Glymphatic System and Psychiatric Disorders: A Rapid Comprehensive Scoping Review


如何引用文章

全文:

详细

Background:Since discovering the glymphatic system, there has been a looming interest in exploring its relationship with psychiatric disorders. Recently, increasing evidence suggests an involvement of the glymphatic system in the pathophysiology of psychiatric disorders. However, clear data are still lacking. In this context, this rapid comprehensive PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) scoping review aims to identify and analyze current evidence about the relation between the glymphatic system and psychiatric disorders.

Methods:We conducted a comprehensive review of the literature and then proceeded to discuss the findings narratively. Tables were then constructed and articles were sorted according to authors, year, title, location of study, sample size, psychiatric disorder, the aim of the study, principal findings, implications.

Results:Twenty papers were identified as eligible, among which 2 articles on Schizophrenia, 1 on Autism Spectrum Disorders, 2 on Depression, 1 on Depression and Trauma-related Disorders, 1 on Depression and Anxiety, 2 on Anxiety and Sleep Disorders, 8 on Sleep Disorders, 2 on Alcohol use disorder and 1 on Cocaine Use Disorder.

Conclusion:This review suggests a correlation between the glymphatic system and several psychiatric disorders: Schizophrenia, Depression, Anxiety Disorders, Sleep Disorders, Alcohol Use Disorder, Cocaine Use Disorder, Trauma-Related Disorders, and Autism Spectrum Disorders. Impairment of the glymphatic system could play a role in Trauma-Related Disorders, Alcohol Use Disorders, Cocaine Use Disorders, Sleep Disorders, Depression, and Autism Spectrum Disorders. It is important to implement research on this topic and adopt standardized markers and radio diagnostic tools.

作者简介

Tommaso Barlattani

Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila

Email: info@benthamscience.net

Paolo Grandinetti

National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment

Email: info@benthamscience.net

Alexsander Cintio

Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila

Email: info@benthamscience.net

Alessio Montemagno

Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila

Email: info@benthamscience.net

Roberta Testa

National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment

Email: info@benthamscience.net

Chiara D’Amelio

Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila

Email: info@benthamscience.net

Luigi Olivieri

National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment

Email: info@benthamscience.net

Carmine Tomasetti

National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment

Email: info@benthamscience.net

Alessandro Rossi

Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila

Email: info@benthamscience.net

Francesca Pacitti

Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila

编辑信件的主要联系方式.
Email: info@benthamscience.net

Domenico De Berardis

National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment

Email: info@benthamscience.net

参考

  1. Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; Nagelhus, E.A.; Nedergaard, M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med., 2012, 4(147), 147ra111. doi: 10.1126/scitranslmed.3003748 PMID: 22896675
  2. Jessen, N.A.; Munk, A.S.F.; Lundgaard, I.; Nedergaard, M. The glymphatic system: A beginner’s guide. Neurochem. Res., 2015, 40(12), 2583-2599. doi: 10.1007/s11064-015-1581-6 PMID: 25947369
  3. Mathiisen, T.M.; Lehre, K.P.; Danbolt, N.C.; Ottersen, O.P. The perivascular astroglial sheath provides a complete covering of the brain microvessels: An electron microscopic 3D reconstruction. Glia, 2010, 58(9), 1094-1103. doi: 10.1002/glia.20990 PMID: 20468051
  4. Troili, F.; Cipollini, V.; Moci, M.; Morena, E.; Palotai, M.; Rinaldi, V.; Romano, C.; Ristori, G.; Giubilei, F.; Salvetti, M.; Orzi, F.; Guttmann, C.R.G.; Cavallari, M. Perivascular Unit: This must be the place. the anatomical crossroad between the immune, vascular and nervous system. Front. Neuroanat., 2020, 14, 17. doi: 10.3389/fnana.2020.00017 PMID: 32372921
  5. Iadecola, C.; Nedergaard, M. Glial regulation of the cerebral microvasculature. Nat. Neurosci., 2007, 10(11), 1369-1376. doi: 10.1038/nn2003 PMID: 17965657
  6. Bohr, T.; Hjorth, P.G.; Holst, S.C.; Hrabětová, S.; Kiviniemi, V.; Lilius, T.; Lundgaard, I.; Mardal, K.A.; Martens, E.A.; Mori, Y.; Nägerl, U.V.; Nicholson, C.; Tannenbaum, A.; Thomas, J.H.; Tithof, J.; Benveniste, H.; Iliff, J.J.; Kelley, D.H.; Nedergaard, M. The glymphatic system: Current understanding and modeling. iSci., 2022, 25(9), 104987. doi: 10.1016/j.isci.2022.104987 PMID: 36093063
  7. Iliff, J.J.; Wang, M.; Zeppenfeld, D.M.; Venkataraman, A.; Plog, B.A.; Liao, Y.; Deane, R.; Nedergaard, M. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J. Neurosci., 2013, 33(46), 18190-18199. doi: 10.1523/JNEUROSCI.1592-13.2013 PMID: 24227727
  8. Mestre, H.; Kostrikov, S.; Mehta, R.I.; Nedergaard, M. Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clin. Sci., 2017, 131(17), 2257-2274. doi: 10.1042/CS20160381 PMID: 28798076
  9. Cherian, I.; Beltran, M.; Kasper, E.; Bhattarai, B.; Munokami, S.; Grasso, G. Exploring the Virchow-Robin spaces function: A unified theory of brain diseases. Surg. Neurol. Int., 2016, 7(27)(26), 711. doi: 10.4103/2152-7806.192486 PMID: 27857861
  10. Barisano, G.; Lynch, K.M.; Sibilia, F.; Lan, H.; Shih, N.C.; Sepehrband, F.; Choupan, J. Imaging perivascular space structure and function using brain MRI. Neuroimage, 2022, 257, 119329. doi: 10.1016/j.neuroimage.2022.119329 PMID: 35609770
  11. Aspelund, A.; Antila, S.; Proulx, S.T.; Karlsen, T.V.; Karaman, S.; Detmar, M.; Wiig, H.; Alitalo, K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med., 2015, 212(7), 991-999. doi: 10.1084/jem.20142290 PMID: 26077718
  12. Iliff, J.J.; Goldman, S.A.; Nedergaard, M. Implications of the discovery of brain lymphatic pathways. Lancet Neurol., 2015, 14(10), 977-979. doi: 10.1016/S1474-4422(15)00221-5 PMID: 26376966
  13. Louveau, A.; Smirnov, I.; Keyes, T.J.; Eccles, J.D.; Rouhani, S.J.; Peske, J.D.; Derecki, N.C.; Castle, D.; Mandell, J.W.; Lee, K.S.; Harris, T.H.; Kipnis, J. Structural and functional features of central nervous system lymphatic vessels. Nature, 2015, 523(7560), 337-341. doi: 10.1038/nature14432 PMID: 26030524
  14. Louveau, A.; Herz, J.; Alme, M.N.; Salvador, A.F.; Dong, M.Q.; Viar, K.E.; Herod, S.G.; Knopp, J.; Setliff, J.C.; Lupi, A.L.; Da Mesquita, S.; Frost, E.L.; Gaultier, A.; Harris, T.H.; Cao, R.; Hu, S.; Lukens, J.R.; Smirnov, I.; Overall, C.C.; Oliver, G.; Kipnis, J. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci., 2018, 21(10), 1380-1391. doi: 10.1038/s41593-018-0227-9 PMID: 30224810
  15. Yankova, G.; Bogomyakova, O.; Tulupov, A. The glymphatic system and meningeal lymphatics of the brain: new understanding of brain clearance. Rev. Neurosci., 2021, 32(7), 693-705. doi: 10.1515/revneuro-2020-0106 PMID: 33618444
  16. Kida, S.; Pantazis, A.; Weller, R.O. CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol. Appl. Neurobiol., 1993, 19(6), 480-488. doi: 10.1111/j.1365-2990.1993.tb00476.x PMID: 7510047
  17. Cabezas, R.; Avila, M.; Gonzalez, J.; El-Bachá, R.S.; Báez, E.; García-Segura, L.M.; Jurado Coronel, J.C.; Capani, F.; Cardona-Gomez, G.P.; Barreto, G.E. Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front. Cell. Neurosci., 2014, 8, 211. doi: 10.3389/fncel.2014.00211 PMID: 25136294
  18. Ikeshima-Kataoka, H. Neuroimmunological implications of AQP4 in astrocytes. Int. J. Mol. Sci., 2016, 17(8), 1306. doi: 10.3390/ijms17081306 PMID: 27517922
  19. Mestre, H.; Tithof, J.; Du, T.; Song, W.; Peng, W.; Sweeney, A.M.; Olveda, G.; Thomas, J.H.; Nedergaard, M.; Kelley, D.H. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat. Commun., 2018, 9(1), 4878. doi: 10.1038/s41467-018-07318-3 PMID: 30451853
  20. Kress, B.T.; Iliff, J.J.; Xia, M.; Wang, M.; Wei, H.S.; Zeppenfeld, D.; Xie, L.; Kang, H.; Xu, Q.; Liew, J.A.; Plog, B.A.; Ding, F.; Deane, R.; Nedergaard, M. Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol., 2014, 76(6), 845-861. doi: 10.1002/ana.24271 PMID: 25204284
  21. Bellesi, M.; de Vivo, L.; Tononi, G.; Cirelli, C. Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. BMC Biol., 2015, 13(1), 66. doi: 10.1186/s12915-015-0176-7 PMID: 26303010
  22. Tso, M.C.F.; Herzog, E.D. Was Cajal right about sleep? BMC Biol., 2015, 13(1), 67. doi: 10.1186/s12915-015-0178-5 PMID: 26303078
  23. Pizarro, A.; Hayer, K.; Lahens, N.F.; Hogenesch, J.B. CircaDB: A database of mammalian circadian gene expression profiles. Nucleic Acids Res., 2012, 41(D1), D1009-D1013. doi: 10.1093/nar/gks1161 PMID: 23180795
  24. Kruyer, A.; Kalivas, P.W.; Scofield, M.D. Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology, 2023, 48(1), 21-36. doi: 10.1038/s41386-022-01338-w PMID: 35577914
  25. Verkhratsky, A.; Nedergaard, M. Physiology of astroglia. Physiol. Rev., 2018, 98(1), 239-389. doi: 10.1152/physrev.00042.2016 PMID: 29351512
  26. Chiareli, R.A.; Carvalho, G.A.; Marques, B.L.; Mota, L.S.; Oliveira-Lima, O.C.; Gomes, R.M.; Birbrair, A.; Gomez, R.S.; Simão, F.; Klempin, F.; Leist, M.; Pinto, M.C.X. The role of astrocytes in the neurorepair process. Front. Cell Dev. Biol., 2021, 9, 665795. doi: 10.3389/fcell.2021.665795 PMID: 34113618
  27. Koehler, R.C.; Roman, R.J.; Harder, D.R. Astrocytes and the regulation of cerebral blood flow. Trends Neurosci., 2009, 32(3), 160-169. doi: 10.1016/j.tins.2008.11.005 PMID: 19162338
  28. Masamoto, K.; Unekawa, M.; Watanabe, T.; Toriumi, H.; Takuwa, H.; Kawaguchi, H.; Kanno, I.; Matsui, K.; Tanaka, K.F.; Tomita, Y.; Suzuki, N. Unveiling astrocytic control of cerebral blood flow with optogenetics. Sci. Rep., 2015, 5(1), 11455. doi: 10.1038/srep11455 PMID: 26076820
  29. Fultz, N.E.; Bonmassar, G.; Setsompop, K.; Stickgold, R.A.; Rosen, B.R.; Polimeni, J.R.; Lewis, L.D. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science, 2019, 366(6465), 628-631. doi: 10.1126/science.aax5440 PMID: 31672896
  30. van Veluw, S.J.; Hou, S.S.; Calvo-Rodriguez, M.; Arbel-Ornath, M.; Snyder, A.C.; Frosch, M.P.; Greenberg, S.M.; Bacskai, B.J. Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron, 2020, 105(3), 549-561.e5. doi: 10.1016/j.neuron.2019.10.033 PMID: 31810839
  31. Hablitz, L.M.; Plá, V.; Giannetto, M.; Vinitsky, H.S.; Stæger, F.F.; Metcalfe, T.; Nguyen, R.; Benrais, A.; Nedergaard, M. Circadian control of brain glymphatic and lymphatic fluid flow. Nat. Commun., 2020, 11(1), 4411. doi: 10.1038/s41467-020-18115-2 PMID: 32879313
  32. Hablitz, L.M.; Nedergaard, M. The glymphatic system: A novel component of fundamental neurobiology. J. Neurosci., 2021, 41(37), 7698-7711. doi: 10.1523/JNEUROSCI.0619-21.2021 PMID: 34526407
  33. Liu, G.; Mestre, H.; Sweeney, A.M.; Sun, Q.; Weikop, P.; Du, T.; Nedergaard, M. Direct measurement of cerebrospinal fluid production in mice. Cell Rep., 2020, 33(12), 108524. doi: 10.1016/j.celrep.2020.108524 PMID: 33357428
  34. O’Donnell, J.; Zeppenfeld, D.; McConnell, E.; Pena, S.; Nedergaard, M. Norepinephrine: A neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem. Res., 2012, 37(11), 2496-2512. doi: 10.1007/s11064-012-0818-x PMID: 22717696
  35. Nilsson, C.; Lindvall-Axelsson, M.; Owman, C. Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system. Brain Res. Brain Res. Rev., 1992, 17(2), 109-138. doi: 10.1016/0165-0173(92)90011-A PMID: 1393190
  36. Xie, L.; Kang, H.; Xu, Q.; Chen, M.J.; Liao, Y.; Thiyagarajan, M.; O’Donnell, J.; Christensen, D.J.; Nicholson, C.; Iliff, J.J.; Takano, T.; Deane, R.; Nedergaard, M. Sleep drives metabolite clearance from the adult brain. Science, 2013, 342(6156), 373-377. doi: 10.1126/science.1241224 PMID: 24136970
  37. Mogensen, F.L.H.; Delle, C.; Nedergaard, M. The glymphatic system (En)during inflammation. Int. J. Mol. Sci., 2021, 22(14), 7491. doi: 10.3390/ijms22147491 PMID: 34299111
  38. Lundgaard, I.; Li, B.; Xie, L.; Kang, H.; Sanggaard, S.; Haswell, J.D.R.; Sun, W.; Goldman, S.; Blekot, S.; Nielsen, M.; Takano, T.; Deane, R.; Nedergaard, M. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nat. Commun., 2015, 6(1), 6807. doi: 10.1038/ncomms7807 PMID: 25904018
  39. Thrane, V.R.; Thrane, A.S.; Plog, B.A.; Thiyagarajan, M.; Iliff, J.J.; Deane, R.; Nagelhus, E.A.; Nedergaard, M. Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci. Rep., 2013, 3(1), 2582. doi: 10.1038/srep02582 PMID: 24002448
  40. Achariyar, T.M.; Li, B.; Peng, W.; Verghese, P.B.; Shi, Y.; McConnell, E.; Benraiss, A.; Kasper, T.; Song, W.; Takano, T.; Holtzman, D.M.; Nedergaard, M.; Deane, R. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Mol. Neurodegener., 2016, 11(1), 74. doi: 10.1186/s13024-016-0138-8 PMID: 27931262
  41. Natale, G.; Limanaqi, F.; Busceti, C.L.; Mastroiacovo, F.; Nicoletti, F.; Puglisi-Allegra, S.; Fornai, F. Glymphatic system as a gateway to connect neurodegeneration from periphery to CNS. Front. Neurosci., 2021, 15, 639140. doi: 10.3389/fnins.2021.639140 PMID: 33633540
  42. Buccellato, F.R.; D’Anca, M.; Serpente, M.; Arighi, A.; Galimberti, D. The role of glymphatic system in alzheimer’s and parkinson’s disease pathogenesis. Biomedicines, 2022, 10(9), 2261. doi: 10.3390/biomedicines10092261 PMID: 36140362
  43. Reeves, B.C.; Karimy, J.K.; Kundishora, A.J.; Mestre, H.; Cerci, H.M.; Matouk, C.; Alper, S.L.; Lundgaard, I.; Nedergaard, M.; Kahle, K.T. Glymphatic system impairment in alzheimer’s disease and idiopathic normal pressure hydrocephalus. Trends Mol. Med., 2020, 26(3), 285-295. doi: 10.1016/j.molmed.2019.11.008 PMID: 31959516
  44. Schubert, J.J.; Veronese, M.; Marchitelli, L.; Bodini, B.; Tonietto, M.; Stankoff, B.; Brooks, D.J.; Bertoldo, A.; Edison, P.; Turkheimer, F.E. Dynamic 11C-PiB PET shows cerebrospinal fluid flow alterations in alzheimer disease and multiple sclerosis. J. Nucl. Med., 2019, 60(10), 1452-1460. doi: 10.2967/jnumed.118.223834 PMID: 30850505
  45. Carotenuto, A.; Cacciaguerra, L.; Pagani, E.; Preziosa, P.; Filippi, M.; Rocca, M.A. Glymphatic system impairment in multiple sclerosis: relation with brain damage and disability. Brain, 2022, 145(8), 2785-2795. doi: 10.1093/brain/awab454 PMID: 34919648
  46. Hesdorffer, D.C. Comorbidity between neurological illness and psychiatric disorders. CNS Spectr., 2016, 21(3), 230-238. doi: 10.1017/S1092852915000929 PMID: 26898322
  47. Uttara, B.; Singh, A.; Zamboni, P.; Mahajan, R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74. doi: 10.2174/157015909787602823 PMID: 19721819
  48. Zhang, X.Y.; Yao, J.K. Oxidative stress and therapeutic implications in psychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 46, 197-199. doi: 10.1016/j.pnpbp.2013.03.003 PMID: 23523744
  49. Najjar, S.; Pearlman, D.M.; Alper, K.; Najjar, A.; Devinsky, O. Neuroinflammation and psychiatric illness. J. Neuroinflammation, 2013, 10(1), 816. doi: 10.1186/1742-2094-10-43 PMID: 23547920
  50. Mishra, A.; Bandopadhyay, R.; Singh, P.K.; Mishra, P.S.; Sharma, N.; Khurana, N. Neuroinflammation in neurological disorders: pharmacotherapeutic targets from bench to bedside. Metab. Brain Dis., 2021, 36(7), 1591-1626. doi: 10.1007/s11011-021-00806-4 PMID: 34387831
  51. Krystal, A.D. Psychiatric disorders and sleep. Neurol. Clin., 2012, 30(4), 1389-1413. doi: 10.1016/j.ncl.2012.08.018 PMID: 23099143
  52. Steele, T.A.; St Louis, E.K.; Videnovic, A.; Auger, R.R. Circadian rhythm sleep–wake disorders: A contemporary review of neurobiology, treatment, and dysregulation in neurodegenerative disease. Neurotherapeutics, 2021, 18(1), 53-74. doi: 10.1007/s13311-021-01031-8 PMID: 33844152
  53. Leng, Y.; Musiek, E.S.; Hu, K.; Cappuccio, F.P.; Yaffe, K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol., 2019, 18(3), 307-318. doi: 10.1016/S1474-4422(18)30461-7 PMID: 30784558
  54. Jones, S.G.; Benca, R.M. Circadian disruption in psychiatric disorders. Sleep Med. Clin., 2015, 10(4), 481-493. doi: 10.1016/j.jsmc.2015.07.004 PMID: 26568124
  55. Zhang, X.; Alnafisah, R.S.; Hamoud, A.R.A.; Shukla, R.; McCullumsmith, R.E.; O’Donovan, S.M. Astrocytes in neuropsychiatric disorders: A review of postmortem evidence. Adv. Neurobiol., 2021, 26, 153-172. doi: 10.1007/978-3-030-77375-5_8 PMID: 34888835
  56. McConnell, H.L.; Li, Z.; Woltjer, R.L.; Mishra, A. Astrocyte dysfunction and neurovascular impairment in neurological disorders: Correlation or causation? Neurochem. Int., 2019, 128, 70-84. doi: 10.1016/j.neuint.2019.04.005 PMID: 30986503
  57. Zhang, D.; Li, X.; Li, B. Glymphatic system dysfunction in central nervous system diseases and mood disorders. Front. Aging Neurosci., 2022, 14, 873697. doi: 10.3389/fnagi.2022.873697 PMID: 35547631
  58. Gu, S.; Li, Y.; Jiang, Y.; Huang, J.H.; Wang, F. Glymphatic dysfunction induced oxidative stress and neuro-inflammation in major depression disorders. Antioxidants, 2022, 11(11), 2296. doi: 10.3390/antiox11112296 PMID: 36421482
  59. Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; Hempel, S.; Akl, E.A.; Chang, C.; McGowan, J.; Stewart, L.; Hartling, L.; Aldcroft, A.; Wilson, M.G.; Garritty, C.; Lewin, S.; Godfrey, C.M.; Macdonald, M.T.; Langlois, E.V.; Soares-Weiser, K.; Moriarty, J.; Clifford, T.; Tunçalp, Ö.; Straus, S.E. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med., 2018, 169(7), 467-473. doi: 10.7326/M18-0850 PMID: 30178033
  60. Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol., 2018, 18(1), 143. doi: 10.1186/s12874-018-0611-x PMID: 30453902
  61. Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol., 2005, 8(1), 19-32. doi: 10.1080/1364557032000119616
  62. Wu, Y.F.; Sytwu, H.K.; Lung, F.W. Polymorphisms in the human aquaporin 4 gene are associated with schizophrenia in the southern chinese han population: A case–control study. Front. Psychiatry, 2020, 11, 596. doi: 10.3389/fpsyt.2020.00596 PMID: 32676041
  63. Wu, Y.F.; Sytwu, H.K.; Lung, F.W. Human aquaporin 4 gene polymorphisms and haplotypes are associated with Serum S100B level and negative symptoms of schizophrenia in a southern chinese han population. Front. Psychiatry, 2018, 9, 657. doi: 10.3389/fpsyt.2018.00657 PMID: 30618856
  64. Li, X.; Ruan, C.; Zibrila, A.I.; Musa, M.; Wu, Y.; Zhang, Z.; Liu, H.; Salimeen, M. Children with autism spectrum disorder present glymphatic system dysfunction evidenced by diffusion tensor imaging along the perivascular space. Medicine, 2022, 101(48), e32061. doi: 10.1097/MD.0000000000032061 PMID: 36482590
  65. Liu, X.; Hao, J.; Yao, E.; Cao, J.; Zheng, X.; Yao, D.; Zhang, C.; Li, J.; Pan, D.; Luo, X.; Wang, M.; Wang, W. Polyunsaturated fatty acid supplement alleviates depression-incident cognitive dysfunction by protecting the cerebrovascular and glymphatic systems. Brain Behav. Immun., 2020, 89, 357-370. doi: 10.1016/j.bbi.2020.07.022 PMID: 32717402
  66. Xia, M.; Yang, L.; Sun, G.; Qi, S.; Li, B. Mechanism of depression as a risk factor in the development of Alzheimer’s disease: the function of AQP4 and the glymphatic system. Psychopharmacology, 2017, 234(3), 365-379. doi: 10.1007/s00213-016-4473-9 PMID: 27837334
  67. Ranti, D.L.; Warburton, A.J.; Rutland, J.W.; Dullea, J.T.; Markowitz, M.; Smith, D.A.; Kligler, S.Z.K.; Rutter, S.; Langan, M.; Arrighi-Allisan, A.; George, I.; Verma, G.; Murrough, J.W.; Delman, B.N.; Balchandani, P.; Morris, L.S. Perivascular spaces as a marker of psychological trauma in depression: A 7‐Tesla MRI study. Brain Behav., 2022, 12(7), 32598. doi: 10.1002/brb3.2598 PMID: 35672958
  68. Chen, H.; Wan, H.; Zhang, M.; Liu, G.; Wang, X.; Wang, Z.; Ma, H.; Pan, Y.; Feng, T.; Wang, Y. Cerebral small vessel disease may worsen motor function, cognition, and mood in Parkinson’s disease. Parkinsonism Relat. Disord., 2021, 83, 86-92. doi: 10.1016/j.parkreldis.2020.12.025 PMID: 33493785
  69. Liu, D.; He, X.; Wu, D.; Zhang, Q.; Yang, C.; Liang, F.; He, X.; Dai, G.; Pei, Z.; Lan, Y.; Xu, G. Continuous theta burst stimulation facilitates the clearance efficiency of the glymphatic pathway in a mouse model of sleep deprivation. Neurosci. Lett., 2017, 653, 189-194. doi: 10.1016/j.neulet.2017.05.064 PMID: 28576566
  70. Vasciaveo, V.; Iadarola, A.; Casile, A.; Dante, D.; Morello, G.; Minotta, L.; Tamagno, E.; Cicolin, A.; Guglielmotto, M. Sleep fragmentation affects glymphatic system through the different expression of AQP4 in wild type and 5xFAD mouse models. Acta Neuropathol. Commun., 2023, 11(1), 16. doi: 10.1186/s40478-022-01498-2 PMID: 36653878
  71. Zhang, R.; Liu, Y.; Chen, Y.; Li, Q.; Marshall, C.; Wu, T.; Hu, G.; Xiao, M. Aquaporin 4 deletion exacerbates brain impairments in a mouse model of chronic sleep disruption. CNS Neurosci. Ther., 2020, 26(2), 228-239. doi: 10.1111/cns.13194 PMID: 31364823
  72. Siow, T.Y.; Toh, C.H.; Hsu, J.L.; Liu, G.H.; Lee, S.H.; Chen, N.H.; Fu, C.J.; Castillo, M.; Fang, J.T. Association of sleep, neuropsychological performance, and gray matter volume with glymphatic function in community-dwelling older adults. Neurology, 2022, 98(8), e829-e838. doi: 10.1212/WNL.0000000000013215 PMID: 34906982
  73. Wang, X.X.; Cao, Q.C.; Teng, J.F.; Wang, R.F.; Yang, Z.T.; Wang, M.G.; Cao, Z.H. MRI-visible enlarged perivascular spaces: imaging marker to predict cognitive impairment in older chronic insomnia patients. Eur. Radiol., 2022, 32(8), 5446-5457. doi: 10.1007/s00330-022-08649-y PMID: 35286409
  74. Rainey-Smith, S.R.; Mazzucchelli, G.N.; Villemagne, V.L.; Brown, B.M.; Porter, T.; Weinborn, M.; Bucks, R.S.; Milicic, L.; Sohrabi, H.R.; Taddei, K.; Ames, D.; Maruff, P.; Masters, C.L.; Rowe, C.C.; Salvado, O.; Martins, R.N.; Laws, S.M. Genetic variation in Aquaporin-4 moderates the relationship between sleep and brain Aβ-amyloid burden. Transl. Psychiatry, 2018, 8(1), 47. doi: 10.1038/s41398-018-0094-x PMID: 29479071
  75. Piantino, J.; Schwartz, D.L.; Luther, M.; Newgard, C.; Silbert, L.; Raskind, M.; Pagulayan, K.; Kleinhans, N.; Iliff, J.; Peskind, E. Link between mild traumatic brain injury, poor sleep, and magnetic resonance imaging: Visible perivascular spaces in veterans. J. Neurotrauma, 2021, 38(17), 2391-2399. doi: 10.1089/neu.2020.7447 PMID: 33599176
  76. Shokri-Kojori, E.; Wang, G.J.; Wiers, C.E.; Demiral, S.B.; Guo, M.; Kim, S.W.; Lindgren, E.; Ramirez, V.; Zehra, A.; Freeman, C.; Miller, G.; Manza, P.; Srivastava, T.; De Santi, S.; Tomasi, D.; Benveniste, H.; Volkow, N.D. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc. Natl. Acad. Sci., 2018, 115(17), 4483-4488. doi: 10.1073/pnas.1721694115 PMID: 29632177
  77. Eide, P.K.; Ringstad, G. Cerebrospinal fluid egress to human parasagittal dura and the impact of sleep deprivation. Brain Res., 2021, 1772, 147669. doi: 10.1016/j.brainres.2021.147669 PMID: 34587499
  78. Chen, W.; Huang, P.; Zeng, H.; Lin, J.; Shi, Z.; Yao, X. Cocaine-induced structural and functional impairments of the glymphatic pathway in mice. Brain Behav. Immun., 2020, 88, 97-104. doi: 10.1016/j.bbi.2020.04.057 PMID: 32335199
  79. Lundgaard, I.; Wang, W.; Eberhardt, A.; Vinitsky, H.S.; Reeves, B.C.; Peng, S.; Lou, N.; Hussain, R.; Nedergaard, M. Beneficial effects of low alcohol exposure, but adverse effects of high alcohol intake on glymphatic function. Sci. Rep., 2018, 8(1), 2246. doi: 10.1038/s41598-018-20424-y PMID: 29396480
  80. Liu, Q.; Yan, L.; Huang, M.; Zeng, H.; Satyanarayanan, S.K.; Shi, Z.; Chen, D.; Lu, J.H.; Pei, Z.; Yao, X.; Su, H. Experimental alcoholism primes structural and functional impairment of the glymphatic pathway. Brain Behav. Immun., 2020, 85, 106-119. doi: 10.1016/j.bbi.2019.06.029 PMID: 31247290
  81. Li, B.; Zhang, D.; Verkhratsky, A. Astrocytes in post-traumatic stress disorder. Neurosci. Bull., 2022, 38(8), 953-965. doi: 10.1007/s12264-022-00845-6 PMID: 35349095
  82. Van Praag, H.M.; Asnis, G.M.; Kahn, R.S.; Brown, S.L.; Korn, M.; Friedman, J.M.H.; Wetzler, S. Monoamines and abnormal behaviour. A multi-aminergic perspective. Br. J. Psychiatry, 1990, 157(5), 723-734. doi: 10.1192/bjp.157.5.723 PMID: 1980627
  83. Li, C.T.; Yang, K.C.; Lin, W.C. Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: Evidence from clinical neuroimaging studies. Front. Psychiatry, 2019, 9, 767. doi: 10.3389/fpsyt.2018.00767 PMID: 30733690
  84. Tay, T.L.; Béchade, C.; D’Andrea, I.; St-Pierre, M.K.; Henry, M.S.; Roumier, A.; Tremblay, M.E. Microglia gone rogue: Impacts on psychiatric disorders across the lifespan. Front. Mol. Neurosci., 2018, 10, 421. doi: 10.3389/fnmol.2017.00421 PMID: 29354029
  85. Chong, P.L.H.; Garic, D.; Shen, M.D.; Lundgaard, I.; Schwichtenberg, A.J. Sleep, cerebrospinal fluid, and the glymphatic system: A systematic review. Sleep Med. Rev., 2022, 61, 101572. doi: 10.1016/j.smrv.2021.101572 PMID: 34902819
  86. Mestre, H.; Hablitz, L.M.; Xavier, A.L.R.; Feng, W.; Zou, W.; Pu, T.; Monai, H.; Murlidharan, G.; Castellanos Rivera, R.M.; Simon, M.J.; Pike, M.M.; Plá, V.; Du, T.; Kress, B.T.; Wang, X.; Plog, B.A.; Thrane, A.S.; Lundgaard, I.; Abe, Y.; Yasui, M.; Thomas, J.H.; Xiao, M.; Hirase, H.; Asokan, A.; Iliff, J.J.; Nedergaard, M. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife, 2018, 7, e40070. doi: 10.7554/eLife.40070 PMID: 30561329
  87. Peng, S.; Liu, J.; Liang, C.; Yang, L.; Wang, G. Aquaporin-4 in glymphatic system, and its implication for central nervous system disorders. Neurobiol. Dis., 2023, 179, 106035. doi: 10.1016/j.nbd.2023.106035 PMID: 36796590
  88. Taoka, T.; Ito, R.; Nakamichi, R.; Kamagata, K.; Sakai, M.; Kawai, H.; Nakane, T.; Abe, T.; Ichikawa, K.; Kikuta, J.; Aoki, S.; Naganawa, S. Reproducibility of diffusion tensor image analysis along the perivascular space (DTI-ALPS) for evaluating interstitial fluid diffusivity and glymphatic function: CHanges in Alps index on Multiple conditiON acquIsition eXperiment (CHAMONIX) study. Jpn. J. Radiol., 2022, 40(2), 147-158. doi: 10.1007/s11604-021-01187-5 PMID: 34390452
  89. Walz, R.; Diaz, A.; Martins, E.T.; Rufino, A.; Amante, L.N.; Thais, M.E.; Quevedo, J.; Hohl, A.; Linhares, M.N.; Walz, R. Psychiatric disorders and traumatic brain injury. Neuropsychiatr. Dis. Treat., 2008, 4(4), 797-816. doi: 10.2147/NDT.S2653 PMID: 19043523
  90. Bryant, R.A.; O’Donnell, M.L.; Creamer, M.; McFarlane, A.C.; Clark, C.R.; Silove, D. The psychiatric sequelae of traumatic injury. Am. J. Psychiatry, 2010, 167(3), 312-320. doi: 10.1176/appi.ajp.2009.09050617 PMID: 20048022
  91. Richmond-Rakerd, L.S.; D’Souza, S.; Milne, B.J.; Caspi, A.; Moffitt, T.E. Longitudinal associations of mental disorders with dementia. JAMA Psychiat., 2022, 79(4), 333-340. doi: 10.1001/jamapsychiatry.2021.4377 PMID: 35171209
  92. Pancheri, C.; Verdolini, N.; Pacchiarotti, I.; Samalin, L.; Delle Chiaie, R.; Biondi, M.; Carvalho, A.F.; Valdes, M.; Ritter, P.; Vieta, E.; Murru, A. A systematic review on sleep alterations anticipating the onset of bipolar disorder. Eur. Psychiatry, 2019, 58, 45-53. doi: 10.1016/j.eurpsy.2019.02.003 PMID: 30818134
  93. Ritter, P.S.; Höfler, M.; Wittchen, H.U.; Lieb, R.; Bauer, M.; Pfennig, A.; Beesdo-Baum, K. Disturbed sleep as risk factor for the subsequent onset of bipolar disorder: Data from a 10-year prospective-longitudinal study among adolescents and young adults. J. Psychiatr. Res., 2015, 68, 76-82. doi: 10.1016/j.jpsychires.2015.06.005 PMID: 26228404
  94. Bersani, F.S.; Iannitelli, A.; Pacitti, F.; Bersani, G. Sleep and biorythm disturbances in schizophrenia, mood and anxiety disorders: A review. Riv. Psichiatr., 2012, 47(5), 365-375. doi: 10.1708/1175.13027 PMID: 23160047
  95. Yan, T.; Qiu, Y.; Yu, X.; Yang, L. Glymphatic dysfunction: A bridge between sleep disturbance and mood disorders. Front. Psychiatry, 2021, 12, 658340. doi: 10.3389/fpsyt.2021.658340 PMID: 34025481
  96. Jorm, A.F. History of depression as a risk factor for dementia: An updated review. Aust. N. Z. J. Psychiatry, 2001, 35(6), 776-781. doi: 10.1046/j.1440-1614.2001.00967.x PMID: 11990888
  97. Medina, A.; Watson, S.J.; Bunney, W., Jr; Myers, R.M.; Schatzberg, A.; Barchas, J.; Akil, H.; Thompson, R.C. Evidence for alterations of the glial syncytial function in major depressive disorder. J. Psychiatr. Res., 2016, 72, 15-21. doi: 10.1016/j.jpsychires.2015.10.010 PMID: 26519765
  98. Iwamoto, K.; Kakiuchi, C.; Bundo, M.; Ikeda, K.; Kato, T. Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders. Mol. Psychiatry, 2004, 9(4), 406-416. doi: 10.1038/sj.mp.4001437 PMID: 14743183
  99. Althubaity, N.; Schubert, J.; Martins, D.; Yousaf, T.; Nettis, M.A.; Mondelli, V.; Pariante, C.; Harrison, N.A.; Bullmore, E.T.; Dima, D.; Turkheimer, F.E.; Veronese, M. Choroid plexus enlargement is associated with neuroinflammation and reduction of blood brain barrier permeability in depression. Neuroimage Clin., 2022, 33, 102926. doi: 10.1016/j.nicl.2021.102926 PMID: 34972034
  100. Bernard, R.; Kerman, I.A.; Thompson, R.C.; Jones, E.G.; Bunney, W.E.; Barchas, J.D.; Schatzberg, A.F.; Myers, R.M.; Akil, H.; Watson, S.J. Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol. Psychiatry, 2011, 16(6), 634-646. doi: 10.1038/mp.2010.44 PMID: 20386568
  101. Gos, T.; Schroeter, M.L.; Lessel, W.; Bernstein, H.G.; Dobrowolny, H.; Schiltz, K.; Bogerts, B.; Steiner, J. S100B-immunopositive astrocytes and oligodendrocytes in the hippocampus are differentially afflicted in unipolar and bipolar depression: A postmortem study. J. Psychiatr. Res., 2013, 47(11), 1694-1699. doi: 10.1016/j.jpsychires.2013.07.005 PMID: 23896207
  102. Michel, M.; Fiebich, B.L.; Kuzior, H.; Meixensberger, S.; Berger, B.; Maier, S.; Nickel, K.; Runge, K.; Denzel, D.; Pankratz, B.; Schiele, M.A.; Domschke, K.; van Elst, L.T.; Endres, D. Increased GFAP concentrations in the cerebrospinal fluid of patients with unipolar depression. Transl. Psychiatry, 2021, 11(1), 308. doi: 10.1038/s41398-021-01423-6 PMID: 34021122
  103. Liao, Y.; Xie, B.; Zhang, H.; He, Q.; Guo, L.; Subramanieapillai, M.; Fan, B.; Lu, C.; McIntyre, R.S. Efficacy of omega-3 PUFAs in depression: A meta-analysis. Transl. Psychiatry, 2019, 9(1), 190. doi: 10.1038/s41398-019-0515-5 PMID: 31383846
  104. Genel, O.; Pariante, C.M.; Borsini, A. The role of AQP4 in the pathogenesis of depression, and possible related mechanisms. Brain Behav. Immun., 2021, 98, 366-377. doi: 10.1016/j.bbi.2021.08.232 PMID: 34474133
  105. Zhou, X.; Xiao, Q.; Xie, L.; Yang, F.; Wang, L.; Tu, J. Astrocyte, a promising target for mood disorder interventions. Front. Mol. Neurosci., 2019, 12, 136. doi: 10.3389/fnmol.2019.00136 PMID: 31231189
  106. Kim, Y.K.; Jeon, S.W. Neuroinflammation and the immune-kynurenine pathway in anxiety disorders. Curr. Neuropharmacol., 2018, 16(5), 574-582. doi: 10.2174/1570159X15666170913110426 PMID: 28901278
  107. Steiner, J.; Bielau, H.; Bernstein, H-G.; Bogerts, B.; Wunderlich, M.T. Increased cerebrospinal fluid and serum levels of S100B in first-onset schizophrenia are not related to a degenerative release of glial fibrillar acidic protein, myelin basic protein and neurone-specific enolase from glia or neurones. J. Neurol. Neurosurg. Psychiatry, 2006, 77(11), 1284-1287. doi: 10.1136/jnnp.2006.093427 PMID: 17043297
  108. Tarasov, V.V.; Svistunov, A.A.; Chubarev, V.N.; Sologova, S.S.; Mukhortova, P.; Levushkin, D.; Somasundaram, S.G.; Kirkland, C.E.; Bachurin, S.O.; Aliev, G. Alterations of astrocytes in the context of schizophrenic dementia. Front. Pharmacol., 2020, 10, 1612. doi: 10.3389/fphar.2019.01612 PMID: 32116664
  109. Hubbard, J.A.; Hsu, M.S.; Seldin, M.M.; Binder, D.K. Expression of the astrocyte water channel aquaporin-4 in the mouse brain. ASN Neuro, 2015, 7(5), 1759091415605486. doi: 10.1177/1759091415605486 PMID: 26489685
  110. Periyasamy, P.; Guo, M.L.; Buch, S. Cocaine induces astrocytosis through ER stress-mediated activation of autophagy. Autophagy, 2016, 12(8), 1310-1329. doi: 10.1080/15548627.2016.1183844 PMID: 27337297
  111. Miguel-Hidalgo, J.J. Molecular neuropathology of astrocytes and oligodendrocytes in alcohol use disorders. Front. Mol. Neurosci., 2018, 11, 78. doi: 10.3389/fnmol.2018.00078 PMID: 29615864
  112. Shen, M.D.; Nordahl, C.W.; Li, D.D.; Lee, A.; Angkustsiri, K.; Emerson, R.W.; Rogers, S.J.; Ozonoff, S.; Amaral, D.G. Extra-axial cerebrospinal fluid in high-risk and normal-risk children with autism aged 2-4 years: A case-control study. Lancet Psychiatry, 2018, 5(11), 895-904. doi: 10.1016/S2215-0366(18)30294-3 PMID: 30270033
  113. Fatemi, S.H.; Folsom, T.D.; Reutiman, T.J.; Lee, S. Expression of astrocytic markers aquaporin 4 and connexin 43 is altered in brains of subjects with autism. Synapse, 2008, 62(7), 501-507. doi: 10.1002/syn.20519 PMID: 18435417
  114. Hendrickson, R.C.; Raskind, M.A.; Millard, S.P.; Sikkema, C.; Terry, G.E.; Pagulayan, K.F.; Li, G.; Peskind, E.R. Evidence for altered brain reactivity to norepinephrine in Veterans with a history of traumatic stress. Neurobiol. Stress, 2018, 8, 103-111. doi: 10.1016/j.ynstr.2018.03.001 PMID: 29888305
  115. Arent, C.O.; Valvassori, S.S.; Steckert, A.V.; Resende, W.R.; Dal-Pont, G.C.; Lopes-Borges, J.; Amboni, R.T.; Bianchini, G.; Quevedo, J. The effects of n-acetylcysteine and/or deferoxamine on manic-like behavior and brain oxidative damage in mice submitted to the paradoxal sleep deprivation model of mania. J. Psychiatr. Res., 2015, 65, 71-79. doi: 10.1016/j.jpsychires.2015.04.011 PMID: 25937502
  116. Benedetti, F.; Fresi, F.; MacCioni, P.; Smeraldi, E. Behavioural sensitization to repeated sleep deprivation in a mice model of mania. Behav. Brain Res., 2008, 187(2), 221-227. doi: 10.1016/j.bbr.2007.09.012 PMID: 17950929
  117. da Rosa, M.I.; Simon, C.; Grande, A.J.; Barichello, T.; Oses, J.P.; Quevedo, J. Serum S100B in manic bipolar disorder patients: Systematic review and meta-analysis. J. Affect. Disord., 2016, 206, 210-215. doi: 10.1016/j.jad.2016.07.030 PMID: 27475892
  118. Chen, Y.; Wang, M.; Su, S. The structural and fuctional changes of glymphatic system in children with attention-deficit/hyperactivity disorder. Res. Square, 2022. doi: 10.21203/rs.3.rs-1922962/v1
  119. Abdolizadeh, A.; Carmona, E.T.; Ueno, F.; Nakajima, S.; Tarumi, R.; Tsugawa, S.; Honda, S.; Matsushita, K.; Caravaggio, F.; Song, J.; Chavez, S.; Noda, Y.; Uchida, H.; Remington, G.; Gerretsen, P.; Graff-Guerrero, Ariel P548 Glymphatic system in schizophrenia: An H-MRS high-molecular-weight macromolecules study. Biolog. Psychiat., 2022, 91(9), S310-S311. doi: 10.1016/j.biopsych.2022.02.785

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024