. doi: 10.1186/s13024-017-0194-8 PMID: 28683776
  150. Paumier, A.; Boisseau, S.; Jacquier-Sarlin, M.; Pernet-Gallay, K.; Buisson, A.; Albrieux, M. Astrocyte–neuron interplay is critical for Alzheimer’s disease pathogenesis and is rescued by TRPA1 channel blockade. Brain, 2022, 145(1), 388-405. doi: 10.1093/brain/awab281 PMID: 34302466
  151. Lia, A.; Sansevero, G.; Chiavegato, A.; Sbrissa, M.; Pendin, D.; Mariotti, L.; Pozzan, T.; Berardi, N.; Carmignoto, G.; Fasolato, C.; Zonta, M. Rescue of astrocyte activity by the calcium sensor STIM1 restores long-term synaptic plasticity in female mice modelling Alzheimer’s disease. Nat. Commun., 2023, 14(1), 1590. doi: 10.1038/s41467-023-37240-2 PMID: 36949142
  152. Reichenbach, N.; Delekate, A.; Breithausen, B.; Keppler, K.; Poll, S.; Schulte, T.; Peter, J.; Plescher, M.; Hansen, J.N.; Blank, N.; Keller, A.; Fuhrmann, M.; Henneberger, C.; Halle, A.; Petzold, G.C. P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer’s disease model. J. Exp. Med., 2018, 215(6), 1649-1663. doi: 10.1084/jem.20171487 PMID: 29724785
  153. Raha, S.; Ghosh, A.; Dutta, D.; Patel, D.R.; Pahan, K. Activation of PPARα enhances astroglial uptake and degradation of β-amyloid. Sci. Signal., 2021, 14(706), eabg4747. doi: 10.1126/scisignal.abg4747 PMID: 34699252
  154. McAlpine, C.S.; Park, J.; Griciuc, A.; Kim, E.; Choi, S.H.; Iwamoto, Y.; Kiss, M.G.; Christie, K.A.; Vinegoni, C.; Poller, W.C.; Mindur, J.E.; Chan, C.T.; He, S.; Janssen, H.; Wong, L.P.; Downey, J.; Singh, S.; Anzai, A.; Kahles, F.; Jorfi, M.; Feruglio, P.F.; Sadreyev, R.I.; Weissleder, R.; Kleinstiver, B.P.; Nahrendorf, M.; Tanzi, R.E.; Swirski, F.K. Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease. Nature, 2021, 595(7869), 701-706. doi: 10.1038/s41586-021-03734-6 PMID: 34262178
  155. Jiwaji, Z.; Tiwari, S.S.; Avilés-Reyes, R.X.; Hooley, M.; Hampton, D.; Torvell, M.; Johnson, D.A.; McQueen, J.; Baxter, P.; Sabari-Sankar, K.; Qiu, J.; He, X.; Fowler, J.; Febery, J.; Gregory, J.; Rose, J.; Tulloch, J.; Loan, J.; Story, D.; McDade, K.; Smith, A.M.; Greer, P.; Ball, M.; Kind, P.C.; Matthews, P.M.; Smith, C.; Dando, O.; Spires-Jones, T.L.; Johnson, J.A.; Chandran, S.; Hardingham, G.E. Reactive astrocytes acquire neuroprotective as well as deleterious signatures in response to Tau and Aß pathology. Nat. Commun., 2022, 13(1), 135. doi: 10.1038/s41467-021-27702-w PMID: 35013236
  156. Popov, A.; Brazhe, A.; Denisov, P.; Sutyagina, O.; Li, L.; Lazareva, N.; Verkhratsky, A.; Semyanov, A. Astrocyte dystrophy in ageing brain parallels impaired synaptic plasticity. Aging Cell, 2021, 20(3), e13334. doi: 10.1111/acel.13334 PMID: 33675569
  157. Verkhratsky, A.; Augusto-Oliveira, M.; Pivoriūnas, A.; Popov, A.; Brazhe, A.; Semyanov, A. Astroglial asthenia and loss of function, rather than reactivity, contribute to the ageing of the brain. Pflugers Arch., 2021, 473(5), 753-774. doi: 10.1007/s00424-020-02465-3 PMID: 32979108
  158. Ding, F.; Liang, S.; Li, R.; Yang, Z.; He, Y.; Yang, S.; Duan, Q.; Zhang, J.; Lyu, J.; Zhou, Z.; Huang, M.; Wang, H.; Li, J.; Yang, C.; Wang, Y.; Gong, M.; Chen, S.; Jia, H.; Chen, X.; Liao, X.; Fu, L.; Zhang, K. Astrocytes exhibit diverse Ca2+ changes at subcellular domains during brain aging. Front. Aging Neurosci., 2022, 14, 1029533. doi: 10.3389/fnagi.2022.1029533 PMID: 36389078
  159. Soreq, L.; Rose, J.; Soreq, E.; Hardy, J.; Trabzuni, D.; Cookson, M.R.; Smith, C.; Ryten, M.; Patani, R.; Ule, J. Major shifts in glial regional identity are a transcriptional hallmark of human brain aging. Cell Rep., 2017, 18(2), 557-570. doi: 10.1016/j.celrep.2016.12.011 PMID: 28076797
  160. Clarke, L.E.; Liddelow, S.A.; Chakraborty, C.; Münch, A.E.; Heiman, M.; Barres, B.A. Normal aging induces A1-like astrocyte reactivity. Proc. Natl. Acad. Sci., 2018, 115(8), E1896-E1905. doi: 10.1073/pnas.1800165115 PMID: 29437957
  161. Allen, W.E.; Blosser, T.R.; Sullivan, Z.A.; Dulac, C.; Zhuang, X. Molecular and spatial signatures of mouse brain aging at single-cell resolution. Cell, 2023, 186(1), 194-208.e18. doi: 10.1016/j.cell.2022.12.010 PMID: 36580914
  162. Preininger, M.K.; Kaufer, D. Blood-brain barrier dysfunction and astrocyte senescence as reciprocal drivers of neuropathology in aging. Int. J. Mol. Sci., 2022, 23(11), 6217. doi: 10.3390/ijms23116217 PMID: 35682895
  163. Cohen, J.; Torres, C. Astrocyte senescence: Evidence and significance. Aging Cell, 2019, 18(3), e12937. doi: 10.1111/acel.12937 PMID: 30815970
  164. Boisvert, M.M.; Erikson, G.A.; Shokhirev, M.N.; Allen, N.J. The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep., 2018, 22(1), 269-285. doi: 10.1016/j.celrep.2017.12.039 PMID: 29298427
  165. Orre, M.; Kamphuis, W.; Osborn, L.M.; Melief, J.; Kooijman, L.; Huitinga, I.; Klooster, J.; Bossers, K.; Hol, E.M. Acute isolation and transcriptome characterization of cortical astrocytes and microglia from young and aged mice. Neurobiol. Aging, 2014, 35(1), 1-14. doi: 10.1016/j.neurobiolaging.2013.07.008 PMID: 23954174
  166. Boender, A.J.; Bontempi, L.; Nava, L.; Pelloux, Y.; Tonini, R. Striatal astrocytes shape behavioral flexibility via regulation of the glutamate transporter EAAT2. Biol. Psychiatry, 2021, 89(11), 1045-1057. doi: 10.1016/j.biopsych.2020.11.015 PMID: 33516457
  167. Sharma, A.; Kazim, S.F.; Larson, C.S.; Ramakrishnan, A.; Gray, J.D.; McEwen, B.S.; Rosenberg, P.A.; Shen, L.; Pereira, A.C. Divergent roles of astrocytic versus neuronal EAAT2 deficiency on cognition and overlap with aging and Alzheimer’s molecular signatures. Proc. Natl. Acad. Sci., 2019, 116(43), 21800-21811. doi: 10.1073/pnas.1903566116 PMID: 31591195
  168. Yang, Z.; Gong, M.; Jian, T.; Li, J.; Yang, C.; Ma, Q.; Deng, P.; Wang, Y.; Huang, M.; Wang, H.; Yang, S.; Chen, X.; Yu, Z.; Wang, M.; Chen, C.; Zhang, K. Engrafted glial progenitor cells yield long-term integration and sensory improvement in aged mice. Stem Cell Res. Ther., 2022, 13(1), 285. doi: 10.1186/s13287-022-02959-0 PMID: 35765112
  169. Xu, X.; Shen, X.; Wang, J.; Feng, W.; Wang, M.; Miao, X.; Wu, Q.; Wu, L.; Wang, X.; Ma, Y.; Wu, S.; Bao, X.; Wang, W.; Wang, Y.; Huang, Z. YAP prevents premature senescence of astrocytes and cognitive decline of Alzheimer’s disease through regulating CDK6 signaling. Aging Cell, 2021, 20(9), e13465. doi: 10.1111/acel.13465 PMID: 34415667
  170. Raihan, O.; Brishti, A.; Molla, M.R.; Li, W.; Zhang, Q.; Xu, P.; Khan, M.I.; Zhang, J.; Liu, Q. The age-dependent elevation of miR-335-3p leads to reduced cholesterol and impaired memory in brain. Neuroscience, 2018, 390, 160-173. doi: 10.1016/j.neuroscience.2018.08.003 PMID: 30125687
  171. Patel, B.N.; Dunn, R.J.; Jeong, S.Y.; Zhu, Q.; Julien, J.P.; David, S. Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. J. Neurosci., 2002, 22(15), 6578-6586. doi: 10.1523/JNEUROSCI.22-15-06578.2002 PMID: 12151537
  172. Li, Z.D.; Li, H.; Kang, S.; Cui, Y.G.; Zheng, H.; Wang, P.; Han, K.; Yu, P.; Chang, Y.Z. The divergent effects of astrocyte ceruloplasmin on learning and memory function in young and old mice. Cell Death Dis., 2022, 13(11), 1006. doi: 10.1038/s41419-022-05459-4 PMID: 36443285
  173. Han, F.; Xiao, B.; Wen, L. Loss of glial cells of the hippocampus in a rat model of post-traumatic stress disorder. Neurochem. Res., 2015, 40(5), 942-951. doi: 10.1007/s11064-015-1549-6 PMID: 25749890
  174. Imbe, H.; Kimura, A.; Donishi, T.; Kaneoke, Y. Chronic restraint stress decreases glial fibrillary acidic protein and glutamate transporter in the periaqueductal gray matter. Neuroscience, 2012, 223, 209-218. doi: 10.1016/j.neuroscience.2012.08.007 PMID: 22890077
  175. Saur, L.; Baptista, P.P.A.; Bagatini, P.B.; Neves, L.T.; de Oliveira, R.M.; Vaz, S.P.; Ferreira, K.; Machado, S.A.; Mestriner, R.G.; Xavier, L.L. Experimental post-traumatic stress disorder decreases astrocyte density and changes astrocytic polarity in the CA1 hippocampus of male rats. Neurochem. Res., 2016, 41(4), 892-904. doi: 10.1007/s11064-015-1770-3 PMID: 26577396
  176. Wang, J.; Gao, F.; Cui, S.; Yang, S.; Gao, F.; Wang, X.; Zhu, G. Utility of 7,8-dihydroxyflavone in preventing astrocytic and synaptic deficits in the hippocampus elicited by PTSD. Pharmacol. Res., 2022, 176, 106079. doi: 10.1016/j.phrs.2022.106079 PMID: 35026406
  177. Kitayama, N.; Vaccarino, V.; Kutner, M.; Weiss, P.; Bremner, J.D. Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: A meta-analysis. J. Affect. Disord., 2005, 88(1), 79-86. doi: 10.1016/j.jad.2005.05.014 PMID: 16033700
  178. Gilbertson, M.W.; Shenton, M.E.; Ciszewski, A.; Kasai, K.; Lasko, N.B.; Orr, S.P.; Pitman, R.K. Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat. Neurosci., 2002, 5(11), 1242-1247. doi: 10.1038/nn958 PMID: 12379862
  179. Perez-Urrutia, N.; Mendoza, C.; Alvarez-Ricartes, N.; Oliveros-Matus, P.; Echeverria, F.; Grizzell, J.A.; Barreto, G.E.; Iarkov, A.; Echeverria, V. Intranasal cotinine improves memory, and reduces depressive-like behavior, and GFAP + cells loss induced by restraint stress in mice. Exp. Neurol., 2017, 295, 211-221. doi: 10.1016/j.expneurol.2017.06.016 PMID: 28625590
  180. Wingo, T.S.; Gerasimov, E.S.; Liu, Y.; Duong, D.M.; Vattathil, S.M.; Lori, A.; Gockley, J.; Breen, M.S.; Maihofer, A.X.; Nievergelt, C.M.; Koenen, K.C.; Levey, D.F.; Gelernter, J.; Stein, M.B.; Ressler, K.J.; Bennett, D.A.; Levey, A.I.; Seyfried, N.T.; Wingo, A.P. Integrating human brain proteomes with genome-wide association data implicates novel proteins in post-traumatic stress disorder. Mol. Psychiatry, 2022, 27(7), 3075-3084. doi: 10.1038/s41380-022-01544-4 PMID: 35449297
  181. Gao, F.; Wang, J.; Yang, S.; Ji, M.; Zhu, G. Fear extinction induced by activation of PKA ameliorates anxiety-like behavior in PTSD mice. Neuropharmacology, 2023, 222, 109306. doi: 10.1016/j.neuropharm.2022.109306 PMID: 36341808
  182. Ji, M.; Zhang, Z.; Gao, F.; Yang, S.; Wang, J.; Wang, X.; Zhu, G. Curculigoside rescues hippocampal synaptic deficits elicited by PTSD through activating CAMP‐PKA signaling. Phytother. Res., 2023, 37(2), 759-773. doi: 10.1002/ptr.7658 PMID: 36200803
  183. Yang, S.; Qu, Y.; Wang, J.; Gao, F.; Ji, M.; Xie, P.; Zhu, A.; Tan, B.; Wang, X.; Zhu, G. Anshen Dingzhi prescription in the treatment of PTSD in mice: Investigation of the underlying mechanism from the perspective of hippocampal synaptic function. Phytomedicine, 2022, 101, 154139. doi: 10.1016/j.phymed.2022.154139 PMID: 35523115
  184. Oliveros-Matus, P.; Perez-Urrutia, N.; Alvarez-Ricartes, N.; Echeverria, F.; Barreto, G.E.; Elliott, J.; Iarkov, A.; Echeverria, V. Cotinine enhances fear extinction and astrocyte survival by mechanisms involving the nicotinic acetylcholine receptors signaling. Front. Pharmacol., 2020, 11, 303. doi: 10.3389/fphar.2020.00303 PMID: 32300297
  185. Ohno, Y. Astrocytic Kir4.1 potassium channels as a novel therapeutic target for epilepsy and mood disorders. Neural Regen. Res., 2018, 13(4), 651-652. doi: 10.4103/1673-5374.230355 PMID: 29722316
  186. Tong, X.; Ao, Y.; Faas, G.C.; Nwaobi, S.E.; Xu, J.; Haustein, M.D.; Anderson, M.A.; Mody, I.; Olsen, M.L.; Sofroniew, M.V.; Khakh, B.S. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat. Neurosci., 2014, 17(5), 694-703. doi: 10.1038/nn.3691 PMID: 24686787
  187. Zhang, Z.; Song, Z.; Shen, F.; Xie, P.; Wang, J.; Zhu, A.; Zhu, G. Ginsenoside Rg1 prevents PTSD-like behaviors in mice through promoting synaptic proteins, reducing kir4.1 and TNF-α in the hippocampus. Mol. Neurobiol., 2021, 58(4), 1550-1563. doi: 10.1007/s12035-020-02213-9 PMID: 33215390
  188. Zhao, M.; Li, D.; Shimazu, K.; Zhou, Y.X.; Lu, B.; Deng, C.X. Fibroblast growth factor receptor-1 is required for long-term potentiation, memory consolidation, and neurogenesis. Biol. Psychiatry, 2007, 62(5), 381-390. doi: 10.1016/j.biopsych.2006.10.019 PMID: 17239352
  189. Xia, L.; Zhai, M.; Wang, L.; Miao, D.; Zhu, X.; Wang, W. FGF2 blocks PTSD symptoms via an astrocyte-based mechanism. Behav. Brain Res., 2013, 256, 472-480. doi: 10.1016/j.bbr.2013.08.048 PMID: 24013012
  190. Feng, D.; Guo, B.; Liu, G.; Wang, B.; Wang, W.; Gao, G.; Qin, H.; Wu, S. FGF2 alleviates PTSD symptoms in rats by restoring GLAST function in astrocytes via the JAK/STAT pathway. Eur. Neuropsychopharmacol., 2015, 25(8), 1287-1299. doi: 10.1016/j.euroneuro.2015.04.020 PMID: 25979764
  191. Wang, J.; Holt, L.M.; Huang, H.H.; Sesack, S.R.; Nestler, E.J.; Dong, Y. Astrocytes in cocaine addiction and beyond. Mol. Psychiatry, 2022, 27(1), 652-668. doi: 10.1038/s41380-021-01080-7 PMID: 33837268
  192. Ma, R.; Kutchy, N.A.; Hu, G. Astrocyte-derived extracellular vesicle-mediated activation of primary ciliary signaling contributes to the development of morphine tolerance. Biol. Psychiatry, 2021, 90(8), 575-585. doi: 10.1016/j.biopsych.2021.06.009 PMID: 34417054
  193. Canedo, T.; Portugal, C.C.; Socodato, R.; Almeida, T.O.; Terceiro, A.F.; Bravo, J.; Silva, A.I.; Magalhães, J.D.; Guerra-Gomes, S.; Oliveira, J.F.; Sousa, N.; Magalhães, A.; Relvas, J.B.; Summavielle, T. Astrocyte-derived TNF and glutamate critically modulate microglia activation by methamphetamine. Neuropsychopharmacology, 2021, 46(13), 2358-2370. doi: 10.1038/s41386-021-01139-7 PMID: 34400780
  194. Jouroukhin, Y.; Zhu, X.; Shevelkin, A.V.; Hasegawa, Y.; Abazyan, B.; Saito, A.; Pevsner, J.; Kamiya, A.; Pletnikov, M.V. Adolescent Δ9-tetrahydrocannabinol exposure and astrocyte-specific genetic vulnerability converge on nuclear factor-κB–cyclooxygenase-2 signaling to impair memory in adulthood. Biol. Psychiatry, 2019, 85(11), 891-903. doi: 10.1016/j.biopsych.2018.07.024 PMID: 30219209
  195. Shelkar, G.P.; Gandhi, P.J.; Liu, J.; Dravid, S.M. Cocaine preference and neuroadaptations are maintained by astrocytic NMDA receptors in the nucleus accumbens. Sci. Adv., 2022, 8(29), eabo6574. doi: 10.1126/sciadv.abo6574 PMID: 35867797
  196. Boury-Jamot, B.; Carrard, A.; Martin, J.L.; Halfon, O.; Magistretti, P.J.; Boutrel, B. Disrupting astrocyte–neuron lactate transfer persistently reduces conditioned responses to cocaine. Mol. Psychiatry, 2016, 21(8), 1070-1076. doi: 10.1038/mp.2015.157 PMID: 26503760
  197. Shi, P.; Li, Z.; He, T.; Li, N.; Xu, X.; Yu, P.; Lu, X.; Nie, J.; Liu, D.; Cai, Q.; Guan, Y.; Ge, F.; Wang, J.; Guan, X. Astrocyte‐selective STAT3 knockdown rescues methamphetamine withdrawal‐disrupted spatial memory in mice via restoring the astrocytic capacity of glutamate clearance in DCA1. Glia, 2021, 69(10), 2404-2418. doi: 10.1002/glia.24046 PMID: 34110044
  198. Molofsky, A.V.; Kelley, K.W.; Tsai, H.H.; Redmond, S.A.; Chang, S.M.; Madireddy, L.; Chan, J.R.; Baranzini, S.E.; Ullian, E.M.; Rowitch, D.H. Astrocyte-encoded positional cues maintain sensorimotor circuit integrity. Nature, 2014, 509(7499), 189-194. doi: 10.1038/nature13161 PMID: 24776795
  199. Blanco-Suarez, E.; Liu, T.F.; Kopelevich, A.; Allen, N.J. Astrocyte-secreted chordin-like 1 drives synapse maturation and limits plasticity by increasing synaptic glua2 ampa receptors. Neuron, 2018, 100(5), 1116-1132.e13. doi: 10.1016/j.neuron.2018.09.043 PMID: 30344043
  200. Nazari, S.; Amiri, M.; Faez, K.; Van Hulle, M.M. Information transmitted from bioinspired neuron–astrocyte network improves cortical spiking network’s pattern recognition performance. IEEE Trans. Neural Netw. Learn. Syst., 2020, 31(2), 464-474. doi: 10.1109/TNNLS.2019.2905003 PMID: 30990195
  201. De Pittà, M.; Brunel, N. Multiple forms of working memory emerge from synapse–astrocyte interactions in a neuron–glia network model. Proc. Natl. Acad. Sci., 2022, 119(43), e2207912119. doi: 10.1073/pnas.2207912119 PMID: 36256810
  202. Becker, S.; Nold, A.; Tchumatchenko, T. Modulation of working memory duration by synaptic and astrocytic mechanisms. PLOS Comput. Biol., 2022, 18(10), e1010543. doi: 10.1371/journal.pcbi.1010543 PMID: 36191056
  203. Verdera, H.C.; Kuranda, K.; Mingozzi, F. AAV vector immunogenicity in humans: A long journey to successful gene transfer. Mol. Ther., 2020, 28(3), 723-746. doi: 10.1016/j.ymthe.2019.12.010 PMID: 31972133
  204. Wang, Q.; Li, W.; Lei, W.; Chen, G.; Xiang, Z.; Xu, L.; Liu, M. Lineage tracing of direct astrocyte-to-neuron conversion in the mouse cortex. Neural Regen. Res., 2021, 16(4), 750-756. doi: 10.4103/1673-5374.295925 PMID: 33063738
  205. Zhang, Y.; Li, B.; Cananzi, S.; Han, C.; Wang, L.L.; Zou, Y.; Fu, Y.X.; Hon, G.C.; Zhang, C.L. A single factor elicits multilineage reprogramming of astrocytes in the adult mouse striatum. Proc. Natl. Acad. Sci., 2022, 119(11), e2107339119. doi: 10.1073/pnas.2107339119 PMID: 35254903
  206. Guo, Z.; Zhang, L.; Wu, Z.; Chen, Y.; Wang, F.; Chen, G. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell, 2014, 14(2), 188-202. doi: 10.1016/j.stem.2013.12.001 PMID: 24360883

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024