Brain Disorder Detection and Diagnosis using Machine Learning and Deep Learning – A Bibliometric Analysis


Citar

Texto integral

Resumo

Background and Objective:Brain disorders are one of the major global mortality issues, and their early detection is crucial for healing. Machine learning, specifically deep learning, is a technology that is increasingly being used to detect and diagnose brain disorders. Our objective is to provide a quantitative bibliometric analysis of the field to inform researchers about trends that can inform their Research directions in the future.

Methods:We carried out a bibliometric analysis to create an overview of brain disorder detection and diagnosis using machine learning and deep learning. Our bibliometric analysis includes 1550 articles gathered from the Scopus database on automated brain disorder detection and diagnosis using machine learning and deep learning published from 2015 to May 2023. A thorough bibliometric análisis is carried out with the help of Biblioshiny and the VOSviewer platform. Citation analysis and various measures of collaboration are analyzed in the study.

Results:According to a study, maximum research is reported in 2022, with a consistent rise from preceding years. The majority of the authors referenced have concentrated on multiclass classification and innovative convolutional neural network models that are effective in this field. A keyword analysis revealed that among the several brain disorder types, Alzheimer's, autism, and Parkinson's disease had received the greatest attention. In terms of both authors and institutes, the USA, China, and India are among the most collaborating countries. We built a future research agenda based on our findings to help progress research on machine learning and deep learning for brain disorder detection and diagnosis.

Conclusion:In summary, our quantitative bibliometric analysis provides useful insights about trends in the field and points them to potential directions in applying machine learning and deep learning for brain disorder detection and diagnosis.

Sobre autores

Gopikrishna Deshpande

Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University,

Email: info@benthamscience.net

Jyotismita Chaki

School of Computer Science and Engineering,, Vellore Institute of Technology

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Kumar, Y.; Koul, A.; Singla, R.; Ijaz, M.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda. J. Ambient Intell. Humaniz. Comput., 2022, 14(7), 8459-8486. PMID: 35039756
  2. Conditions and disease. Available from: https://www.britannica.com/browse/Conditions-Diseases
  3. Brain anatomy and how the brain works. Available from: https://www.hopkinsmedicine.org/health/conditions-and-diseases/anatomy-of-the-brain
  4. Brain disorders. Available from: https://www.healthline.com/health/brain-disorders
  5. Van Schependom, J.; D’haeseleer, M. Advances in neurodegenerative diseases. J. Clin. Med., 2023, 12(5), 1709. doi: 10.3390/jcm12051709 PMID: 36902495
  6. Burgos, N.; Bottani, S.; Faouzi, J.; Sutre, T.E.; Colliot, O. Deep learning for brain disorders: From data processing to disease treatment. Brief. Bioinform., 2021, 22(2), 1560-1576. doi: 10.1093/bib/bbaa310 PMID: 33316030
  7. Suk, H.I.; Shen, D. Deep learning in diagnosis of brain disorders. In: Recent Progress in Brain and Cognitive Engineering. Trends in Augmentation of Human Performance; Lee, SW; Bülthoff, H.; Müller, KR Springer: Dordrecht, 2015; pp. 203-213. doi: 10.1007/978-94-017-7239-6_14
  8. Yin, W.; Li, L.; Wu, F.X. Deep learning for brain disorder diagnosis based on fMRI images. Neurocomputing, 2022, 469, 332-345. doi: 10.1016/j.neucom.2020.05.113
  9. Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res., 2021, 133, 285-296. doi: 10.1016/j.jbusres.2021.04.070
  10. Iftikhar, P.M.; Ali, F.; Faisaluddin, M.; Khayyat, A.; De Sa, D.G.M.; Rao, T.; Iftikhar, P. A bibliometric analysis of the top 30 most-cited articles in gestational diabetes mellitus literature (1946-2019). Cureus, 2019, 11(2), e4131. doi: 10.7759/cureus.4131 PMID: 31058014
  11. Sweileh, W.M. Bibliometric analysis of peer-reviewed literature on climate change and human health with an emphasis on infectious diseases. Global. Health, 2020, 16(1), 44. doi: 10.1186/s12992-020-00576-1 PMID: 32384901
  12. Ozbek, M.A.; Yardibi, F.; Genç, B.; Basak, A.T.; Tahta, A.; Akalan, N. Pediatric brain tumors: A bibliometric analysis. Childs Nerv. Syst., 2022, 38(6), 1095-1104. doi: 10.1007/s00381-022-05506-7 PMID: 35306574
  13. Liu, M.; Liu, B.; Ye, Z.; Wu, D. Bibliometric analysis of electroencephalogram research in mild cognitive impairment from 2005 to 2022. Front. Neurosci., 2023, 17, 1128851. doi: 10.3389/fnins.2023.1128851 PMID: 37021134
  14. Tsiamalou, A.; Dardiotis, E.; Paterakis, K.; Fotakopoulos, G.; Liampas, I.; Sgantzos, M.; Siokas, V.; Brotis, A.G. EEG in neurorehabilitation: A bibliometric analysis and content review. Neurol. Int., 2022, 14(4), 1046-1061. doi: 10.3390/neurolint14040084 PMID: 36548189
  15. Yolcu, G.; Oztel, I.; Kazan, S.; Oz, C.; Palaniappan, K.; Lever, T.E.; Bunyak, F. Deep learning-based facial expression recognition for monitoring neurological disorders. 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2017, 1652-1657. doi: 10.1109/BIBM.2017.8217907
  16. Osman, A.B.; Tabassum, F.; Patwary, M.J.; Imteaj, A.; Alam, T.; Bhuiyan, M.A.S.; Miraz, M.H. Examining mental disorder/psychological chaos through various ML and DL techniques: A critical review. Ann. Emerg. Technol. Comput., 2022, 2022, 61-71.
  17. Wen, J.; Sutre, T.E.; Melo, D.M.; González, S.J.; Routier, A.; Bottani, S.; Dormont, D.; Durrleman, S.; Burgos, N.; Colliot, O. Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Med. Image Anal., 2020, 63, 101694. doi: 10.1016/j.media.2020.101694 PMID: 32417716
  18. Biblioshiny. Available from: https://www.bibliometrix.org/home/index.php/layout/biblioshiny
  19. VOSviewer. Available from: https://www.vosviewer.com/
  20. Du, Y.H.; Yang, R.Y.; Wang, Q.; Wang, L.Y.; Liang, L.C.; Zhu, L.; Sun, Y.; Cai, M. Bibliometric analysis study on the mechanisms of brain energy metabolism disorders in Alzheimer’s disease from 2000 to 2020. Front. Neurol., 2021, 12, 670220. doi: 10.3389/fneur.2021.670220 PMID: 34354657
  21. Gong, B.; Naveed, S.; Hafeez, D.M.; Afzal, K.I.; Majeed, S.; Abele, J.; Nicolaou, S.; Khosa, F. Neuroimaging in psychiatric disorders: A bibliometric analysis of the 100 most highly cited articles. J. Neuroimaging, 2019, 29(1), 14-33. doi: 10.1111/jon.12570 PMID: 30311320
  22. Zhang, S.; Wang, S.; Liu, R.; Dong, H.; Zhang, X.; Tai, X. A bibliometric analysis of research trends of artificial intelligence in the treatment of autistic spectrum disorders. Front. Psychiatry, 2022, 13, 967074. doi: 10.3389/fpsyt.2022.967074 PMID: 36104988
  23. Scopus. Available from: https://www.scopus.com/
  24. Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, web of science, and Google scholar: Strengths and weaknesses. FASEB J., 2008, 22(2), 338-342. doi: 10.1096/fj.07-9492LSF PMID: 17884971
  25. Stewart, N.C.E.; Kruesi, L.M.; Del Mar, C.B. Does Bradford’s law of scattering predict the size of the literature in cochrane reviews? J. Med. Libr. Assoc., 2012, 100(2), 135-138. doi: 10.3163/1536-5050.100.2.013 PMID: 22514511
  26. Murugan, M.; Saravanakumar, R.; Thirumagal, A. Lotka's law and pattern of author productivity of information literacy research output; Library Philosophy and Practice (e-journal), 2019, p. 2509.
  27. Parlina, A.; Ramli, K.; Murfi, H. Theme mapping and bibliometrics analysis of one decade of big data research in the scopus database. Information, 2020, 11(2), 69. doi: 10.3390/info11020069
  28. van Dam, A.; Dekker, M.; Castilla, M.I.; Rodríguez, M.Á.; Wichmann, D.; Baudena, M. Correspondence analysis, spectral clustering and graph embedding: Applications to ecology and economic complexity. Sci. Rep., 2021, 11(1), 8926. doi: 10.1038/s41598-021-87971-9 PMID: 33903623
  29. Sabate, R.C.; Morales, I.; Sanchez, A.; Rodriguez, M. The multiple correspondence analysis method and brain functional connectivity: Its application to the study of the non-linear relationships of motor cortex and basal ganglia. Front. Neurosci., 2017, 11, 345. doi: 10.3389/fnins.2017.00345 PMID: 28676738
  30. Negahban, M.B.; Zarifsanaiey, N. Network analysis and scientific mapping of the E-learning literature from 1995 to 2018. Knowl. Manag. E-learn., 2020, 12(3), 268-279.
  31. Boukhlif, M.; Hanine, M.; Kharmoum, N. A decade of intelligent software testing research: A bibliometric analysis. Electronics , 2023, 12(9), 2109. doi: 10.3390/electronics12092109
  32. Arbabshirani, M.R.; Plis, S.; Sui, J.; Calhoun, V.D. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage, 2017, 145(Pt B), 137-165. doi: 10.1016/j.neuroimage.2016.02.079 PMID: 27012503
  33. Heinsfeld, A.S.; Franco, A.R.; Craddock, R.C.; Buchweitz, A.; Meneguzzi, F. Identification of autism spectrum disorder using deep learning and the ABIDE dataset. Neuroimage Clin., 2018, 17, 16-23. doi: 10.1016/j.nicl.2017.08.017 PMID: 29034163
  34. Vieira, S.; Pinaya, W.H.L.; Mechelli, A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neurosci. Biobehav. Rev., 2017, 74(Pt A), 58-75. doi: 10.1016/j.neubiorev.2017.01.002 PMID: 28087243
  35. Habes, M.; Erus, G.; Toledo, J.B.; Zhang, T.; Bryan, N.; Launer, L.J.; Rosseel, Y.; Janowitz, D.; Doshi, J.; Van der Auwera, S.; von Sarnowski, B.; Hegenscheid, K.; Hosten, N.; Homuth, G.; Völzke, H.; Schminke, U.; Hoffmann, W.; Grabe, H.J.; Davatzikos, C. White matter hyperintensities and imaging patterns of brain ageing in the general population. Brain, 2016, 139(4), 1164-1179. doi: 10.1093/brain/aww008 PMID: 26912649
  36. Kim, J.; Calhoun, V.D.; Shim, E.; Lee, J.H. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. Neuroimage, 2016, 124(Pt A), 127-146. doi: 10.1016/j.neuroimage.2015.05.018 PMID: 25987366
  37. Islam, J.; Zhang, Y. Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Inform., 2018, 5(2), 2. doi: 10.1186/s40708-018-0080-3 PMID: 29881892
  38. Tandel, G.S.; Biswas, M.; Kakde, O.G.; Tiwari, A.; Suri, H.S.; Turk, M.; Laird, J.; Asare, C.; Ankrah, A.A.; Khanna, N.N.; Madhusudhan, B.K.; Saba, L.; Suri, J.S. A review on a deep learning perspective in brain cancer classification. Cancers, 2019, 11(1), 111. doi: 10.3390/cancers11010111 PMID: 30669406
  39. Lian, C.; Liu, M.; Zhang, J.; Shen, D. Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE Trans. Pattern Anal. Mach. Intell., 2020, 42(4), 880-893. doi: 10.1109/TPAMI.2018.2889096 PMID: 30582529
  40. Zou, L.; Zheng, J.; Miao, C.; Mckeown, M.J.; Wang, Z.J. 3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI. IEEE Access, 2017, 5, 23626-23636. doi: 10.1109/ACCESS.2017.2762703
  41. Graham, S.; Depp, C.; Lee, E.E.; Nebeker, C.; Tu, X.; Kim, H.C.; Jeste, D.V. Artificial intelligence for mental health and mental illnesses: An overview. Curr. Psychiatry Rep., 2019, 21(11), 116. doi: 10.1007/s11920-019-1094-0 PMID: 31701320
  42. Li, X.; Dvornek, N.C.; Papademetris, X.; Zhuang, J.; Staib, L.H.; Ventola, P.; Duncan, J.S. 2-channel convolutional 3D deep neural network (2CC3D) for fMRI analysis: ASD classification and feature learning. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018); 04-07 April 2018 Washington, DC, USA, 2018, pp. 1252-1255.
  43. Ulloa, A.; Plis, S.; Erhardt, E.; Calhoun, V. Synthetic structural magnetic resonance image generator improves deep learning prediction of schizophrenia. 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP); 17-20 September 2015Boston, MA, USA, 2015. doi: 10.1109/MLSP.2015.7324379
  44. Khan, A.; Wang, K. A deep learning based scoring system for prioritizing susceptibility variants for mental disorders. 2017IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 13-16 November 2017 Kansas City, MO, USA 2017, pp. 1698-1705. doi: 10.1109/BIBM.2017.8217916
  45. Yao, L.; Brown, P.; Shoaran, M. Resting tremor detection in Parkinson’s disease with machine learning and Kalman filtering. In: 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS); 17-19 October 2018 Cleveland, OH, USA, 2018; pp. 1-4.
  46. Yang, X.; Islam, M.S.; Khaled, A.A. Functional connectivity magnetic resonance imaging classification of autism spectrum disorder using the multisite ABIDE dataset. 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), 19-22 May 2019 Chicago, IL, USA 2019, pp. 1-4. doi: 10.1109/BHI.2019.8834653
  47. Salehi, A.W.; Baglat, P.; Sharma, B.B.; Gupta, G.; Upadhya, A. A CNN model: Earlier diagnosis and classification of Alzheimer disease using MRI. 2020 International Conference on Smart Electronics and Communication (ICOSEC), 10-12 September 2020 Trichy, India 2020, pp. 156-161. doi: 10.1109/ICOSEC49089.2020.9215402
  48. LeMoyne, R.; Tomycz, N.; Mastroianni, T.; McCandless, C.; Cozza, M.; Peduto, D. Implementation of a smartphone wireless accelerometer platform for establishing deep brain stimulation treatment efficacy of essential tremor with machine learning. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 25-29 August 2015 Milan, Italy, 2015. doi: 10.1109/EMBC.2015.7319948
  49. Khobragade, N.; Tuninetti, D.; Graupe, D. On the need for adaptive learning in on-demand Deep Brain Stimulation for Movement Disorders. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 18-21 July 2018 Honolulu, HI, USA , 2018. doi: 10.1109/EMBC.2018.8512664
  50. Choi, H.; Ha, S.; Kang, H.; Lee, H.; Lee, D.S. Deep learning only by normal brain PET identify unheralded brain anomalies. EBioMedicine, 2019, 43, 447-453. doi: 10.1016/j.ebiom.2019.04.022 PMID: 31003928
  51. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature, 2015, 521(7553), 436-444.
  52. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 27-30 June 2016 Las Vegas, NV, USA 2016, pp. 770-778.
  53. Goodfellow, I.; Bengio, Y.; Courville, A. Deep learning; MIT press, 2016.
  54. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv:1412.6980 , 2014.
  55. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM, 2017, 60(6), 84-90. doi: 10.1145/3065386
  56. Iidaka, T. Resting state functional magnetic resonance imaging and neural network classified autism and control. Cortex, 2015, 63, 55-67. doi: 10.1016/j.cortex.2014.08.011 PMID: 25243989
  57. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014.
  58. Pushpa, B.R.; Flemin, L. Detection and classification of brain tumor using machine learning approaches. Int. J. Res. Pharm. Sci, 2019, 10(3), 2153-2162. doi: 10.26452/ijrps.v10i3.1442
  59. Di Cosmo, A.; Pinelli, C.; Scandurra, A.; Aria, M.; D’Aniello, B. Research trends in octopus biological studies. Animals, 2021, 11(6), 1808. doi: 10.3390/ani11061808 PMID: 34204419
  60. Agbo, F.J.; Oyelere, S.S.; Suhonen, J.; Tukiainen, M. Scientific production and thematic breakthroughs in smart learning environments: A bibliometric analysis. Smart Learn. Environ., 2021, 8(1), 1-25. doi: 10.1186/s40561-020-00145-4
  61. Fusco, F.; Marsilio, M.; Guglielmetti, C. Co-production in health policy and management: A comprehensive bibliometric review. BMC Health Serv. Res., 2020, 20(1), 504. doi: 10.1186/s12913-020-05241-2 PMID: 32503522
  62. Multiple Correspondence Analysis. Available from:https://www.ibm.com/docs/he/spss-statistics/25.0.0?topic=categories-multiple-correspondence-analysis
  63. Multiple correspondence analysis. Available from: https://en.wikipedia.org/wiki/Multiple_correspondence_analysis
  64. What is multiple correspondence analysis. Available from: https://www.xlstat.com/en/solutions/features/multiple-correspondence-analysis-mca
  65. Correspondence analysis. Available from: https://en.wikipedia.org/wiki/Correspondence_analysis
  66. Correspondence Analysis: What is it, and how can I use it to measure my Brand? (Part 1 of 2). Available from: https://www.qualtrics.com/eng/correspondence-analysis-what-is-it-and-how-can-i-use-it-to-measure-my-brand-part-1-of-2/
  67. Correspondence analysis. Available from: https://www.ibm.com/docs/en/spss-statistics/25.0.0?topic=categories-correspondence-analysis
  68. Lecture Notes in Computer Science. Available from: https://www.springer.com/series/558
  69. Lecture Notes in Artificial Intelligence. Available from: https://www.springer.com/series/1244
  70. Lecture Notes in Bioinformatics. Available from: https://www.springer.com/series/5381
  71. Provides a holistic understanding of brain function from genes to behavior. Available from: https://www.frontiersin.org/journals/neuroscience
  72. Biomedical signal processing and control. Available from: https://www.sciencedirect.com/journal/biomedical-signal-processing-and-control
  73. NeuroImage. Available from: https://www.sciencedirect.com/journal/neuroimage
  74. IEEE journal of biomedical and health informatics. Available from: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6221020
  75. Deng, C.; Ji, X.; Rainey, C.; Zhang, J.; Lu, W. Integrating machine learning with human knowledge. iScience, 2020, 23(11), 101656. doi: 10.1016/j.isci.2020.101656 PMID: 33134890
  76. Javeed, A.; Dallora, A.L.; Berglund, J.S.; Ali, A.; Ali, L.; Anderberg, P. Machine learning for dementia prediction: A systematic review and future research directions. J. Med. Syst., 2023, 47(1), 17. doi: 10.1007/s10916-023-01906-7 PMID: 36720727
  77. Caviglione, L.; Comito, C.; Guarascio, M.; Manco, G. Emerging challenges and perspectives in Deep Learning model security: A brief survey. Syst. Soft Comput, 2023, 5, 200050.
  78. Tariq, M.I.; Memon, N.A.; Ahmed, S.; Tayyaba, S.; Mushtaq, M.T.; Mian, N.A.; Imran, M.; Ashraf, M.W. A review of deep learning security and privacy defensive techniques. Mob. Inf. Syst., 2020, 2020, 1-18. doi: 10.1155/2020/6535834
  79. Dunn, C.; Moustafa, N.; Turnbull, B. Robustness evaluations of sustainable machine learning models against data poisoning attacks in the internet of things. Sustainability, 2020, 12(16), 6434. doi: 10.3390/su12166434
  80. Mani, V.; Kavitha, C.; Band, S.S.; Mosavi, A.; Hollins, P.; Palanisamy, S. A recommendation system based on AI for storing block data in the electronic health repository. Front. Public Health, 2022, 9, 831404. doi: 10.3389/fpubh.2021.831404 PMID: 35127632
  81. Xie, F.; Yuan, H.; Ning, Y.; Ong, M.E.H.; Feng, M.; Hsu, W.; Chakraborty, B.; Liu, N. Deep learning for temporal data representation in electronic health records: A systematic review of challenges and methodologies. J. Biomed. Inform., 2022, 126, 103980. doi: 10.1016/j.jbi.2021.103980 PMID: 34974189
  82. Chen, D.; Liu, S.; Kingsbury, P.; Sohn, S.; Storlie, C.B.; Habermann, E.B.; Naessens, J.M.; Larson, D.W.; Liu, H. Deep learning and alternative learning strategies for retrospective real-world clinical data. NPJ Digit. Med., 2019, 2(1), 43. doi: 10.1038/s41746-019-0122-0 PMID: 31304389

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024