Multi-target Phenylpropanoids Against Epilepsy


Дәйексөз келтіру

Толық мәтін

Аннотация

:Epilepsy is a neurological disease with no defined cause, characterized by recurrent epilep- tic seizures. These occur due to the dysregulation of excitatory and inhibitory neurotransmitters in the central nervous system (CNS). Psychopharmaceuticals have undesirable side effects; many patients require more than one pharmacotherapy to control crises. With this in mind, this work emphasizes the discovery of new substances from natural products that can combat epileptic seizures. Using in silico techniques, this review aims to evaluate the antiepileptic and multi-target activity of phenylpropanoid derivatives. Initially, ligand-based virtual screening models (LBVS) were performed with 468 phe- nylpropanoid compounds to predict biological activities. The LBVS were developed for the targets al- pha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), voltage-gated calcium channel T- type (CaV), gamma-aminobutyric acid A (GABAA), gamma-aminobutyric acid transporter type 1 (GAT-1), voltage-gated potassium channel of the Q family (KCNQ), voltage-gated sodium channel (NaV), and N-methyl D-aspartate (NMDA). The compounds that had good results in the LBVS were analyzed for the absorption, distribution, metabolism, excretion, and toxicity (ADMET) parameters, and later, the best molecules were evaluated in the molecular docking consensus. The TR430 com- pound showed the best results in pharmacokinetic parameters; its oral absorption was 99.03%, it did not violate any Lipinski rule, it showed good bioavailability, and no cytotoxicity was observed either from the molecule or from the metabolites in the evaluated parameters. TR430 was able to bind with GABAA (activation) and AMPA (inhibition) targets and demonstrated good binding energy and sig- nificant interactions with both targets. The studied compound showed to be a promising molecule with a possible multi-target activity in both fundamental pharmacological targets for the treatment of epi- lepsy.

Авторлар туралы

Teresa Rodrigues

Cheminformatics Laboratory, Institute of Drugs and Medicines Research,, Federal University of Paraíba

Email: info@benthamscience.net

Arthur Dias

Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba

Email: info@benthamscience.net

Aline dos Santos

Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba

Email: info@benthamscience.net

Alex Monteiro

Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba

Email: info@benthamscience.net

Mayara Oliveira

Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba

Email: info@benthamscience.net

Hugo Pires

Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba

Email: info@benthamscience.net

Natália de Sousa

Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba

Email: info@benthamscience.net

Mirian da Silva Stiebbe Salvadori

Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba

Email: info@benthamscience.net

Marcus Scotti

Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba

Email: info@benthamscience.net

Luciana Scotti

Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. WHO Epilepsy. Available from: https://www.who.int/news-room/fact-sheets/detail/epilepsy
  2. Thijs, R.D.; Surges, R.; O’Brien, T.J.; Sander, J.W. Epilepsy in adults. Lancet, 2019, 393(10172), 689-701. doi: 10.1016/S0140-6736(18)32596-0 PMID: 30686584
  3. Fisher, R.S.; Cross, J.H.; French, J.A.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshé, S.L.; Peltola, J.; Roulet Perez, E.; Scheffer, I.E.; Zuberi, S.M. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017, 58(4), 522-530. doi: 10.1111/epi.13670 PMID: 28276060
  4. Fisher, R.S.; Cross, J.H.; D’Souza, C.; French, J.A.; Haut, S.R.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshé, S.L.; Peltola, J.; Roulet Perez, E.; Scheffer, I.E.; Schulze-Bonhage, A.; Somerville, E.; Sperling, M.; Yacubian, E.M.; Zuberi, S.M. Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia, 2017, 58(4), 531-542. doi: 10.1111/epi.13671 PMID: 28276064
  5. Falco-Walter, J.J.; Scheffer, I.E.; Fisher, R.S. The new definition and classification of seizures and epilepsy, 2018, Vol. 139, 73-79.
  6. Thomas, R.H.; Cunningham, M.O. Cannabis and epilepsy. Pract. Neurol., 2018, 18(6), 465-471. Available from: https://pn.bmj.com/content/18/6/465 doi: 10.1136/practneurol-2018-002058 PMID: 30337476
  7. Löscher, W.; Potschka, H.; Sisodiya, S.M.; Vezzani, A. Drug resistance in epilepsy: Clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol. Rev., 2020, 72(3), 606-638. Available from: https://pharmrev.aspetjournals.org/content/72/3/606 doi: 10.1124/pr.120.019539 PMID: 32540959
  8. Neelam, K.A.; Khatkar, A.; Sharma, K.K. Phenylpropanoids and its derivatives: biological activities and its role in food, pharmaceutical and cosmetic industries. Crit. Rev. Food Sci. Nutr., 2020, 60(16), 2655-2675. Available from: https://pubmed.ncbi.nlm.nih.gov/31456411/ doi: 10.1080/10408398.2019.1653822 PMID: 31456411
  9. Löscher, W. Single-target versus multi-target drugs versus combinations of drugs with multiple targets: Preclinical and clinical evidence for the treatment or prevention of epilepsy. Front. Pharmacol., 2021, 12, 730257. doi: 10.3389/fphar.2021.730257 PMID: 34776956
  10. Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. 2004. Available from: https://www.nature.com/articles/nrd1549 doi: 10.1038/nrd1549
  11. German, S.-M. Extrasynaptic GABA and glutamate receptors in epilepsy. CNS Neurol. Disord. Drug Targets, 2008, 6(4), 288-300.
  12. Sarlo, G.L.; Holton, K.F. Brain concentrations of glutamate and GABA in human epilepsy: A review. Seizure, 2021, 91, 213-227. doi: 10.1016/j.seizure.2021.06.028 PMID: 34233236
  13. Ghit, A.; Assal, D.; Al-shami, A.S.; Hussein, D.E.E. GABAA receptors : structure, function, pharmacology, and related disorders. J. Genet. Eng. Biotechnol., 2021, 19(1), 123.
  14. Treiman, D.M. GABAergic mechanisms in epilepsy. Epilepsia, 2001, 42(s3)(Suppl. 3), 8-12. doi: 10.1046/j.1528-1157.2001.042suppl.3008.x PMID: 11520315
  15. Cossart, R.; Bernard, C.; Ben-Ari, Y. Multiple facets of GABAergic neurons and synapses: multiple fates of GABA signalling in epilepsies. Trends Neurosci., 2005, 28(2), 108-115. doi: 10.1016/j.tins.2004.11.011 PMID: 15667934
  16. Watanabe, M.; Maemura, K.; Kanbara, K.; Tamayama, T.; Hayasaki, H. GABA and GABA receptors in the central nervous system and other organs. Int. Rev. Cytol., 2002, 213, 1-47. doi: 10.1016/S0074-7696(02)13011-7 PMID: 11837891
  17. Eibl, C.; Plested, A.J.R. AMPA receptors: Mechanisms of auxiliary protein action. Curr. Opin. Physiol., 2018, 2, 84-91. doi: 10.1016/j.cophys.2017.12.009
  18. Moldrich, R.X.; Beart, P.M.; Jane, D.E.; Chapman, A.G.; Meldrum, B.S. Anticonvulsant activity of 3,4-dicarboxyphenylglycines in DBA/2 mice. Neuropharmacology, 2001, 40(5), 732-735. doi: 10.1016/S0028-3908(01)00002-8 PMID: 11311902
  19. Kwan, P.; Brodie, M.J. Epilepsy after the first drug fails: Substitution or add-on? Seizure, 2000, 9(7), 464-468. doi: 10.1053/seiz.2000.0442 PMID: 11034869
  20. Kohl, B.; Dannhardt, G. The NMDA receptor complex: A promising target for novel antiepileptic strategies. Curr. Med. Chem., 2001, 8(11), 1275-1289. doi: 10.2174/0929867013372328 PMID: 11562266
  21. Zhou, H.X.; Wollmuth, L.P. Advancing NMDA receptor physiology by Integrating multiple approaches. Trends Neurosci., 2017, 40(3), 129-137. doi: 10.1016/j.tins.2017.01.001 PMID: 28187950
  22. Löscher, W.; Schmidt, D. New horizons in the development of antiepileptic drugs: Innovative strategies. Epilepsy Res., 2006, 69(3), 183-272. doi: 10.1016/j.eplepsyres.2006.03.014 PMID: 16835945
  23. Löscher, W. New visions in the pharmacology of anticonvulsion. Eur. J. Pharmacol., 1998, 342(1), 1-13. doi: 10.1016/S0014-2999(97)01514-8 PMID: 9544786
  24. Featherstone, D.E. Intercellular glutamate signaling in the nervous system and beyond. ACS Chem. Neurosci., 2010, 1(1), 4-12. doi: 10.1021/cn900006n PMID: 22778802
  25. Deuis, J.R.; Mueller, A.; Israel, M.R.; Vetter, I. The pharmacology of voltage-gated sodium channel activators. Neuropharmacology, 2017, 127, 87-108. doi: 10.1016/j.neuropharm.2017.04.014 PMID: 28416444
  26. Ghovanloo, M-R.; Aimar, K.; Ghadiry-Tavi, R.; Yu, A.; Ruben, P.C. Physiology and pathophysiology of sodium channel inactivation. Curr. Top. Membr., 2016, 78, 479-509. doi: 10.1016/bs.ctm.2016.04.001 PMID: 27586293
  27. Catterall, W.A. From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron, 2000, 26(1), 13-25. doi: 10.1016/S0896-6273(00)81133-2 PMID: 10798388
  28. Brodie, M.J. Sodium channel blockers in the treatment of epilepsy. CNS Drugs, 2017, 31(7), 527-534. doi: 10.1007/s40263-017-0441-0 PMID: 28523600
  29. Catterall, W.A.; Few, A.P. Calcium channel regulation and presynaptic plasticity. Neuron, 2008, 59(6), 882-901. doi: 10.1016/j.neuron.2008.09.005 PMID: 18817729
  30. Catterall, W.A. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol., 2011, 3(8), a003947-a003947. doi: 10.1101/cshperspect.a003947 PMID: 21746798
  31. Rajakulendran, S.; Hanna, M.G. The role of calcium channels in epilepsy. Cold Spring Harb. Perspect. Med., 2016, 6(1), a022723. doi: 10.1101/cshperspect.a022723 PMID: 26729757
  32. Prakriya, M.; Lewis, R.S. Store-operated calcium channels. Physiol. Rev., 2015, 95(4), 1383-1436. doi: 10.1152/physrev.00020.2014 PMID: 26400989
  33. Berridge, M.J.; Lipp, P.; Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol., 2000, 1(1), 11-21. doi: 10.1038/35036035 PMID: 11413485
  34. Steinlein, O.K. Calcium signaling and epilepsy. Cell Tissue Res., 2014, 357(2), 385-393. doi: 10.1007/s00441-014-1849-1 PMID: 24723228
  35. Ozcan, M.; Ayar, A. Modulation of action potential and calcium signaling by levetiracetam in rat sensory neurons. J. Recept. Signal Transduct. Res., 2012, 32(3), 156-162. doi: 10.3109/10799893.2012.672993 PMID: 22475033
  36. Takahashi, E.; Niimi, K.; Itakura, C. Levetiracetam-mediated emotional behavior in heterozygous rolling Nagoya CaV2.1 channel mutant mice. Pharmacol. Biochem. Behav., 2010, 96(3), 294-300. doi: 10.1016/j.pbb.2010.05.020 PMID: 20570694
  37. Sun, J.; MacKinnon, R. Structural basis of human KCNQ1 modulation and gating. Cell, 2020, 180(2), 340-347.e9. doi: 10.1016/j.cell.2019.12.003 PMID: 31883792
  38. Abbott, G.W.; Tai, K.K.; Neverisky, D.L.; Hansler, A.; Hu, Z.; Roepke, T.K.; Lerner, D.J.; Chen, Q.; Liu, L.; Zupan, B.; Toth, M.; Haynes, R.; Huang, X.; Demirbas, D.; Buccafusca, R.; Gross, S.S.; Kanda, V.A.; Berry, G.T. KCNQ1, KCNE2, and Na+-coupled solute transporters form reciprocally regulating complexes that affect neuronal excitability. Sci. Signal., 2014, 7(315), ra22. doi: 10.1126/scisignal.2005025 PMID: 24595108
  39. Jespersen, T.; Grunnet, M.; Olesen, S.P. The KCNQ1 potassium channel: from gene to physiological function. Physiology (Bethesda), 2005, 20(6), 408-416. doi: 10.1152/physiol.00031.2005 PMID: 16287990
  40. Brown, D.A.; Passmore, G.M. Neural KCNQ (Kv7) channels. Br. J. Pharmacol., 2009, 156(8), 1185-1195. doi: 10.1111/j.1476-5381.2009.00111.x PMID: 19298256
  41. Zaydman, M.A.; Cui, J. PIP2 regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating. Front. Physiol., 2014, 5, 195. doi: 10.3389/fphys.2014.00195 PMID: 24904429
  42. Zaydman, M.A.; Silva, J.R.; Delaloye, K.; Li, Y.; Liang, H.; Larsson, H.P.; Shi, J.; Cui, J. Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening. Proc. Natl. Acad. Sci. USA, 2013, 110(32), 13180-13185. doi: 10.1073/pnas.1305167110 PMID: 23861489
  43. Zimprich, F.; Ronen, G.M.; Stögmann, W.; Baumgartner, C.; Stögmann, E.; Rett, B.; Pappas, C.; Leppert, M.; Singh, N.; Anderson, V.E. Andreas Rett and benign familial neonatal convulsions revisited. Neurology, 2006, 67(5), 864-866. doi: 10.1212/01.wnl.0000234066.46806.90 PMID: 16966552
  44. Gunthorpe, M.J.; Large, C.H.; Sankar, R. The mechanism of action of retigabine (ezogabine), a first‐in‐class K+ channel opener for the treatment of epilepsy. Epilepsia, 2012, 53(3), 412-424. doi: 10.1111/j.1528-1167.2011.03365.x PMID: 22220513
  45. Cherubini, E.; Conti, F. Generating diversity at GABAergic synapses. Trends Neurosci., 2001, 24(3), 155-162. doi: 10.1016/S0166-2236(00)01724-0 PMID: 11182455
  46. Kinjo, A.; Koito, T.; Kawaguchi, S.; Inoue, K. Evolutionary History of the GABA Transporter (GAT) Group Revealed by Marine Invertebrate GAT-1. Moustafa A, editor. PLoS One, 2013, 8(12), e82410.
  47. Zafar, S.; Jabeen, I. Structure, function, and modulation of γ-aminobutyric acid transporter 1 (GAT1) in neurological disorders: A pharmacoinformatic prospective. Front Chem., 2018, 6, 397. doi: 10.3389/fchem.2018.00397 PMID: 30255012
  48. Scimemi, A. Structure, function, and plasticity of GABA transporters. Front. Cell. Neurosci., 2014, 8, 161. doi: 10.3389/fncel.2014.00161 PMID: 24987330
  49. Liu, Q.R.; López-Corcuera, B.; Mandiyan, S.; Nelson, H.; Nelson, N. Molecular characterization of four pharmacologically distinct γ-aminobutyric acid transporters in mouse brain corrected J. Biol. Chem., 1993, 268(3), 2106-2112. doi: 10.1016/S0021-9258(18)53968-5
  50. Keynan, S.; Suh, Y.J.; Kanner, B.I.; Rudnick, G. Expression of a cloned. gamma.-aminobutyric acid transporter in mammalian cells. Biochemistry, 1992, 31(7), 1974-1979. doi: 10.1021/bi00122a011 PMID: 1536839
  51. Minelli, A.; Brecha, N.C.; Karschin, C.; DeBiasi, S.; Conti, F. GAT-1, a high-affinity GABA plasma membrane transporter, is localized to neurons and astroglia in the cerebral cortex. J. Neurosci., 1995, 15(11), 7734-7746. doi: 10.1523/JNEUROSCI.15-11-07734.1995 PMID: 7472524
  52. Conti, F.; Melone, M.; de Biasi, S.; Minelli, A.; Brecha, N.C.; Ducati, A. Neuronal and glial localization of GAT-1, a high-affinity? -aminobutyric acid plasma membrane transporter, in human cerebral cortex: With a note on its distribution in monkey cortex. J. Comp. Neurol., 1998, 396(1), 51-63. doi: 10.1002/(SICI)1096-9861(19980622)396:13.0.CO;2-H PMID: 9623887
  53. Braestrup, C.; Nielsen, E.B.; Sonnewald, U.; Knutsen, L.J.S.; Andersen, K.E.; Jansen, J.A.; Frederiksen, K.; Andersen, P.H.; Mortensen, A.; Suzdak, P.D. (R)-N-4,4-bis(3-methyl-2-thienyl)but-3-en-1-ylnipecotic acid binds with high affinity to the brain gamma-aminobutyric acid uptake carrier. J. Neurochem., 1990, 54(2), 639-647. doi: 10.1111/j.1471-4159.1990.tb01919.x PMID: 2299358
  54. Froestl, W. An historical perspective on GABAergic drugs. Future Med. Chem., 2011, 3(2), 163-175. doi: 10.4155/fmc.10.285 PMID: 21428811
  55. Jasmin, L; Wu, M; Ohara, P. GABA puts a stop to pain. Curr Drug Target -CNS Neurol Disord., 2004, 3(6), 487-505. doi: 10.2174/1568007043336716
  56. Mostafa, S.; Wang, Y.; Zeng, W.; Jin, B. Floral scents and fruit aromas: Functions, compositions, biosynthesis, and regulation internet. Front. Plant Sci., 2022, 13. Available from: https://www.frontiersin.org/articles/10.3389/fpls.2022.860157
  57. Naoumkina, M.A.; Zhao, Q.; Gallego-Giraldo, L.; Dai, X.; Zhao, P.X.; Dixon, R.A. Genome‐wide analysis of phenylpropanoid defence pathways. Mol. Plant Pathol., 2010, 11(6), 829-846. doi: 10.1111/j.1364-3703.2010.00648.x PMID: 21029326
  58. Tossi, V.; Amenta, M.; Lamattina, L.; Cassia, R. Retracted: Nitric oxide enhances plant ultraviolet‐B protection up‐regulating gene expression of the phenylpropanoid biosynthetic pathway. Plant Cell Environ., 2011, 34(6), 909-921. doi: 10.1111/j.1365-3040.2011.02289.x PMID: 21332509
  59. Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. Plant Cell, 1995, 7(7), 1085-1097. doi: 10.2307/3870059 PMID: 12242399
  60. Peled-Zehavi, H.; Oliva, M.; Xie, Q.; Tzin, V.; Oren-Shamir, M.; Aharoni, A.; Galili, G. Metabolic engineering of the phenylpropanoid and its primary, precursor pathway to enhance the flavor of fruits and the aroma of flowers. Bioengineering (Basel), 2015, 2(4), 204-212. doi: 10.3390/bioengineering2040204 PMID: 28952478
  61. Liu, J.; Osbourn, A.; Ma, P. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol. Plant, 2015, 8(5), 689-708. doi: 10.1016/j.molp.2015.03.012 PMID: 25840349
  62. Rehman, F.; Khan, F.A.; Badruddin, S.M.A. Role of phenolics in plant defense against insect herbivory. Chem. Phytopotentials Heal Energy Environ. Perspect, 2012, 309-313. doi: 10.1007/978-3-642-23394-4_65
  63. Singh, R.; Rastogi, S.; Dwivedi, U.N. Phenylpropanoid metabolism in ripening fruits. Compr. Rev. Food Sci. Food Saf., 2010, 9(4), 398-416. doi: 10.1111/j.1541-4337.2010.00116.x PMID: 33467837
  64. Xiao, X.; Li, J.; Lyu, J.; Hu, L.; Wu, Y.; Tang, Z.; Yu, J.; Calderón-Urrea, A. Grafting-enhanced tolerance of cucumber to toxic stress is associated with regulation of phenolic and other aromatic acids metabolism. PeerJ, 2022, 10, e13521. doi: 10.7717/peerj.13521 PMID: 35669966
  65. Mora, J.; Pott, D.M.; Osorio, S.; Vallarino, J.G. Regulation of plant tannin synthesis in crop species internet. Front. Genet., 2022, 13. Available from: https://www.frontiersin.org/articles/10.3389/fgene.2022.870976
  66. Kumar, M.; Dahuja, A.; Tiwari, S.; Punia, S.; Tak, Y.; Amarowicz, R.; Bhoite, A.G.; Singh, S.; Joshi, S.; Panesar, P.S.; Prakash Saini, R.; Pihlanto, A.; Tomar, M.; Sharifi-Rad, J.; Kaur, C. Recent trends in extraction of plant bioactives using green technologies: A review. Food Chem., 2021, 353, 129431. Available from: https://www.sciencedirect.com/science/article/pii/S0308814621004374 doi: 10.1016/j.foodchem.2021.129431 PMID: 33714109
  67. Singh, P.; Singh, A.; Choudhary, K.K. Revisiting the role of phenylpropanoids in plant defense against UV-B stress. Plant Stress, 2023, 7, 100143. Available from: https://www.sciencedirect.com/science/article/pii/S2667064X23000131 Internet doi: 10.1016/j.stress.2023.100143
  68. Cunha, F.V.M.; Coelho, A.G.; Azevedo, P.S da S.; da Silva, A.A.; Oliveira, F de A.; Nunes, L.C.C. Systematic review and technological prospection: ethyl ferulate, a phenylpropanoid with antioxidant and neuroprotective actions. Expert Opin. Ther. Pat., 2019, 29(2), 73-83. doi: 10.1080/13543776.2019.1568410
  69. Sultana, R. Ferulic acid ethyl ester as a potential therapy in neurodegenerative disorders. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(5), 748-752. doi: 10.1016/j.bbadis.2011.10.015 PMID: 22064438
  70. Kikuzaki, H.; Hisamoto, M.; Hirose, K.; Akiyama, K.; Taniguchi, H. Antioxidant properties of ferulic acid and its related compounds. J. Agric. Food Chem., 2002, 50(7), 2161-2168. doi: 10.1021/jf011348w PMID: 11902973
  71. Carvalho, A.A.; Andrade, L.N.; de Sousa, É.B.V.; de Sousa, D.P. Antitumor phenylpropanoids found in essential oils. BioMed Res. Int., 2015, 2015, 392674. doi: 10.1155/2015/392674
  72. Abreu, L.S.; do Nascimento, Y.M.; do Espirito-Santo, R.F.; Meira, C.S.; Santos, I.P.; Brandão, R.B.; Souto, A.L.; Guedes, M.L.S.; Soares, M.B.P.; Villarreal, C.F.; da Silva, M.S.; Velozo, E.S.; Tavares, J.F. Phenylpropanoids from Croton velutinus with cytotoxic, trypanocidal and anti-inflammatory activities. Fitoterapia, 2020, 145, 104632. doi: 10.1016/j.fitote.2020.104632 PMID: 32446709
  73. Ekinci Akdemir, F.; Albayrak, M.; Çalik, M.; Bayir, Y.; Gülçin, İ. The protective effects of p-coumaric acid on acute liver and kidney damages induced by cisplatin. Biomedicines, 2017, 5(4), 18. doi: 10.3390/biomedicines5020018 PMID: 28536361
  74. Abdel-Moneim, A.; El-Twab, S.M.A.; Yousef, A.I.; Reheim, E.S.A.; Ashour, M.B. Modulation of hyperglycemia and dyslipidemia in experimental type 2 diabetes by gallic acid and p-coumaric acid: The role of adipocytokines and PPARγ. Biomed. Pharmacother., 2018, 105, 1091-1097. doi: 10.1016/j.biopha.2018.06.096 PMID: 30021345
  75. Panda, P.; Appalashetti, M.; Judeh, Z.M. Phenylpropanoid sucrose esters: Plant-derived natural products as potential leads for new therapeutics. Curr. Med. Chem., 2011, 18(21), 3234-3251. doi: 10.2174/092986711796391589 PMID: 21671860
  76. Roy, S.K.; Pahwa, S.; Nandanwar, H.; Jachak, S.M. Phenylpropanoids of Alpinia galanga as efflux pump inhibitors in Mycobacterium smegmatis mc2 155. Fitoterapia, 2012, 83(7), 1248-1255. doi: 10.1016/j.fitote.2012.06.008 PMID: 22735598
  77. Phitak, T.; Choocheep, K.; Pothacharoen, P.; Pompimon, W.; Premanode, B.; Kongtawelert, P. The effects of p-hydroxy-cinnamaldehyde from Alpinia galanga extracts on human chondrocytes. Phytochemistry, 2009, 70(2), 237-243. doi: 10.1016/j.phytochem.2008.11.010 PMID: 19118849
  78. Marchiosi, R.; dos Santos, W.D.; Constantin, R.P.; de Lima, R.B.; Soares, A.R.; Finger-Teixeira, A.; Mota, T.R.; de Oliveira, D.M.; Foletto-Felipe, M.P.; Abrahão, J.; Ferrarese-Filho, O. Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochem. Rev., 2020, 19(4), 865-906. doi: 10.1007/s11101-020-09689-2
  79. Widhalm, J.R.; Dudareva, N. A familiar ring to it: Biosynthesis of plant benzoic acids. Mol. Plant, 2015, 8(1), 83-97. doi: 10.1016/j.molp.2014.12.001 PMID: 25578274
  80. Charanya, C.; Sampathkrishnan, S.; Balamurugan, N. Molecular docking, vibrational spectroscopic analysis, non-linear optical properties and DFT Calculation of 2-(2,3-Dimethylphenyl)Amino Benzoic Acid. 2019. Available from: https://www.tandfonline.com/doi/abs/10.1080/10406638.2019.1700138
  81. Natchimuthu, V.; Bandaru, S.; Nayarisseri, A.; Ravi, S. Design, synthesis and computational evaluation of a novel intermediate salt of N-cyclohexyl-N-(cyclohexylcarbamoyl)-4-(trifluoromethyl) benzamide as potential potassium channel blocker in epileptic paroxysmal seizures. Comput. Biol. Chem., 2016, 64, 64-73. doi: 10.1016/j.compbiolchem.2016.05.003 PMID: 27266485
  82. Kumar, A.; Kumar, A. Design and synthesis of anti-convulsant and anti-bacterial activity of new hydrazone derivatives. Available from: https://biointerfaceresearch.com/wp-content/uploads/2020/02/20695837102229236.pdf doi: 10.33263/BRIAC102.229236
  83. de Souza, L.G.; Rennó, M.N.; Figueroa-Villar, J.D. Coumarins as cholinesterase inhibitors: A review. Chem. Biol. Interact., 2016, 254, 11-23. doi: 10.1016/j.cbi.2016.05.001 PMID: 27174134
  84. Franco, D.P.; Pereira, T.M.; Vitorio, F.; Nadur, N.F.; Lacerda, R.B.; Kümmerle, A.E. A importância das cumarinas para a química medicinal e o desenvolvimento de compostos bioativos nos últimos anos. Quim, 2021, 44(2), 180-197.
  85. Kostova, I. Synthetic and natural coumarins as antioxidants. Mini Rev. Med. Chem., 2006, 6(4), 365-374. doi: 10.2174/138955706776361457 PMID: 16613573
  86. Mohammadi-Khanaposhtani, M.; Ahangar, N.; Sobhani, S.; Masihi, P.H.; Shakiba, A.; Saeedi, M.; Akbarzadeh, T. Design, synthesis, in vivo, and in silico evaluation of new coumarin-1,2,4-oxadiazole hybrids as anticonvulsant agents. Bioorg. Chem., 2019, 89, 102989. doi: 10.1016/j.bioorg.2019.102989 PMID: 31158578
  87. Sepehri, N.; Mohammadi-Khanaposhtani, M.; Asemanipoor, N.; Hosseini, S.; Biglar, M.; Larijani, B.; Mahdavi, M.; Hamedifar, H.; Taslimi, P.; Sadeghian, N.; Gulcin, I. Synthesis, characterization, molecular docking, and biological activities of coumarin-1,2,3‐triazole‐acetamide hybrid derivatives. Arch. Pharm. (Weinheim), 2020, 353(10), 2000109. doi: 10.1002/ardp.202000109 PMID: 32643792
  88. Abd-Allah, W.H.; Osman, E.E.A.; Anwar, M.A.E.M.; Attia, H.N.; El Moghazy, S.M. Design, synthesis and docking studies of novel benzopyrone derivatives as anticonvulsants. Bioorg. Chem., 2020, 98, 103738. doi: 10.1016/j.bioorg.2020.103738 PMID: 32179283
  89. Karataş, M.O.; Uslu, H.; Sarı, S.; Alagöz, M.A.; Karakurt, A.; Alıcı, B.; Bilen, C.; Yavuz, E.; Gencer, N.; Arslan, O. Coumarin or benzoxazinone based novel carbonic anhydrase inhibitors: Synthesis, molecular docking and anticonvulsant studies. J. Enzyme Inhib. Med. Chem., 2016, 31(5), 760-772. doi: 10.3109/14756366.2015.1063624 PMID: 26207513
  90. Kozioł, E.; Jóźwiak, K.; Budzyńska, B.; de Witte, P.A.M.; Copmans, D.; Skalicka-Woźniak, K. Comparative antiseizure analysis of diverse natural coumarin derivatives in zebrafish. Int. J. Mol. Sci., 2021, 22(21), 11420. doi: 10.3390/ijms222111420 PMID: 34768849
  91. Vazquez-Rodriguez, S.; Vilar, S.; Kachler, S.; Klotz, K.N.; Uriarte, E.; Borges, F.; Matos, M.J. Adenosine receptor ligands: Coumarin-Chalcone hybrids as modulating agents on the activity of hARs. Molecules, 2020, 25(18), 4306. doi: 10.3390/molecules25184306 PMID: 32961824
  92. Adsule, P.V.; Chabukswar, A.R.; Nanaware, R. Design, synthesis, anti-inflammatory & anticonvulsant activity of substituted heterocyclic compounds. J. Pharm. Res. Int., 2021, 33, 96-111. doi: 10.9734/jpri/2021/v33i47B33100
  93. Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; Chen, H.; Qin, W.; Wu, H.; Chen, S. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules, 2016, 21(10), 1374. doi: 10.3390/molecules21101374 PMID: 27754463
  94. Mutha, R.E.; Tatiya, A.U.; Surana, S.J. Flavonoids as natural phenolic compounds and their role in therapeutics: An overview. Fut. J. Pharm. Sci., 2021, 7(1), 25. doi: 10.1186/s43094-020-00161-8 PMID: 33495733
  95. Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, M.S.; Ahmed, M.; Das, R.; Emran, T.B.; Uddin, M.S. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules, 2021, 27(1), 233. doi: 10.3390/molecules27010233 PMID: 35011465
  96. Al Mamari, H.H. Phenolic Compounds: Classification, chemistry, and updated techniques of analysis and synthesis. In: Phenolic Compounds-Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications; IntechOpen, 2021.
  97. Da Guedes, E.; Ribeiro, L.R.; Carneiro, C.A.; Santos, A.M.F.; Brito, M.Á. De Andrade, HHN Anticonvulsant activity of trans -anethole in mice. BioMed Res. Int., 2022, 2022, 310-317.
  98. Rauf, A.; Raza, M.; Saleem, M.; Ozgen, U.; Karaoglan, E.S.; Renda, G.; Palaska, E.; Orhan, I.E. Carbonic anhydrase and urease inhibitory potential of various plant phenolics using in vitro and in silico methods. Chem. Biodivers., 2017, 14(6), e1700024. doi: 10.1002/cbdv.201700024 PMID: 28207990
  99. Liu, X.; Wang, C.Y.; Shao, C.L.; Wei, Y.X.; Wang, B.G.; Sun, L.L.; Zheng, C-J.; Guan, H-S. Chemical constituents from Sargassum pallidum (Turn.). C. Agardh. Biochem. Syst. Ecol., 2009, 37(2), 127-129. doi: 10.1016/j.bse.2009.01.009
  100. Iwashina, T.; Mizuno, T. Flavonoids and xanthones from the genus Iris: Phytochemistry, relationships with flower colors and taxonomy, and activities and function. Nat. Prod. Commun., 2020, 15(10)
  101. Frezza, C.; Venditti, A.; Serafini, M.; Bianco, A. Phytochemistry, chemotaxonomy, ethnopharmacology, and nutraceutics of Lamiaceae. Studies in natural products chemistry; Elsevier, 2019, pp. 125-178.
  102. Frezza, E. Patient-Centered Healthcare: Transforming the Relationship Between Physicians and Patients; CRC Press, 2019. doi: 10.4324/9780429032226
  103. Frezza, C.; Venditti, A.; De Vita, D.; Toniolo, C.; Franceschin, M.; Ventrone, A.; Tomassini, L.; Foddai, S.; Guiso, M.; Nicoletti, M.; Bianco, A.; Serafini, M. Phytochemistry, chemotaxonomy, and biological activities of the Araucariaceae family—A review. Plants, 2020, 9(7), 888. doi: 10.3390/plants9070888 PMID: 32674354
  104. Frezza, C.; Venditti, A.; Giuliani, C.; Foddai, S.; Cianfaglione, K.; Maggi, F.; Fico, G.; Guiso, M.; Nicoletti, M.; Bianco, A.; Serafini, M. Occurrence of flavonoids in different Lamiaceae taxa for a preliminary study on their evolution based on phytochemistry. Biochem. Syst. Ecol., 2021, 96, 104247. doi: 10.1016/j.bse.2021.104247
  105. Zhu, L.; Yu, Z.; Zhong, G.; Ren, G. two new isoprenylated flavones from roots of Artocarpus styracifolius. Chem. Nat. Compd., 2022, 58(3), 426-428. doi: 10.1007/s10600-022-03701-1
  106. Orlova, A.A.; Whaley, A.K.; Ponkratova, A.O.; Balabas, O.A.; Smirnov, S.N.; Povydysh, M.N. Two new flavonol-bis-3,7-glucuronides from Geum rivale L. Phytochem. Lett., 2021, 42, 41-44. doi: 10.1016/j.phytol.2021.02.003
  107. Liu, H.; Jia, X.; Wang, H.; Xiao, C.; Du, C.; Tang, W. Flavanones from the fruit extract of Paulownia fortunei. Phytochem. Lett., 2021, 43, 196-199. doi: 10.1016/j.phytol.2021.04.009
  108. Lukaseder, B.; Vajrodaya, S.; Hehenberger, T.; Seger, C.; Nagl, M.; Lutz-Kutschera, G.; Robien, W.; Greger, H.; Hofer, O. Prenylated flavanones and flavanonols as chemical markers in Glycosmis species (Rutaceae). Phytochemistry, 2009, 70(8), 1030-1037. doi: 10.1016/j.phytochem.2009.05.007 PMID: 19535116
  109. Luo, Y.; Jian, Y.; Liu, Y.; Jiang, S.; Muhammad, D.; Wang, W. Flavanols from nature: A phytochemistry and biological activity review. Molecules, 2022, 27(3), 719. doi: 10.3390/molecules27030719 PMID: 35163984
  110. Alam, M.A.; Islam, P.; Subhan, N.; Rahman, M.M.; Khan, F.; Burrows, G.E.; Nahar, L.; Sarker, S.D. Potential health benefits of anthocyanins in oxidative stress related disorders. Phytochem. Rev., 2021, 20(4), 705-749. doi: 10.1007/s11101-021-09757-1
  111. Kaennakam, S.; Sukandar, E.R.; Rassamee, K.; Siripong, P.; Tip-pyang, S. Cytotoxic chalcones and isoflavones from the stems of Dalbergia velutina. Phytochem. Lett., 2019, 31, 187-191. doi: 10.1016/j.phytol.2019.04.005
  112. Li, Y.K.; Sun, J.Q.; Gao, X.M.; Lei, C. New isoprenylated aurones from the flowers of Rosa damascena. Helv. Chim. Acta, 2014, 97(3), 414-419. doi: 10.1002/hlca.201300336
  113. Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47. doi: 10.1017/jns.2016.41 PMID: 28620474
  114. Iwashina, T. The structure and distribution of the flavonoids in plants. J. Plant Res., 2000, 113(3), 287-299. doi: 10.1007/PL00013940
  115. Liu, Y.; Shu, J.C.; Wang, M.F.; Xu, Z.J.; Yang, L.; Meng, X.W.; Duan, W.B.; Zhang, N.; Shao, F.; Liu, R.H.; Chen, L.Y. Melanoxylonin A-G, neoflavonoids from the heartwood of Dalbergia melanoxylon and their cardioprotective effects. Phytochemistry, 2021, 189, 112845. doi: 10.1016/j.phytochem.2021.112845 PMID: 34171505
  116. Aydin, T.; Senturk, M.; Kazaz, C.; Cakir, A. Inhibitory effects and kinetic-docking studies of xanthohumol from Humulus lupulus cones against carbonic anhydrase, acetylcholinesterase, and butyrylcholinesterase. Nat. Prod. Commun., 2019, 14(10), 1934578X1988150. doi: 10.1177/1934578X19881503
  117. Wang, W.; Zhang, Y.; Yang, Y.; Gu, L. Network pharmacology and molecular docking to explore the mechanism of kangxian decoction for epilepsy; Evidence-based Complement Altern. Med, 2022. doi: 10.1155/2022/3333878
  118. da Silva, A.W.; Ferreira, M.K.A.; Pereira, L.R.; Rebouças, E.L.; Coutinho, M.R.; Dos, J. Combretum lanceolatum extract reverses anxiety and seizure behavior in adult zebrafish through GABAergic neurotransmission: An in vivo and in silico study. J. Biomol. Struct. Dyn., 2021, 0(0), 1-14. PMID: 34121622
  119. Aditama, R.; Mujahidin, D.; Syah, Y.M.; Hertadi, R. Docking and molecular dynamics simulation of carbonic anhydrase ii inhibitors from phenolic and flavonoid group. Procedia Chem., 2015, 16, 357-364. doi: 10.1016/j.proche.2015.12.064
  120. Redford, K.E.; Abbott, G.W. The ubiquitous flavonoid quercetin is an atypical KCNQ potassium channel activator. Commun. Biol., 2020, 3(1), 356. doi: 10.1038/s42003-020-1089-8 PMID: 32641720
  121. Ahmed, H.; Khan, M.A.; Ali, Z.S.A.; Muhammad, S. In silico and in vivo: Evaluating the therapeutic potential of kaempferol, quercetin, and catechin to treat chronic epilepsy in a rat model. Front. Bioeng. Biotechnol., 2021, 9(November), 754952. doi: 10.3389/fbioe.2021.754952 PMID: 34805114
  122. Huang, D.; Lv, Y.; Lu, C.; Zhang, B.; Fu, Z.; Huang, Y. Mechanism of Rhizoma coptidis in epilepsy with network pharmacology. Allergol. Immunopathol. (Madr.), 2022, 50(3), 138-150. doi: 10.15586/aei.v50i3.489 PMID: 35527668
  123. Abdulrahman, H.L.; Uzairu, A.; Uba, S. QSAR, ligand based design and pharmacokinetic studies of parviflorons derivatives as anti-breast cancer drug compounds against MCF-7 cell line. Chemistry Africa, 2021, 4(1), 175-187. doi: 10.1007/s42250-020-00207-7
  124. Shirvani, P.; Fassihi, A. In silico design of novel FAK inhibitors using integrated molecular docking, 3D-QSAR and molecular dynamics simulation studies. J. Biomol. Struct. Dyn., 2022, 40(13), 5965-5982.
  125. Kumar, A.; Agarwal, P.; Rathi, E.; Kini, S.G. Computer-aided identification of human carbonic anhydrase isoenzyme VII inhibitors as potential antiepileptic agents. J. Biomol. Struct. Dyn., 2022, 40(11), 4850-4865. PMID: 33345714
  126. Mauri, A.; Consonni, V.; Pavan, M.; Todeschini, R. Dragon software: An easy approach to molecular descriptor calculations. Match (Mulh.), 2006, 56(2), 237-248.
  127. Willighagen, E.L.; Mayfield, J.W.; Alvarsson, J.; Berg, A.; Carlsson, L.; Jeliazkova, N. The Chemistry Development Kit (CDK) v2. 0: atom typing, depiction, molecular formulas, and substructure searching. J. Cheminform., 2017, 9(1), 1-19.
  128. Landrum, G. RDKit: A software suite for cheminformatics, computational chemistry, and predictive modeling; Academic Press Cambridge, 2013.
  129. Mazanetz, M.P.; Marmon, R.J.; Reisser, C.B.T.; Morao, I. Drug discovery applications for KNIME: an open source data mining platform. Curr. Top. Med. Chem., 2012, 12(18), 1965-1979. doi: 10.2174/156802612804910331 PMID: 23110532
  130. Dou, J.; Yunus, A.P.; Tien Bui, D.; Merghadi, A.; Sahana, M.; Zhu, Z.; Chen, C.W.; Khosravi, K.; Yang, Y.; Pham, B.T. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci. Total Environ., 2019, 662, 332-346. doi: 10.1016/j.scitotenv.2019.01.221 PMID: 30690368
  131. Monteiro, A.F.M.; Scotti, M.T.; Scotti, L. In silico studies of potentially active 2-amino-thiophenic derivatives against HIV-1. Int. J. Quantitative Structure-Property Relationships, 2020, 5(2), 100-119. doi: 10.4018/IJQSPR.2020040104
  132. Morales, J.F.; Chuguransky, S.; Alberca, L.N.; Alice, J.I.; Goicoechea, S.; Ruiz, M.E.; Bellera, C.L.; Talevi, A. Positive predictive value surfaces as a complementary tool to assess the performance of virtual screening methods. Mini Rev. Med. Chem., 2020, 20(14), 1447-1460. doi: 10.2174/1871525718666200219130229 PMID: 32072906
  133. De Moura, É.P. Estudo in silico de flavonoides e análogos da família asteraceae contra a doença de alzheimer; Universidade Federal da Paraíba, 2021.
  134. Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: an open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model., 2015, 55(2), 460-473. doi: 10.1021/ci500588j PMID: 25558886
  135. Tamimi, A.F.; Juweid, M. Epidemiology and Outcome of Glioblastoma. 2017. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470003/ doi: 10.15586/codon.glioblastoma.2017.ch8
  136. Malik, R.; Mehta, P.; Srivastava, S.; Singh, B.; Sharma, M. ADME prediction of N-pyridyl and pyrimidine benzamides as potent antiepileptic agents. J. Recept. Signal Transduct. Res., 2016, 37(3), 259-266.
  137. Kerzare, D.R.; Menghani, S.S.; Rarokar, N.R.; Khedekar, P.B. Development of novel indole‐linked pyrazoles as anticonvulsant agents: A molecular hybridization approach. Arch. Pharm. (Weinheim), 2021, 354(1), 2000100. doi: 10.1002/ardp.202000100 PMID: 32909304
  138. Cruciani, G.; Carosati, E.; De Boeck, B.; Ethirajulu, K.; Mackie, C.; Howe, T.; Vianello, R. MetaSite: understanding metabolism in human cytochromes from the perspective of the chemist. J. Med. Chem., 2005, 48(22), 6970-6979. doi: 10.1021/jm050529c PMID: 16250655
  139. Mestria, S.; Odoardi, S.; Federici, S.; Bilel, S.; Tirri, M.; Marti, M.; Strano Rossi, S. Metabolism study of N-Methyl 2-aminoindane (NM2AI) and determination of metabolites in biological samples by LC-HRMS. J. Anal. Toxicol., 2021, 45(5), 475-483. doi: 10.1093/jat/bkaa111 PMID: 32860694
  140. Odoardi, S.; Mestria, S.; Biosa, G.; Arfè, R.; Tirri, M.; Marti, M.; Strano Rossi, S. Metabolism study and toxicological determination of mephtetramine in biological samples by liquid chromatography coupled with high‐resolution mass spectrometry. Drug Test. Anal., 2021, 13(8), 1516-1526. doi: 10.1002/dta.3044 PMID: 33835674
  141. Scotti, L.; Scotti, M.T.; Pasqualoto, K.F.M.; Bolzani, V.S.; Ferreira, E.I. Molecular physicochemical parameters predicting antioxidant activity of Brazilian natural products. Rev. Bras. Farmacogn., 2009, 19(4), 908-913. doi: 10.1590/S0102-695X2009000600020
  142. Abbasi, H.; Fereidoonnezhad, M.; Mirveis, Z. Vilazodone-Tacrine Hybrids as Potential Anti-Alzheimer Agents: QSAR, Molecular Docking, and Molecular Dynamic; Simulation Studies: MD, 2021.
  143. Rodrigues, C.; Hernández-González, J.; Pedrina, N.; Leite, V.; Bruni, A. In silico Evaluation of Cucurbit6uril as a Potential Detector for Cocaine and Its Adulterants Lidocaine, Caffeine, and Procaine. J. Braz. Chem. Soc., 2021, 32, 800-810. doi: 10.21577/0103-5053.20200231
  144. Armstrong, N.; Gouaux, E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron, 2000, 28(1), 165-181. doi: 10.1016/S0896-6273(00)00094-5 PMID: 11086992
  145. Zhao, Y.; Huang, G.; Wu, Q.; Wu, K.; Li, R.; Lei, J. Cryo-EM structures of apo and antagonist-bound human Cav3.1. Nature, 2019, 576(7787), 492-497. doi: 10.1038/s41586-019-1801-3 PMID: 31766050
  146. Zhu, S.; Noviello, C.M.; Teng, J.; Walsh, R.M.; Kim, J.J.; Hibbs, R.E. Structure of a human synaptic GABAA receptor. 2018. Available from: https://www.nature.com/articles/s41586-018-0255-3 doi: 10.1038/s41586-018-0255-3
  147. Motiwala, Z.; Aduri, N.G.; Shaye, H.; Han, G.W.; Lam, J.H.; Katritch, V. Structural basis of GABA reuptake inhibition. Available from: https://www.nature.com/articles/s41586-022-04814-x doi: 10.1038/s41586-022-04814-x
  148. Lind, G.E.; Mou, T.C.; Tamborini, L.; Pomper, M.G.; De Micheli, C.; Conti, P.; Pinto, A.; Hansen, K.B. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits. Proc. Natl. Acad. Sci. USA, 2017, 114(33), E6942-E6951. Available from: https://www.pnas.org/doi/abs/10.1073/pnas.1707752114 doi: 10.1073/pnas.1707752114 PMID: 28760974
  149. Ghosh, S.; Sinha, J.K.; Khan, T.; Devaraju, K.S.; Singh, P.; Vaibhav, K.; Gaur, P. Pharmacological and therapeutic approaches in the treatment of epilepsy. Biomedicines, 2021, 9(5), 470. doi: 10.3390/biomedicines9050470 PMID: 33923061
  150. Maru, A. Molecular docking study of new-Mannich bases derived from pyrollidine-2, 5-dione as anticonvulsant agents. Int. J. Pharm. Sci. Res., 2020, 11(3), 1243-1248.
  151. Zafar, S.; Jabeen, I. GRID-independent molecular descriptor analysis and molecular docking studies to mimic the binding hypothesis of γ-aminobutyric acid transporter 1 (GAT1) inhibitors. PeerJ, 2019, 7(1), e6283. doi: 10.7717/peerj.6283 PMID: 30723616
  152. Thomsen, R.; Christensen, M.H. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321. doi: 10.1021/jm051197e PMID: 16722650
  153. Schlosser, J.; Rarey, M. Beyond the virtual screening paradigm: structure-based searching for new lead compounds. J. Chem. Inf. Model., 2009, 49(4), 800-809. doi: 10.1021/ci9000212 PMID: 19354328
  154. Dong, N.Q.; Lin, H.X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J. Integr. Plant Biol., 2021, 63(1), 180-209. doi: 10.1111/jipb.13054 PMID: 33325112
  155. Vogt, T. Phenylpropanoid Biosynthesis. Mol. Plant, 2010, 3(1), 2-20. Available from: https://www.sciencedirect.com/science/article/pii/S1674205214603944 doi: 10.1093/mp/ssp106 PMID: 20035037
  156. Pieretti, S.; Saviano, A.; Mollica, A.; Stefanucci, A.; Aloisi, A.M.; Nicoletti, M. Anti-Inflammatory properties. 2022. Available from: https://en.wikipedia.org/wiki/Anti-inflammatory
  157. Santana, F.P.R.; da Silva, R.C.; Ponci, V.; Pinheiro, A.J.M.C.R.; Olivo, C.R.; Caperuto, L.C.; Arantes-Costa, F.M.; Claudio, S.R.; Ribeiro, D.A.; Tibério, I.F.L.C.; Lima-Neto, L.G.; Lago, J.H.G.; Prado, C.M. Dehydrodieugenol improved lung inflammation in an asthma model by inhibiting the STAT3/SOCS3 and MAPK pathways. Biochem. Pharmacol., 2020, 180, 114175. Available from: https://www.sciencedirect.com/science/article/pii/S0006295220304111 doi: 10.1016/j.bcp.2020.114175 PMID: 32717226
  158. Li, Y.; Lan, X.; Wang, S.; Cui, Y.; Song, S.; Zhou, H. Serial five-membered lactone ring ions in the treatment of Alzheimer’s diseases-comprehensive profiling of arctigenin metabolites and network analysis internet. Frontiers in Pharmacology., 2022, 13. Available from: https://www.frontiersin.org/articles/10.3389/fphar.2022.1065654
  159. Jayaraj, P.B.; Jain, S. Ligand based virtual screening using SVM on GPU. Comput. Biol. Chem., 2019, 83, 107143. doi: 10.1016/j.compbiolchem.2019.107143 PMID: 31743833
  160. Shayanfar, S.; Shayanfar, A. Comparison of various methods for validity evaluation of QSAR models. BMC Chem., 2022, 16(1), 63. Available from: https://bmcchem-biomedcentral-com.ez15.periodicos.capes.gov.br/articles/10.1186/s13065-022-00856-4 doi: 10.1186/s13065-022-00856-4 PMID: 35999611
  161. Chitre, T.S.; Patil, S.M.; Sujalegaonkar, A.G.; Asgaonkar, K.D. Designing of thiazolidin-4-one pharmacophore using QSAR studies for anti-HIV activity. Indian J Pharm Edu Res., 2021, 55(2), 581-589. doi: 10.5530/ijper.55.2.97
  162. Chicco, D.; Warrens, M.J.; Jurman, G. The matthews correlation coefficient (MCC) is more informative than Cohen’s kappa and brier score in binary classification assessment. IEEE Access, 2021, 9, 78368-78381. doi: 10.1109/ACCESS.2021.3084050
  163. Chicco, D.; Tötsch, N.; Jurman, G. The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData Min., 2021, 14(1), 13. doi: 10.1186/s13040-021-00244-z PMID: 33541410
  164. Fanjul-Hevia, A.; González-Manteiga, W.; Pardo-Fernández, J.C. A non-parametric test for comparing conditional ROC curves. Comput. Stat. Data Anal., 2021, 157, 107146. Available from: https://www.sciencedirect.com/science/article/pii/S0167947320302371 doi: 10.1016/j.csda.2020.107146
  165. Alonso, R.; Nakas, C.T.; Carmen Pardo, M. A study of indices useful for the assessment of diagnostic markers in non-parametric ROC curve analysis. Commun. Stat. Simul. Comput., 2020, 49(8), 2102-2113. doi: 10.1080/03610918.2018.1511806
  166. Carrington, A.M.; Manuel, D.G.; Fieguth, P.W.; Ramsay, T.; Osmani, V.; Wernly, B.; Bennett, C.; Hawken, S.; Magwood, O.; Sheikh, Y.; McInnes, M.; Holzinger, A. Deep ROC analysis and AUC as balanced average accuracy, for improved classifier selection, audit and explanation. IEEE Trans. Pattern Anal. Mach. Intell., 2023, 45(1), 329-341. doi: 10.1109/TPAMI.2022.3145392 PMID: 35077357
  167. Bellera, C.L.; Talevi, A. Quantitative structure-activity relationship models for compounds with anticonvulsant activity. Expert Opin. Drug Discov., 2019, 14(7), 653-665. doi: 10.1080/17460441.2019.1613368 PMID: 31072145
  168. dos Santos Maia, M.; Raimundo e Silva, J.P.; de Lima Nunes, T.A.; Saraiva de Sousa, J.M.; Soares, R.G.C.; Messias, M.A.F. Virtual screening and the in vitro assessment of the antileishmanial activity of lignans. Molecules, 2020, 25, 1-33. doi: 10.3390/molecules25102281
  169. Unadkat, V.; Rohit, S.; Parikh, P.; Patel, K.; Sanna, V.; Singh, S. Identification of 1,2,4-oxadiazoles-based novel EGFR inhibitors: molecular dynamics simulation-guided identification and in vitro ADME studies. OncoTargets Ther., 2022, 15, 479-495. doi: 10.2147/OTT.S357765 PMID: 35535170
  170. Soares, J.X.; Santos, Á.; Fernandes, C.; Pinto, M.M.M. Liquid chromatography on the different methods for the determination of lipophilicity: An essential analytical tool in medicinal chemistry. chemosens., 2022. Available from: https://www.mdpi.com/2227-9040/10/8/340/htm
  171. Wang, Z.; Felstead, H.R.; Troup, R.I.; Linclau, B.; Williamson, P.T.F. Lipophilicity modulations by fluorination correlate with membrane partitioning. Angew. Chem. Int. Ed., 2023, 62(21), e202301077. doi: 10.1002/anie.202301077 PMID: 36932824
  172. Sevastos, A.A.; Baker, C.M.; Taylor, P. A simple method for predicting alkane‐water partition coefficients of surfactants. J. Surfactants Deterg., 2022, 25(1), 53-61. doi: 10.1002/jsde.12545
  173. Pan-On, S.; Tiyaboonchai, W. Development, characterization and Caco-2 cells absorption of curcumin solid dispersion for oral administration. J. Drug Deliv. Sci. Technol., 2023, 86, 104574. doi: 10.1016/j.jddst.2023.104574
  174. Azman, M.; Sabri, A.H.; Anjani, Q.K.; Mustaffa, M.F.; Hamid, K.A. Intestinal absorption Study: Challenges and absorption enhancement strategies in improving oral drug delivery. Pharmaceuticals (Basel), 2022, 15(8), 975. doi: 10.3390/ph15080975 PMID: 36015123
  175. lenin, S.; sujatha, R.; Palanisamy, S. Pharmacological properties and bioavailability studies of 3-methyl quinoline. Int. J. Pharma Bio Sci., 2022, 12(1), 100-104. doi: 10.22376/ijpbs/lpr.2022.12.1.L100-104
  176. Sharma, S.; Prasad, B. Meta-analysis of food effect on oral absorption of efflux transporter substrate drugs: Does delayed gastric emptying influence drug transport kinetics? Pharmaceutics, 2021, 13(7), 1035. doi: 10.3390/pharmaceutics13071035 PMID: 34371727
  177. Dudhipala, N.; Ettireddy, S.; Youssef, A.A.A.; Puchchakayala, G. Development and in vivo pharmacokinetic and pharmacodynamic evaluation of an oral innovative cyclodextrin complexed lipid nanoparticles of irbesartan formulation for enhanced bioavailability. Nanotheranostics, 2023, 7(1), 117-127. Available from: https://www.ntno.org/v07p0117.htm doi: 10.7150/ntno.78102 PMID: 36593793
  178. Morak-Młodawska, B.; Jeleń, M.; Martula, E.; Korlacki, R. Study of lipophilicity and ADME properties of 1,9-diazaphenothiazines with anticancer action. Int. J. Mol. Sci., 2023, 24(8), 6970. doi: 10.3390/ijms24086970 PMID: 37108135
  179. Müller, J.; Martins, A.; Csábi, J.; Fenyvesi, F.; Könczöl, Á.; Hunyadi, A.; Balogh, G.T. BBB penetration-targeting physicochemical lead selection: Ecdysteroids as chemo-sensitizers against CNS tumors. Eur. J. Pharm. Sci., 2017, 96, 571-577. Available from: https://www.sciencedirect.com/science/article/pii/S0928098716304730 doi: 10.1016/j.ejps.2016.10.034 PMID: 27810561
  180. Vilar, S.; Chakrabarti, M.; Costanzi, S. Prediction of passive blood-brain partitioning: Straightforward and effective classification models based on in silico derived physicochemical descriptors. J. Mol. Graph. Model., 2010, 28(8), 899-903. doi: 10.1016/j.jmgm.2010.03.010 PMID: 20427217
  181. van de Waterbeemd, H.; Camenisch, G.; Folkers, G.; Chretien, J.R.; Raevsky, O.A. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J. Drug Target., 1998, 6(2), 151-165. doi: 10.3109/10611869808997889 PMID: 9886238
  182. Fu, X.; He, S.; Du, L.; Lv, Z.; Zhang, Y.; Zhang, Q.; Wang, Y. Using chemical bond-based method to predict site of metabolism for five biotransformations mediated by CYP 3A4, 2D6, and 2C9. Biochem. Pharmacol., 2018, 152, 302-314. doi: 10.1016/j.bcp.2018.03.024 PMID: 29588194
  183. Esteves, F.; Rueff, J.; Kranendonk, M. The central role of cytochrome P450 in xenobiotic metabolism-a brief review on a fascinating enzyme family. J. Xenobiot., 2021, 11(3), 94-114. doi: 10.3390/jox11030007 PMID: 34206277
  184. Awasthi, N.; Yadav, R.; Kumar, D. Metabolism of 8-aminoquinoline (8AQ) primaquine via aromatic hydroxylation step mediated by cytochrome P450 enzyme using density functional theory. J. Organomet. Chem., 2022, 957, 122154. doi: 10.1016/j.jorganchem.2021.122154
  185. Coleman, T.; Kirk, A.M.; Lee, J.H.Z.; Doherty, D.Z.; Bruning, J.B.; Krenske, E.H.; De Voss, J.J.; Bell, S.G. Different geometric requirements for cytochrome P450-catalyzed aliphatic versus aromatic hydroxylation results in chemoselective oxidation. ACS Catal., 2022, 12(2), 1258-1267. doi: 10.1021/acscatal.1c05483
  186. Wong, S.H.; Bell, S.G.; De Voss, J.J. P450 catalysed dehydrogenation. Pure Appl. Chem., 2017, 89(6), 841-852. doi: 10.1515/pac-2016-1216
  187. You, G.; Yang, R.; Wei, Y.; Hu, W.; Gan, L.; Xie, C.; Zheng, Z.; Liu, Z.; Liao, R.; Ye, L. The detoxification effect of cytochrome P450 3A4 on gelsemine-induced toxicity. Toxicol. Lett., 2021, 353, 34-42. doi: 10.1016/j.toxlet.2021.10.003 PMID: 34627953
  188. Iacopetta, D.; Ceramella, J.; Catalano, A.; Scali, E.; Scumaci, D.; Pellegrino, M.; Aquaro, S.; Saturnino, C.; Sinicropi, M.S. Impact of cytochrome P450 enzymes on the phase i metabolism of drugs. Appl. Sci. (Basel), 2023, 13(10), 6045. doi: 10.3390/app13106045
  189. Zheng, L.; Meng, J.; Jiang, K.; Lan, H.; Wang, Z.; Lin, M.; Li, W.; Guo, H.; Wei, Y.; Mu, Y. Improving protein-ligand docking and screening accuracies by incorporating a scoring function correction term. Brief. Bioinform., 2022, 23(3), bbac051. doi: 10.1093/bib/bbac051 PMID: 35289359
  190. Abookleesh, F.; Mosa, F.E.S.; Barakat, K.; Ullah, A. Assessing molecular docking tools to guide the design of polymeric materials formulations: A case study of canola and soybean protein. Polymers (Basel), 2022, 14(17), 3690. doi: 10.3390/polym14173690 PMID: 36080764
  191. Biswas, P.; Hany, R.O.; Ahmed, K.D.; Ahmed, M.N.; Nahar, N.; Jahan, R.; Hasan, Z.M.N.; Paul, T.K.; Hasan, A.; Bondhon, T.A.; Jannat, K. Evaluation of melongosides as potential inhibitors ofNS2B-NS3 activator-protease of dengue virus (Serotype 2) by using molecular docking and dynamics simulation approach. J. Tropical Med., 2022, 2022 doi: 10.1155/2022/7111786
  192. Son, Y.H.; Shin, D.H.; Han, J.W.; Won, S.H.; Kam, T.E. GNNbased antibody structure prediction using quaternion and euler angle combined representation. In 2022 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia) 2022. doi: 10.1109/ICCE-Asia57006.2022.9954877
  193. Plewczynski, D.; Łażniewski, M.; Grotthuss, M.V.; Rychlewski, L.; Ginalski, K. VoteDock: Consensus docking method for prediction of protein-ligand interactions. J. Comput. Chem., 2011, 32(4), 568-581. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/jcc.21642 doi: 10.1002/jcc.21642 PMID: 20812324
  194. Li, D.D.; Meng, X.F.; Wang, Q.; Yu, P.; Zhao, L.G.; Zhang, Z.P.; Wang, Z.Z.; Xiao, W. Consensus scoring model for the molecular docking study of mTOR kinase inhibitor. J. Mol. Graph. Model., 2018, 79, 81-87. doi: 10.1016/j.jmgm.2017.11.003 PMID: 29154212
  195. Wang, J.Y.; Zhao, L.X.; Shi, J.; Gao, S.; Ye, F.; Fu, Y. Discovery of novel HPPD inhibitors based on a combination strategy of pharmacophore, consensus docking and molecular dynamics. J. Mol. Liq., 2022, 362, 119683. doi: 10.1016/j.molliq.2022.119683
  196. dos Santos, M.M.; Soares, R.G.C.; Silva, C.A.B.; Scotti, L.; Scotti, M.T. Consensus analyses in molecular docking studies applied to medicinal chemistry. Mini Rev. Med. Chem., 2020, 20(14), 1322-1340. doi: 10.2174/1389557520666200204121129 PMID: 32013847
  197. Chen, T.S.; Huang, T.H.; Lai, M.C.; Huang, C.W. The role of glutamate receptors in epilepsy. Biomedicines, 2023, 11(3), 783. doi: 10.3390/biomedicines11030783 PMID: 36979762
  198. Dossi, E.; Huberfeld, G. GABAergic circuits drive focal seizures. Neurobiol. Dis., 2023, 180, 106102. Available from: https://www.sciencedirect.com/science/article/pii/S096999612300116X doi: 10.1016/j.nbd.2023.106102 PMID: 36977455
  199. Valipour, M.; Naderi, N.; Heidarli, E.; Shaki, F.; Motafeghi, F.; Talebpour Amiri, F.; Emami, S.; Irannejad, H. Design, synthesis and biological evaluation of naphthalene-derived (arylalkyl)azoles containing heterocyclic linkers as new anticonvulsants: A comprehensive in silico, in vitro, and in vivo study. Eur. J. Pharm. Sci., 2021, 166, 105974. doi: 10.1016/j.ejps.2021.105974 PMID: 34390829
  200. Emami, S.; Valipour, M.; Kazemi, K.F.; Sadati-Ashrafi, F.; Rasoulian, M.; Ghasemian, M.; Tajbakhsh, M.; Masihi, P.H.; Shakiba, A.; Irannejad, A.N. Synthesis, in silico, in vitro and in vivo evaluations of isatin aroylhydrazones as highly potent anticonvulsant agents. Bioorg. Chem., 2021, 112, 104943.
  201. El-Helby, A.G.A.; Ayyad, R.R.A.; El-Adl, K.; Elkady, H. Phthalazine-1,4-dione derivatives as non-competitive AMPA receptor antagonists: design, synthesis, anticonvulsant evaluation, ADMET profile and molecular docking. Mol. Divers., 2019, 23(2), 283-298. doi: 10.1007/s11030-018-9871-y PMID: 30168051
  202. Andrade, JC; Monteiro, ÁB; Andrade, HHN; Gonzaga, TKSN; Silva, PR; Alves, DN Castro, R.D.; Maia, M.S.; Scotti, M.T.; Sousa, D.P.; Almeida, R.N. Involvement of GABA A receptors in the anxiolytic-like effect of hydroxycitronellal. BioMed Res. Int., 2021, 2021
  203. Scotti, L.; Lustoza Rodrigues, T.C.M.; de Sousa, N.F.; dos Santos, A.M.F.; Aires Guimarães, R.D.; Scotti, M.T. Challenges and discoveries in polypharmacology of neurodegenerative diseases. Curr. Top. Med. Chem., 2023, 23(5), 349-370. doi: 10.2174/1568026623666230126112628 PMID: 36703583
  204. Rodrigues, T.C.M.; de Moura, J.P.; dos Santos, A.M.F.; Monteiroa, A.F.M.; Lopes, S.M.; Scotti, M.T.; Scotti, L. Epileptic targets and drugs: A mini-review. Curr. Drug Targets, 2023, 24(3), 212-224. Available from: https://www.eurekaselect.com/209186/article

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024