Pathomechanistic Networks of Motor System Injury in Amyotrophic Lateral Sclerosis


Cite item

Full Text

Abstract

Amyotrophic Lateral Sclerosis (ALS) is the most common, adult-onset, progressive motor neurodegenerative disorder that results in death within 3 years of the clinical diagnosis. Due to the clinicopathological heterogeneity, any reliable biomarkers for diagnosis or prognosis of ALS have not been identified till date. Moreover, the only three clinically approved treatments are not uniformly effective in slowing the disease progression. Over the last 15 years, there has been a rapid advancement in research on the complex pathomechanistic landscape of ALS that has opened up new avenues for successful clinical translation of targeted therapeutics. Multiple studies suggest that the age-dependent interaction of risk-associated genes with environmental factors and endogenous modifiers is critical to the multi-step process of ALS pathogenesis. In this review, we provide an updated discussion on the dysregulated cross-talk between intracellular homeostasis processes, the unique molecular networks across selectively vulnerable cell types, and the multisystemic nature of ALS pathomechanisms. Importantly, this work highlights the alteration in epigenetic and epitranscriptomic landscape due to gene-environment interactions, which have been largely overlooked in the context of ALS pathology. Finally, we suggest that precision medicine research in ALS will be largely benefitted from the stratification of patient groups based on the clinical phenotype, onset and progression, genome, exposome, and metabolic identities.

About the authors

Bedaballi Dey

, CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB)

Email: info@benthamscience.net

Arvind Kumar

, CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB)

Email: info@benthamscience.net

Anant Patel

, CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Checkoway, H.; Lundin, J.I.; Kelada, S.N. Neurodegenerative diseases. IARC Sci. Publ., 2011, (163), 407-419. PMID: 22997874
  2. Logroscino, G.; Piccininni, M.; Marin, B.; Nichols, E.; Abd-Allah, F.; Abdelalim, A.; Alahdab, F.; Asgedom, S.W.; Awasthi, A.; Chaiah, Y.; Daryani, A.; Do, H.P.; Dubey, M.; Elbaz, A.; Eskandarieh, S.; Farhadi, F.; Farzadfar, F.; Fereshtehnejad, S-M.; Fernandes, E.; Filip, I.; Foreman, K.J.; Gebre, A.K.; Gnedovskaya, E.V.; Hamidi, S.; Hay, S.I.; Irvani, S.S.N.; Ji, J.S.; Kasaeian, A.; Kim, Y.J.; Mantovani, L.G.; Mashamba-Thompson, T.P.; Mehndiratta, M.M.; Mokdad, A.H.; Nagel, G.; Nguyen, T.H.; Nixon, M.R.; Olagunju, A.T.; Owolabi, M.O.; Piradov, M.A.; Qorbani, M.; Radfar, A.; Reiner, R.C.; Sahraian, M.A.; Sarvi, S.; Sharif, M.; Temsah, O.; Tran, B.X.; Truong, N.T.; Venketasubramanian, N.; Winkler, A.S.; Yimer, E.M.; Feigin, V.L.; Vos, T.; Murray, C.J.L. Global, regional, and national burden of motor neuron diseases 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2018, 17(12), 1083-1097. doi: 10.1016/S1474-4422(18)30404-6 PMID: 30409709
  3. Longinetti, E.; Fang, F. Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr. Opin. Neurol., 2019, 32(5), 771-776. doi: 10.1097/WCO.0000000000000730 PMID: 31361627
  4. Grad, L.I.; Rouleau, G.A.; Ravits, J.; Cashman, N.R. Clinical spectrum of amyotrophic lateral sclerosis (ALS). Cold Spring Harb. Perspect. Med., 2017, 7(8), a024117. doi: 10.1101/cshperspect.a024117 PMID: 28003278
  5. Abramzon, Y.A.; Fratta, P.; Traynor, B.J.; Chia, R. The overlapping genetics of amyotrophic lateral sclerosis and frontotemporal dementia. Front. Neurosci., 2020, 14, 42. doi: 10.3389/fnins.2020.00042 PMID: 32116499
  6. Masrori, P.; Van Damme, P. Amyotrophic lateral sclerosis: A clinical review. Eur. J. Neurol., 2020, 27(10), 1918-1929. doi: 10.1111/ene.14393 PMID: 32526057
  7. Ferraiuolo, L.; Kirby, J.; Grierson, A.J.; Sendtner, M.; Shaw, P.J. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat. Rev. Neurol., 2011, 7(11), 616-630. doi: 10.1038/nrneurol.2011.152 PMID: 22051914
  8. Manjaly, Z.R.; Scott, K.M.; Abhinav, K.; Wijesekera, L.; Ganesalingam, J.; Goldstein, L.H.; Janssen, A.; Dougherty, A.; Willey, E.; Stanton, B.R.; Turner, M.R.; Ampong, M.A.; Sakel, M.; Orrell, R.W.; Howard, R.; Shaw, C.E.; Leigh, P.N.; Al-Chalabi, A. The sex ratio in amyotrophic lateral sclerosis: A population based study. Amyotroph. Lateral Scler., 2010, 11(5), 439-442. doi: 10.3109/17482961003610853 PMID: 20225930
  9. Palese, F.; Sartori, A.; Verriello, L.; Ros, S.; Passadore, P.; Manganotti, P.; Barbone, F.; Pisa, F.E. Epidemiology of amyotrophic lateral sclerosis in Friuli-Venezia Giulia, North-Eastern Italy, 2002–2014: A retrospective population-based study. Amyotroph. Lateral Scler. Frontotemporal Degener., 2019, 20(1-2), 90-99. doi: 10.1080/21678421.2018.1511732 PMID: 30430867
  10. Leighton, D.J.; Newton, J.; Stephenson, L.J.; Colville, S.; Davenport, R.; Gorrie, G.; Morrison, I.; Swingler, R.; Chandran, S.; Pal, S. Changing epidemiology of motor neurone disease in Scotland. J. Neurol., 2019, 266(4), 817-825. doi: 10.1007/s00415-019-09190-7 PMID: 30805795
  11. Chiò, A.; Logroscino, G.; Traynor, B.J.; Collins, J.; Simeone, J.C.; Goldstein, L.A.; White, L.A. Global epidemiology of amyotrophic lateral sclerosis: A systematic review of the published literature. Neuroepidemiology, 2013, 41(2), 118-130. doi: 10.1159/000351153 PMID: 23860588
  12. Hardiman, O.; Al-Chalabi, A.; Brayne, C.; Beghi, E.; van den Berg, L.H.; Chio, A.; Martin, S.; Logroscino, G.; Rooney, J. The changing picture of amyotrophic lateral sclerosis: Lessons from European registers. J. Neurol. Neurosurg. Psychiatry, 2017, 88(7), 557-563. doi: 10.1136/jnnp-2016-314495 PMID: 28285264
  13. Brooks, B.R.; Miller, R.G.; Swash, M.; Munsat, T.L. El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord., 2000, 1(5), 293-299. doi: 10.1080/146608200300079536 PMID: 11464847
  14. van den Berg, L.H.; Sorenson, E.; Gronseth, G.; Macklin, E.A.; Andrews, J.; Baloh, R.H.; Benatar, M.; Berry, J.D.; Chio, A.; Corcia, P.; Genge, A.; Gubitz, A.K.; Lomen-Hoerth, C.; McDermott, C.J.; Pioro, E.P.; Rosenfeld, J.; Silani, V.; Turner, M.R.; Weber, M.; Brooks, B.R.; Miller, R.G.; Mitsumoto, H. Revised Airlie House consensus guidelines for design and implementation of ALS clinical trials. Neurology, 2019, 92(14), e1610-e1623. doi: 10.1212/WNL.0000000000007242 PMID: 30850440
  15. Shefner, J.M.; Al-Chalabi, A.; Baker, M.R.; Cui, L.Y.; de Carvalho, M.; Eisen, A.; Grosskreutz, J.; Hardiman, O.; Henderson, R.; Matamala, J.M.; Mitsumoto, H.; Paulus, W.; Simon, N.; Swash, M.; Talbot, K.; Turner, M.R.; Ugawa, Y.; van den Berg, L.H.; Verdugo, R.; Vucic, S.; Kaji, R.; Burke, D.; Kiernan, M.C. A proposal for new diagnostic criteria for ALS. Clin. Neurophysiol., 2020, 131(8), 1975-1978. doi: 10.1016/j.clinph.2020.04.005 PMID: 32387049
  16. Bradley, W.G.; Andrew, A.S.; Traynor, B.J.; Chiò, A.; Butt, T.H.; Stommel, E.W. Gene-environment-time interactions in neurodegenerative diseases: Hypotheses and research approaches. Ann. Neurosci., 2018, 25(4), 261-267. doi: 10.1159/000495321 PMID: 31000966
  17. Rossi, F.H. Pathophysiology of Amyotrophic Lateral Sclerosis; IntechOpen: Rijeka, 2013. doi: 10.5772/56562
  18. Schweingruber, C.; Hedlund, E. The cell autonomous and non-cell autonomous aspects of neuronal vulnerability and resilience in amyotrophic lateral sclerosis. Biology, 2022, 11(8), 1191. doi: 10.3390/biology11081191 PMID: 36009818
  19. Turner, M.R.; Hardiman, O.; Benatar, M.; Brooks, B.R.; Chio, A.; de Carvalho, M.; Ince, P.G.; Lin, C.; Miller, R.G.; Mitsumoto, H.; Nicholson, G.; Ravits, J.; Shaw, P.J.; Swash, M.; Talbot, K.; Traynor, B.J.; Van den Berg, L.H.; Veldink, J.H.; Vucic, S.; Kiernan, M.C. Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol., 2013, 12(3), 310-322. doi: 10.1016/S1474-4422(13)70036-X PMID: 23415570
  20. Mejzini, R.; Flynn, L.L.; Pitout, I.L.; Fletcher, S.; Wilton, S.D.; Akkari, P.A. ALS genetics, mechanisms, and therapeutics: Where are we now? Front. Neurosci., 2019, 13, 1310. doi: 10.3389/fnins.2019.01310 PMID: 31866818
  21. Ryan, M.; Heverin, M.; McLaughlin, R.L.; Hardiman, O. Lifetime risk and heritability of amyotrophic lateral sclerosis. JAMA Neurol., 2019, 76(11), 1367-1374. doi: 10.1001/jamaneurol.2019.2044 PMID: 31329211
  22. Fifita, J.A.; Williams, K.L.; Sundaramoorthy, V.; Mccann, E.P.; Nicholson, G.A.; Atkin, J.D.; Blair, I.P. A novel amyotrophic lateral sclerosis mutation in OPTN induces ER stress and Golgi fragmentation in vitro. Amyotroph. Lateral Scler. Frontotemporal Degener., 2017, 18(1-2), 126-133. doi: 10.1080/21678421.2016.1218517 PMID: 27534431
  23. Brown, C. Non-Familial ALS: A tangled web. Nature, 2017, 550(7676), S109-S111. doi: 10.1038/550S109a PMID: 29045373
  24. Cooper-Knock, J.; Harvey, C.; Zhang, S.; Moll, T.; Timpanaro, I.S.; Kenna, K.P.; Iacoangeli, A.; Veldink, J.H. Advances in the genetic classification of amyotrophic lateral sclerosis. Curr. Opin. Neurol., 2021, 34(5), 756-764. doi: 10.1097/WCO.0000000000000986 PMID: 34343141
  25. van Rheenen, W.; van der Spek, R.A.A.; Bakker, M.K.; van Vugt, J.J.F.A.; Hop, P.J.; Zwamborn, R.A.J.; de Klein, N.; Westra, H.J.; Bakker, O.B.; Deelen, P.; Shireby, G.; Hannon, E.; Moisse, M.; Baird, D.; Restuadi, R.; Dolzhenko, E.; Dekker, A.M.; Gawor, K.; Westeneng, H.J.; Tazelaar, G.H.P.; van Eijk, K.R.; Kooyman, M.; Byrne, R.P.; Doherty, M.; Heverin, M.; Al Khleifat, A.; Iacoangeli, A.; Shatunov, A.; Ticozzi, N.; Cooper-Knock, J.; Smith, B.N.; Gromicho, M.; Chandran, S.; Pal, S.; Morrison, K.E.; Shaw, P.J.; Hardy, J.; Orrell, R.W.; Sendtner, M.; Meyer, T.; Başak, N.; van der Kooi, A.J.; Ratti, A.; Fogh, I.; Gellera, C.; Lauria, G.; Corti, S.; Cereda, C.; Sproviero, D.; D’Alfonso, S.; Sorarù, G.; Siciliano, G.; Filosto, M.; Padovani, A.; Chiò, A.; Calvo, A.; Moglia, C.; Brunetti, M.; Canosa, A.; Grassano, M.; Beghi, E.; Pupillo, E.; Logroscino, G.; Nefussy, B.; Osmanovic, A.; Nordin, A.; Lerner, Y.; Zabari, M.; Gotkine, M.; Baloh, R.H.; Bell, S.; Vourc’h, P.; Corcia, P.; Couratier, P.; Millecamps, S.; Meininger, V.; Salachas, F.; Mora Pardina, J.S.; Assialioui, A.; Rojas-García, R.; Dion, P.A.; Ross, J.P.; Ludolph, A.C.; Weishaupt, J.H.; Brenner, D.; Freischmidt, A.; Bensimon, G.; Brice, A.; Durr, A.; Payan, C.A.M.; Saker-Delye, S.; Wood, N.W.; Topp, S.; Rademakers, R.; Tittmann, L.; Lieb, W.; Franke, A.; Ripke, S.; Braun, A.; Kraft, J.; Whiteman, D.C.; Olsen, C.M.; Uitterlinden, A.G.; Hofman, A.; Rietschel, M.; Cichon, S.; Nöthen, M.M.; Amouyel, P.; Comi, G.; Riva, N.; Lunetta, C.; Gerardi, F.; Cotelli, M.S.; Rinaldi, F.; Chiveri, L.; Guaita, M.C.; Perrone, P.; Ceroni, M.; Diamanti, L.; Ferrarese, C.; Tremolizzo, L.; Delodovici, M.L.; Bono, G.; Canosa, A.; Manera, U.; Vasta, R.; Bombaci, A.; Casale, F.; Fuda, G.; Salamone, P.; Iazzolino, B.; Peotta, L.; Cugnasco, P.; De Marco, G.; Torrieri, M.C.; Palumbo, F.; Gallone, S.; Barberis, M.; Sbaiz, L.; Gentile, S.; Mauro, A.; Mazzini, L.; De Marchi, F.; Corrado, L.; D’Alfonso, S.; Bertolotto, A.; Gionco, M.; Leotta, D.; Odddenino, E.; Imperiale, D.; Cavallo, R.; Pignatta, P.; De Mattei, M.; Geda, C.; Papurello, D.M.; Gusmaroli, G.; Comi, C.; Labate, C.; Ruiz, L.; Ferrandi, D.; Rota, E.; Aguggia, M.; Di Vito, N.; Meineri, P.; Ghiglione, P.; Launaro, N.; Dotta, M.; Di Sapio, A.; Giardini, G.; Tiloca, C.; Peverelli, S.; Taroni, F.; Pensato, V.; Castellotti, B.; Comi, G.P.; Del Bo, R.; Ceroni, M.; Gagliardi, S.; Corrado, L.; Mazzini, L.; Raggi, F.; Simoncini, C.; Lo Gerfo, A.; Inghilleri, M.; Ferlini, A.; Simone, I.L.; Passarella, B.; Guerra, V.; Zoccolella, S.; Nozzoli, C.; Mundi, C.; Leone, M.; Zarrelli, M.; Tamma, F.; Valluzzi, F.; Calabrese, G.; Boero, G.; Rini, A.; Traynor, B.J.; Singleton, A.B.; Mitne Neto, M.; Cauchi, R.J.; Ophoff, R.A.; Wiedau-Pazos, M.; Lomen-Hoerth, C.; van Deerlin, V.M.; Grosskreutz, J.; Roediger, A.; Gaur, N.; Jörk, A.; Barthel, T.; Theele, E.; Ilse, B.; Stubendorff, B.; Witte, O.W.; Steinbach, R.; Hübner, C.A.; Graff, C.; Brylev, L.; Fominykh, V.; Demeshonok, V.; Ataulina, A.; Rogelj, B.; Koritnik, B.; Zidar, J.; Ravnik-Glavač, M.; Glavač, D.; Stević, Z.; Drory, V.; Povedano, M.; Blair, I.P.; Kiernan, M.C.; Benyamin, B.; Henderson, R.D.; Furlong, S.; Mathers, S.; McCombe, P.A.; Needham, M.; Ngo, S.T.; Nicholson, G.A.; Pamphlett, R.; Rowe, D.B.; Steyn, F.J.; Williams, K.L.; Mather, K.A.; Sachdev, P.S.; Henders, A.K.; Wallace, L.; de Carvalho, M.; Pinto, S.; Petri, S.; Weber, M.; Rouleau, G.A.; Silani, V.; Curtis, C.J.; Breen, G.; Glass, J.D.; Brown, R.H., Jr; Landers, J.E.; Shaw, C.E.; Andersen, P.M.; Groen, E.J.N.; van Es, M.A.; Pasterkamp, R.J.; Fan, D.; Garton, F.C.; McRae, A.F.; Davey Smith, G.; Gaunt, T.R.; Eberle, M.A.; Mill, J.; McLaughlin, R.L.; Hardiman, O.; Kenna, K.P.; Wray, N.R.; Tsai, E.; Runz, H.; Franke, L.; Al-Chalabi, A.; Van Damme, P.; van den Berg, L.H.; Veldink, J.H. Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat. Genet., 2021, 53(12), 1636-1648. doi: 10.1038/s41588-021-00973-1 PMID: 34873335
  26. Casas, C.; Manzano, R.; Vaz, R.; Osta, R.; Brites, D. Synaptic failure: Focus in an integrative view of ALS. Brain Plast., 2016, 1(2), 159-175. doi: 10.3233/BPL-140001 PMID: 29765840
  27. Fogarty, M. Amyotrophic lateral sclerosis as a synaptopathy. Neural Regen. Res., 2019, 14(2), 189-192. doi: 10.4103/1673-5374.244782 PMID: 30530995
  28. Genç, B.; Jara, J.H.; Lagrimas, A.K.B.; Pytel, P.; Roos, R.P.; Mesulam, M.M.; Geula, C.; Bigio, E.H.; Özdinler, P.H. Apical dendrite degeneration, a novel cellular pathology for Betz cells in ALS. Sci. Rep., 2017, 7(1), 41765. doi: 10.1038/srep41765 PMID: 28165465
  29. Guidotti, G.; Scarlata, C.; Brambilla, L.; Rossi, D. Tumor necrosis factor alpha in amyotrophic lateral sclerosis: Friend or foe? Cells, 2021, 10(3), 518. doi: 10.3390/cells10030518 PMID: 33804386
  30. Bursch, F.; Kalmbach, N.; Naujock, M.; Staege, S.; Eggenschwiler, R.; Abo-Rady, M.; Japtok, J.; Guo, W.; Hensel, N.; Reinhardt, P.; Boeckers, T.M.; Cantz, T.; Sterneckert, J.; Van Den Bosch, L.; Hermann, A.; Petri, S.; Wegner, F. Altered calcium dynamics and glutamate receptor properties in iPSC-derived motor neurons from ALS patients with C9orf72, FUS, SOD1 or TDP43 mutations. Hum. Mol. Genet., 2019, 28(17), 2835-2850. doi: 10.1093/hmg/ddz107 PMID: 31108504
  31. Bonifacino, T.; Provenzano, F.; Gallia, E.; Ravera, S.; Torazza, C.; Bossi, S.; Ferrando, S.; Puliti, A.; Van Den Bosch, L.; Bonanno, G.; Milanese, M. In-vivo genetic ablation of metabotropic glutamate receptor type 5 slows down disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis., 2019, 129, 79-92. doi: 10.1016/j.nbd.2019.05.007 PMID: 31102766
  32. Vermeiren, Y.; Janssens, J.; Van Dam, D.; De Deyn, P.P. Serotonergic dysfunction in amyotrophic lateral sclerosis and parkinson’s disease: Similar mechanisms, dissimilar outcomes. Front. Neurosci., 2018, 12, 185. doi: 10.3389/fnins.2018.00185 PMID: 29615862
  33. Yang, Y.; Gozen, O.; Watkins, A.; Lorenzini, I.; Lepore, A.; Gao, Y.; Vidensky, S.; Brennan, J.; Poulsen, D.; Won Park, J.; Li Jeon, N.; Robinson, M.B.; Rothstein, J.D. Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1. Neuron, 2009, 61(6), 880-894. doi: 10.1016/j.neuron.2009.02.010 PMID: 19323997
  34. Scamps, F.; Aimond, F.; Hilaire, C.; Raoul, C. Synaptic transmission and motoneuron excitability defects in amyotrophic lateral sclerosis. In: Amyotrophic Lateral Sclerosis; Exon Publications: Brisbane (AU), 2021. doi: 10.36255/exonpublications.amyotrophiclateralsclerosis.synaptictransmission.2021
  35. Sunico, C.R.; Domínguez, G.; García-Verdugo, J.M.; Osta, R.; Montero, F.; Moreno-López, B. Reduction in the motoneuron inhibitory/excitatory synaptic ratio in an early-symptomatic mouse model of amyotrophic lateral sclerosis. Brain Pathol., 2011, 21(1), 1-15. doi: 10.1111/j.1750-3639.2010.00417.x PMID: 20653686
  36. Sirabella, R.; Valsecchi, V.; Anzilotti, S.; Cuomo, O.; Vinciguerra, A.; Cepparulo, P.; Brancaccio, P.; Guida, N.; Blondeau, N.; Canzoniero, L.M.T.; Franco, C.; Amoroso, S.; Annunziato, L.; Pignataro, G. Ionic homeostasis maintenance in ALS: Focus on new therapeutic targets. Front. Neurosci., 2018, 12, 510. doi: 10.3389/fnins.2018.00510 PMID: 30131665
  37. Ragagnin, A.M.G.; Shadfar, S.; Vidal, M.; Jamali, M.S.; Atkin, J.D. Motor neuron susceptibility in ALS/FTD. Front. Neurosci., 2019, 13, 532. doi: 10.3389/fnins.2019.00532 PMID: 31316328
  38. Tateno, M.; Kato, S.; Sakurai, T.; Nukina, N.; Takahashi, R.; Araki, T. Mutant SOD1 impairs axonal transport of choline acetyltransferase and acetylcholine release by sequestering KAP3. Hum. Mol. Genet., 2009, 18(5), 942-955. doi: 10.1093/hmg/ddn422 PMID: 19088126
  39. Verma, S.; Khurana, S.; Vats, A.; Sahu, B.; Ganguly, N.K.; Chakraborti, P.; Gourie-Devi, M.; Taneja, V. Neuromuscular junction dysfunction in amyotrophic lateral sclerosis. Mol. Neurobiol., 2022, 59(3), 1502-1527. doi: 10.1007/s12035-021-02658-6 PMID: 34997540
  40. Lin, C.Y.; Wu, C.L.; Lee, K.Z.; Chen, Y.J.; Zhang, P.H.; Chang, C.Y.; Harn, H.J.; Lin, S.Z.; Tsai, H.J. Extracellular Pgk1 enhances neurite outgrowth of motoneurons through Nogo66/NgR-independent targeting of NogoA. eLife, 2019, 8, e49175. doi: 10.7554/eLife.49175 PMID: 31361595
  41. Venkova, K.; Christov, A.; Kamaluddin, Z.; Kobalka, P.; Siddiqui, S.; Hensley, K. Semaphorin 3A signaling through neuropilin-1 is an early trigger for distal axonopathy in the SOD1G93A mouse model of amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol., 2014, 73(7), 702-713. doi: 10.1097/NEN.0000000000000086 PMID: 24918638
  42. Moloney, E.B.; de Winter, F.; Verhaagen, J. ALS as a distal axonopathy: Molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease. Front. Neurosci., 2014, 8, 252. doi: 10.3389/fnins.2014.00252 PMID: 25177267
  43. Krieger, C.; Wang, S.J.H.; Yoo, S.H.; Harden, N. Adducin at the neuromuscular junction in amyotrophic lateral sclerosis: Hanging on for dear life. Front. Cell. Neurosci., 2016, 10, 11. doi: 10.3389/fncel.2016.00011 PMID: 26858605
  44. Palma, E.; Reyes-Ruiz, J.M.; Lopergolo, D.; Roseti, C.; Bertollini, C.; Ruffolo, G.; Cifelli, P.; Onesti, E.; Limatola, C.; Miledi, R.; Inghilleri, M. Acetylcholine receptors from human muscle as pharmacological targets for ALS therapy. Proc. Natl. Acad. Sci. USA, 2016, 113(11), 3060-3065. doi: 10.1073/pnas.1600251113 PMID: 26929355
  45. Van Hoecke, A.; Schoonaert, L.; Lemmens, R.; Timmers, M.; Staats, K.A.; Laird, A.S.; Peeters, E.; Philips, T.; Goris, A.; Dubois, B.; Andersen, P.M.; Al-Chalabi, A.; Thijs, V.; Turnley, A.M.; van Vught, P.W.; Veldink, J.H.; Hardiman, O.; Van Den Bosch, L.; Gonzalez-Perez, P.; Van Damme, P.; Brown, R.H., Jr; van den Berg, L.H.; Robberecht, W. EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans. Nat. Med., 2012, 18(9), 1418-1422. doi: 10.1038/nm.2901 PMID: 22922411
  46. Murray, L.M.; Talbot, K.; Gillingwater, T.H. Review: Neuromuscular synaptic vulnerability in motor neurone disease: amyotrophic lateral sclerosis and spinal muscular atrophy. Neuropathol. Appl. Neurobiol., 2010, 36(2), 133-156. doi: 10.1111/j.1365-2990.2010.01061.x PMID: 20202121
  47. Schomburg, E.D.; Steffens, H.; Zschüntzsch, J.; Dibaj, P.; Keller, B.U. Fatigability of spinal reflex transmission in a mouse model (SOD1G93A ) of amyotrophic lateral sclerosis. Muscle Nerve, 2011, 43(2), 230-236. doi: 10.1002/mus.21835 PMID: 21254088
  48. Rocha, M.C.; Pousinha, P.A.; Correia, A.M.; Sebastião, A.M.; Ribeiro, J.A. Early changes of neuromuscular transmission in the (SOD1G93A ) mice model of ALS start long before motor symptoms onset. PLoS One, 2013, 8(9), e73846. doi: 10.1371/journal.pone.0073846 PMID: 24040091
  49. Carrasco, D.I.; Seburn, K.L.; Pinter, M.J. Altered terminal Schwann cell morphology precedes denervation in SOD1 mice. Exp. Neurol., 2016, 275(0 1), 172-181. doi: 10.1016/j.expneurol.2015.09.014 PMID: 26416261
  50. Manzano, R.; Toivonen, J.M.; Calvo, A.C.; Oliván, S.; Zaragoza, P.; Rodellar, C.; Montarras, D.; Osta, R. Altered in vitro proliferation of mouse SOD1-G93A skeletal muscle satellite cells. Neurodegener. Dis., 2013, 11(3), 153-164. doi: 10.1159/000338061 PMID: 22797053
  51. Nijssen, J.; Comley, L.H.; Hedlund, E. Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis. Acta Neuropathol., 2017, 133(6), 863-885. doi: 10.1007/s00401-017-1708-8 PMID: 28409282
  52. Rochat, C.; Schneider, B.L.; Bernard-Marissal, N. Selective vulnerability of neuronal subtypes in ALS: A fertile ground for the identification of therapeutic targets. In: Update on Amyotrophic Lateral Sclerosis; InTech, 2016. doi: 10.5772/63703
  53. Ruegsegger, C.; Maharjan, N.; Goswami, A.; Filézac de L’Etang, A.; Weis, J.; Troost, D.; Heller, M.; Gut, H.; Saxena, S. Aberrant association of misfolded SOD1 with Na+/K+ATPase-α3 impairs its activity and contributes to motor neuron vulnerability in ALS. Acta Neuropathol., 2016, 131(3), 427-451. doi: 10.1007/s00401-015-1510-4 PMID: 26619836
  54. Ramírez-Jarquín, U.N.; Tapia, R. Excitatory and inhibitory neuronal circuits in the spinal cord and their role in the control of motor neuron function and degeneration. ACS Chem. Neurosci., 2018, 9(2), 211-216. doi: 10.1021/acschemneuro.7b00503 PMID: 29350907
  55. Orr, B.O.; Hauswirth, A.G.; Celona, B.; Fetter, R.D.; Zunino, G.; Kvon, E.Z.; Zhu, Y.; Pennacchio, L.A.; Black, B.L.; Davis, G.W. Presynaptic homeostasis opposes disease progression in mouse models of ALS-Like degeneration: Evidence for homeostatic neuroprotection. Neuron, 2020, 107(1), 95-111.e6. doi: 10.1016/j.neuron.2020.04.009 PMID: 32380032
  56. Wijesekera, L.C.; Nigel Leigh, P. Amyotrophic lateral sclerosis. Orphanet J. Rare Dis., 2009, 4(1), 3. doi: 10.1186/1750-1172-4-3 PMID: 19192301
  57. Isaacs, J.D.; Dean, A.F.; Shaw, C.E.; Al-Chalabi, A.; Mills, K.R.; Leigh, P.N. Amyotrophic lateral sclerosis with sensory neuropathy: Part of a multisystem disorder? J. Neurol. Neurosurg. Psychiatry, 2006, 78(7), 750-753. doi: 10.1136/jnnp.2006.098798 PMID: 17575021
  58. Seki, S.; Yamamoto, T.; Quinn, K.; Spigelman, I.; Pantazis, A.; Olcese, R.; Wiedau-Pazos, M.; Chandler, S.H.; Venugopal, S. Circuit-specific early impairment of proprioceptive sensory neurons in the SOD1G93A mouse model for ALS. J. Neurosci., 2019, 39(44), 8798-8815. doi: 10.1523/JNEUROSCI.1214-19.2019 PMID: 31530644
  59. Vaughan, S.K.; Sutherland, N.M.; Zhang, S.; Hatzipetros, T.; Vieira, F.; Valdez, G. The ALS-inducing factors, TDP43A315T and SOD1G93A , directly affect and sensitize sensory neurons to stress. Sci. Rep., 2018, 8(1), 16582. doi: 10.1038/s41598-018-34510-8 PMID: 30410094
  60. Lalancette-Hebert, M.; Sharma, A.; Lyashchenko, A.K.; Shneider, N.A. Gamma motor neurons survive and exacerbate alpha motor neuron degeneration in ALS. Proc. Natl. Acad. Sci. USA, 2016, 113(51), E8316-E8325. doi: 10.1073/pnas.1605210113 PMID: 27930290
  61. Brownstone, R.M.; Lancelin, C. Escape from homeostasis: spinal microcircuits and progression of amyotrophic lateral sclerosis. J. Neurophysiol., 2018, 119(5), 1782-1794. doi: 10.1152/jn.00331.2017 PMID: 29384454
  62. Ashford, B.A.; Boche, D.; Cooper-Knock, J.; Heath, P.R.; Simpson, J.E.; Highley, J.R. Review: Microglia in motor neuron disease. Neuropathol. Appl. Neurobiol., 2021, 47(2), 179-197. doi: 10.1111/nan.12640 PMID: 32594542
  63. Gomes, C.; Sequeira, C.; Barbosa, M.; Cunha, C.; Vaz, A.R.; Brites, D. Astrocyte regional diversity in ALS includes distinct aberrant phenotypes with common and causal pathological processes. Exp. Cell Res., 2020, 395(2), 112209. doi: 10.1016/j.yexcr.2020.112209 PMID: 32739211
  64. Geloso, M.C.; Corvino, V.; Marchese, E.; Serrano, A.; Michetti, F.; D’Ambrosi, N. The dual role of microglia in ALS: Mechanisms and therapeutic approaches. Front. Aging Neurosci., 2017, 9, 242. doi: 10.3389/fnagi.2017.00242 PMID: 28790913
  65. Trolese, M.C.; Mariani, A.; Terao, M.; de Paola, M.; Fabbrizio, P.; Sironi, F.; Kurosaki, M.; Bonanno, S.; Marcuzzo, S.; Bernasconi, P.; Trojsi, F.; Aronica, E.; Bendotti, C.; Nardo, G. CXCL13/ CXCR5 signalling is pivotal to preserve motor neurons in amyotrophic lateral sclerosis. EBioMedicine, 2020, 62, 103097. doi: 10.1016/j.ebiom.2020.103097 PMID: 33161233
  66. Hensley, K.; Mhatre, M.; Mou, S.; Pye, Q.N.; Stewart, C.; West, M.; Williamson, K.S. On the relation of oxidative stress to neuroinflammation: Lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxid. Redox Signal., 2006, 8(11-12), 2075-2087. doi: 10.1089/ars.2006.8.2075 PMID: 17034351
  67. Puentes, F.; Malaspina, A.; van Noort, J.M.; Amor, S. Non-neuronal cells in ALS: Role of glial, immune cells and blood-CNS barriers. Brain Pathol., 2016, 26(2), 248-257. doi: 10.1111/bpa.12352 PMID: 26780491
  68. Santoni, G.; Cardinali, C.; Morelli, M.; Santoni, M.; Nabissi, M.; Amantini, C. Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons. J. Neuroinflammation, 2015, 12(1), 21. doi: 10.1186/s12974-015-0239-2 PMID: 25644504
  69. Ouali, A.N.; Schurr, C.; Olde Heuvel, F.; Tang, L.; Li, Q.; Tasdogan, A.; Kimbara, A.; Nettekoven, M.; Ottaviani, G.; Raposo, C.; Röver, S.; Rogers-Evans, M.; Rothenhäusler, B.; Ullmer, C.; Fingerle, J.; Grether, U.; Knuesel, I.; Boeckers, T.M.; Ludolph, A.; Wirth, T.; Roselli, F.; Baumann, B. NF‐κB activation in astrocytes drives a stage‐specific beneficial neuroimmunological response in ALS. EMBO J., 2018, 37(16), e98697. doi: 10.15252/embj.201798697 PMID: 29875132
  70. Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487. doi: 10.1038/nature21029 PMID: 28099414
  71. Vaz, S.H.; Pinto, S.; Sebastião, A.M.; Brites, D. Astrocytes in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler; Araki, T., Ed.; Exon Publications: Brisbane, 2021. doi: 10.36255/exonpublications.amyotrophiclateralsclerosis.astrocytes.2021
  72. Zhao, W.; Beers, D.R.; Appel, S.H. Immune-mediated mechanisms in the pathoprogression of amyotrophic lateral sclerosis. J. Neuroimmune Pharmacol., 2013, 8(4), 888-899. doi: 10.1007/s11481-013-9489-x PMID: 23881705
  73. Johann, S.; Heitzer, M.; Kanagaratnam, M.; Goswami, A.; Rizo, T.; Weis, J.; Troost, D.; Beyer, C. NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients. Glia, 2015, 63(12), 2260-2273. doi: 10.1002/glia.22891 PMID: 26200799
  74. MacLean, M.; Juranek, J.; Cuddapah, S.; López-Díez, R.; Ruiz, H.H.; Hu, J.; Frye, L.; Li, H.; Gugger, P.F.; Schmidt, A.M. Microglia RAGE exacerbates the progression of neurodegeneration within the SOD1G93A murine model of amyotrophic lateral sclerosis in a sex-dependent manner. J. Neuroinflammation, 2021, 18(1), 139. doi: 10.1186/s12974-021-02191-2 PMID: 34130712
  75. Eitan, C.; Siany, A.; Barkan, E.; Olender, T.; van Eijk, K.R.; Moisse, M.; Farhan, S.M.K.; Danino, Y.M.; Yanowski, E.; Marmor-Kollet, H.; Rivkin, N.; Yacovzada, N.S.; Hung, S.T.; Cooper-Knock, J.; Yu, C.H.; Louis, C.; Masters, S.L.; Kenna, K.P.; van der Spek, R.A.A.; Sproviero, W.; Al Khleifat, A.; Iacoangeli, A.; Shatunov, A.; Jones, A.R.; Elbaz-Alon, Y.; Cohen, Y.; Chapnik, E.; Rothschild, D.; Weissbrod, O.; Beck, G.; Ainbinder, E.; Ben-Dor, S.; Werneburg, S.; Schafer, D.P.; Brown, R.H., Jr; Shaw, P.J.; Van Damme, P.; van den Berg, L.H.; Phatnani, H.; Segal, E.; Ichida, J.K.; Al-Chalabi, A.; Veldink, J.H.; Cooper-Knock, J.; Kenna, K.P.; Van Damme, P.; van den Berg, L.H.; Hornstein, E.; Hornstein, E. Whole-genome sequencing reveals that variants in the Interleukin 18 Receptor Accessory Protein 3′UTR protect against ALS. Nat. Neurosci., 2022, 25(4), 433-445. doi: 10.1038/s41593-022-01040-6 PMID: 35361972
  76. Beers, D.R.; Henkel, J.S.; Zhao, W.; Wang, J.; Appel, S.H. CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc. Natl. Acad. Sci. USA, 2008, 105(40), 15558-15563. doi: 10.1073/pnas.0807419105 PMID: 18809917
  77. Henkel, J.S.; Beers, D.R.; Wen, S.; Rivera, A.L.; Toennis, K.M.; Appel, J.E.; Zhao, W.; Moore, D.H.; Powell, S.Z.; Appel, S.H. Regulatory T‐lymphocytes mediate amyotrophic lateral sclerosis progression and survival. EMBO Mol. Med., 2013, 5(1), 64-79. doi: 10.1002/emmm.201201544 PMID: 23143995
  78. McCombe, P.A.; Lee, J.D.; Woodruff, T.M.; Henderson, R.D. The peripheral immune system and amyotrophic lateral sclerosis. Front. Neurol., 2020, 11, 279. doi: 10.3389/fneur.2020.00279 PMID: 32373052
  79. Volonté, C.; Apolloni, S.; Parisi, C.; Amadio, S. Purinergic contribution to amyotrophic lateral sclerosis. Neuropharmacology, 2016, 104, 180-193. doi: 10.1016/j.neuropharm.2015.10.026 PMID: 26514402
  80. Sta, M.; Sylva-Steenland, R.M.R.; Casula, M.; de Jong, J.M.B.V.; Troost, D.; Aronica, E.; Baas, F. Innate and adaptive immunity in amyotrophic lateral sclerosis: Evidence of complement activation. Neurobiol. Dis., 2011, 42(3), 211-220. doi: 10.1016/j.nbd.2011.01.002 PMID: 21220013
  81. Kakaroubas, N.; Brennan, S.; Keon, M.; Saksena, N.K. Pathomechanisms of blood-brain barrier disruption in ALS. Neurosci. J., 2019, 2019, 1-16. doi: 10.1155/2019/2537698 PMID: 31380411
  82. Saul, J.; Hutchins, E.; Reiman, R.; Saul, M.; Ostrow, L.W.; Harris, B.T.; Van Keuren-Jensen, K.; Bowser, R.; Bakkar, N. Global alterations to the choroid plexus blood-CSF barrier in amyotrophic lateral sclerosis. Acta Neuropathol. Commun., 2020, 8(1), 92. doi: 10.1186/s40478-020-00968-9 PMID: 32586411
  83. Bowerman, M. The neuroinflammation in the physiopathology of amyotrophic lateral sclerosis. In: Curr. Adv. Amyotrophic Lateral Sclerosis; InTech, 2013. doi: 10.5772/56489
  84. Jiang, L.L.; Zhu, B.; Zhao, Y.; Li, X.; Liu, T.; Pina-Crespo, J.; Zhou, L.; Xu, W.; Rodriguez, M.J.; Yu, H.; Cleveland, D.W.; Ravits, J.; Da Cruz, S.; Long, T.; Zhang, D.; Huang, T.Y.; Xu, H. Membralin deficiency dysregulates astrocytic glutamate homeostasis, leading to ALS-like impairment. J. Clin. Invest., 2019, 129(8), 3103-3120. doi: 10.1172/JCI127695 PMID: 31112137
  85. Yin, X.; Wang, S.; Qi, Y.; Wang, X.; Jiang, H.; Wang, T.; Yang, Y.; Wang, Y.; Zhang, C.; Feng, H. Astrocyte elevated gene-1 is a novel regulator of astrogliosis and excitatory amino acid transporter-2 via interplaying with nuclear factor-κB signaling in astrocytes from amyotrophic lateral sclerosis mouse model with hSOD1 G93A mutation. Mol. Cell. Neurosci., 2018, 90, 1-11. doi: 10.1016/j.mcn.2018.05.004 PMID: 29777762
  86. Rosenblum, L.T.; Shamamandri-Markandaiah, S.; Ghosh, B.; Foran, E.; Lepore, A.C.; Pasinelli, P.; Trotti, D. Mutation of the caspase-3 cleavage site in the astroglial glutamate transporter EAAT2 delays disease progression and extends lifespan in the SOD1-G93A mouse model of ALS. Exp. Neurol., 2017, 292, 145-153. doi: 10.1016/j.expneurol.2017.03.014 PMID: 28342750
  87. Chen, L.C.; Smith, A.P.; Ben, Y.; Zukic, B.; Ignacio, S.; Moore, D.; Lee, N.M. Temporal gene expression patterns in G93A/SOD1 mouse. Amyotroph. Lateral Scler. Other Motor Neuron Disord., 2004, 5(3), 164-171. doi: 10.1080/14660820410017091 PMID: 15512905
  88. Lopez-Lopez, A.; Gamez, J.; Syriani, E.; Morales, M.; Salvado, M.; Rodríguez, M.J.; Mahy, N.; Vidal-Taboada, J.M. CX3CR1 is a modifying gene of survival and progression in amyotrophic lateral sclerosis. PLoS One, 2014, 9(5), e96528. doi: 10.1371/journal.pone.0096528 PMID: 24806473
  89. Tripathi, P.; Rodriguez-Muela, N.; Klim, J.R.; de Boer, A.S.; Agrawal, S.; Sandoe, J.; Lopes, C.S.; Ogliari, K.S.; Williams, L.A.; Shear, M.; Rubin, L.L.; Eggan, K.; Zhou, Q. Reactive astrocytes promote ALS-like degeneration and intracellular protein aggregation in human motor neurons by disrupting autophagy through TGF-β1. Stem Cell Reports, 2017, 9(2), 667-680. doi: 10.1016/j.stemcr.2017.06.008 PMID: 28712846
  90. Cassina, P.; Miquel, E.; Martínez-Palma, L.; Cassina, A. Glial metabolic reprogramming in amyotrophic lateral sclerosis. Neuroimmunomodulation, 2021, 28(4), 204-212. doi: 10.1159/000516926 PMID: 34175843
  91. Moisse, K.; Strong, M.J. Innate immunity in amyotrophic lateral sclerosis. Biochim. Biophys. Acta Mol. Basis Dis., 2006, 1762(11-12), 1083-1093. doi: 10.1016/j.bbadis.2006.03.001 PMID: 16624536
  92. Raffaele, S.; Boccazzi, M.; Fumagalli, M. Oligodendrocyte dysfunction in amyotrophic lateral sclerosis: Mechanisms and therapeutic perspectives. Cells, 2021, 10(3), 565. doi: 10.3390/cells10030565 PMID: 33807572
  93. Ito, Y.; Ofengeim, D.; Najafov, A.; Das, S.; Saberi, S.; Li, Y.; Hitomi, J.; Zhu, H.; Chen, H.; Mayo, L.; Geng, J.; Amin, P.; DeWitt, J.P.; Mookhtiar, A.K.; Florez, M.; Ouchida, A.T.; Fan, J.; Pasparakis, M.; Kelliher, M.A.; Ravits, J.; Yuan, J. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science, 2016, 353(6299), 603-608. doi: 10.1126/science.aaf6803 PMID: 27493188
  94. Liu, J.F.; Zheng, O.X.; Xin, J.G.; Chen, H.H.; Xin, J.J. How are necroptosis, immune dysfunction, and motoneuron death connected in amyotrophic lateral sclerosis? Neuroimmunol. Neuroinflamm., 2017, 4(6), 109-116. doi: 10.20517/2347-8659.2017.12
  95. Endo, F.; Komine, O.; Yamanaka, K. Neuroinflammation in motor neuron disease. Clin. Exp. Neuroimmunol., 2016, 7(2), 126-138. doi: 10.1111/cen3.12309
  96. Trias, E.; King, P.H.; Si, Y.; Kwon, Y.; Varela, V.; Ibarburu, S.; Kovacs, M.; Moura, I.C.; Beckman, J.S.; Hermine, O.; Barbeito, L. Mast cells and neutrophils mediate peripheral motor pathway degeneration in ALS. JCI Insight, 2018, 3(19), e123249. doi: 10.1172/jci.insight.123249 PMID: 30282815
  97. Kang, S.H.; Li, Y.; Fukaya, M.; Lorenzini, I.; Cleveland, D.W.; Ostrow, L.W.; Rothstein, J.D.; Bergles, D.E. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat. Neurosci., 2013, 16(5), 571-579. doi: 10.1038/nn.3357 PMID: 23542689
  98. Filipi, T.; Hermanova, Z.; Tureckova, J.; Vanatko, O.; Anderova, M. Glial cells—the strategic targets in amyotrophic lateral sclerosis treatment. J. Clin. Med., 2020, 9(1), 261. doi: 10.3390/jcm9010261 PMID: 31963681
  99. Mishra, P.S.; Boutej, H.; Soucy, G.; Bareil, C.; Kumar, S.; Picher-Martel, V.; Dupré, N.; Kriz, J.; Julien, J.P. Transmission of ALS pathogenesis by the cerebrospinal fluid. Acta Neuropathol. Commun., 2020, 8(1), 65. doi: 10.1186/s40478-020-00943-4 PMID: 32381112
  100. Sumitha, R.; Manjunatha, V.M.; Sabitha, R.K.; Alladi, P.A.; Nalini, A.; Rao, L.T.; Chandrasekhar Sagar, B.K.; Steinbusch, H.W.M.; Kramer, B.W.; Sathyaprabha, T.N.; Raju, T.R. Cerebrospinal fluid from patients with sporadic amyotrophic lateral sclerosis induces degeneration of motor neurons derived from human embryonic stem cells. Mol. Neurobiol., 2019, 56(2), 1014-1034. doi: 10.1007/s12035-018-1149-y PMID: 29858777
  101. Mishra, P.S.; Vijayalakshmi, K.; Nalini, A.; Sathyaprabha, T.N.; Kramer, B.W.; Alladi, P.A.; Raju, T.R. Etiogenic factors present in the cerebrospinal fluid from amyotrophic lateral sclerosis patients induce predominantly pro-inflammatory responses in microglia. J. Neuroinflammation, 2017, 14(1), 251. doi: 10.1186/s12974-017-1028-x PMID: 29246232
  102. Clement, A.M.; Nguyen, M.D.; Roberts, E.A.; Garcia, M.L.; Boillée, S.; Rule, M.; McMahon, A.P.; Doucette, W.; Siwek, D.; Ferrante, R.J.; Brown, R.H., Jr; Julien, J.P.; Goldstein, L.S.B.; Cleveland, D.W. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science, 2003, 302(5642), 113-117. doi: 10.1126/science.1086071 PMID: 14526083
  103. Lobsiger, C.S.; Boillee, S.; McAlonis-Downes, M.; Khan, A.M.; Feltri, M.L.; Yamanaka, K.; Cleveland, D.W. Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice. Proc. Natl. Acad. Sci. USA, 2009, 106(11), 4465-4470. doi: 10.1073/pnas.0813339106 PMID: 19251638
  104. Boillée, S.; Yamanaka, K.; Lobsiger, C.S.; Copeland, N.G.; Jenkins, N.A.; Kassiotis, G.; Kollias, G.; Cleveland, D.W. Onset and progression in inherited ALS determined by motor neurons and microglia. Science, 2006, 312(5778), 1389-1392. doi: 10.1126/science.1123511 PMID: 16741123
  105. Van Harten, A.C.M.; Phatnani, H.; Przedborski, S. Non-cell-autonomous pathogenic mechanisms in amyotrophic lateral sclerosis. Trends Neurosci., 2021, 44(8), 658-668. doi: 10.1016/j.tins.2021.04.008 PMID: 34006386
  106. Damme, M.; Suntio, T.; Saftig, P.; Eskelinen, E.L. Autophagy in neuronal cells: general principles and physiological and pathological functions. Acta Neuropathol., 2015, 129(3), 337-362. doi: 10.1007/s00401-014-1361-4 PMID: 25367385
  107. Sasaki, S. Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol., 2011, 70(5), 349-359. doi: 10.1097/NEN.0b013e3182160690 PMID: 21487309
  108. Fernando, R.; Castro, J.P.; Flore, T.; Deubel, S.; Grune, T.; Ott, C. Age-related maintenance of the autophagy-lysosomal system is dependent on skeletal muscle type. Oxid. Med. Cell. Longev., 2020, 2020, 1-8. doi: 10.1155/2020/4908162 PMID: 32774673
  109. Amin, A.; Perera, N.D.; Beart, P.M.; Turner, B.J.; Shabanpoor, F. Amyotrophic lateral sclerosis and autophagy: Dysfunction and therapeutic targeting. Cells, 2020, 9(11), 2413. doi: 10.3390/cells9112413 PMID: 33158177
  110. Fujikake, N.; Shin, M.; Shimizu, S. Association between autophagy and neurodegenerative diseases. Front. Neurosci., 2018, 12, 255. doi: 10.3389/fnins.2018.00255 PMID: 29872373
  111. Chen, A.I.; Xiong, L.J.; Tong, Y.U.; Mao, M. Neuroprotective effect of brain-derived neurotrophic factor mediated by autophagy through the PI3K/Akt/mTOR pathway. Mol. Med. Rep., 2013, 8(4), 1011-1016. doi: 10.3892/mmr.2013.1628 PMID: 23942837
  112. Ugolino, J.; Ji, Y.J.; Conchina, K.; Chu, J.; Nirujogi, R.S.; Pandey, A.; Brady, N.R.; Hamacher-Brady, A.; Wang, J. Loss of C9orf72 enhances autophagic activity via deregulated mTOR and TFEB signaling. PLoS Genet., 2016, 12(11), e1006443-e1006443. doi: 10.1371/journal.pgen.1006443 PMID: 27875531
  113. Budini, M.; Buratti, E.; Morselli, E.; Criollo, A. Autophagy and its impact on neurodegenerative diseases: New roles for TDP-43 and C9orf72. Front. Mol. Neurosci., 2017, 10, 170. doi: 10.3389/fnmol.2017.00170 PMID: 28611593
  114. Chew, J.; Cook, C.; Gendron, T.F.; Jansen-West, K.; del Rosso, G.; Daughrity, L.M.; Castanedes-Casey, M.; Kurti, A.; Stankowski, J.N.; Disney, M.D.; Rothstein, J.D.; Dickson, D.W.; Fryer, J.D.; Zhang, Y.J.; Petrucelli, L. Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP-43 proteinopathy. Mol. Neurodegener., 2019, 14(1), 9. doi: 10.1186/s13024-019-0310-z PMID: 30767771
  115. Nguyen, D.K.H.; Thombre, R.; Wang, J. Autophagy as a common pathway in amyotrophic lateral sclerosis. Neurosci. Lett., 2019, 697, 34-48. doi: 10.1016/j.neulet.2018.04.006 PMID: 29626651
  116. Oakes, J.A.; Davies, M.C.; Collins, M.O. TBK1: a new player in ALS linking autophagy and neuroinflammation. Mol. Brain, 2017, 10(1), 5. doi: 10.1186/s13041-017-0287-x PMID: 28148298
  117. Tak, Y.J.; Park, J.H.; Rhim, H.; Kang, S. ALS-related mutant SOD1 aggregates interfere with mitophagy by sequestering the autophagy receptor optineurin. Int. J. Mol. Sci., 2020, 21(20), 7525. doi: 10.3390/ijms21207525 PMID: 33065963
  118. Zhang, Y.J.; Jansen-West, K.; Xu, Y.F.; Gendron, T.F.; Bieniek, K.F.; Lin, W.L.; Sasaguri, H.; Caulfield, T.; Hubbard, J.; Daughrity, L.; Chew, J.; Belzil, V.V.; Prudencio, M.; Stankowski, J.N.; Castanedes-Casey, M.; Whitelaw, E.; Ash, P.E.A.; DeTure, M.; Rademakers, R.; Boylan, K.B.; Dickson, D.W.; Petrucelli, L. Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol., 2014, 128(4), 505-524. doi: 10.1007/s00401-014-1336-5 PMID: 25173361
  119. Soo, K.Y.; Sultana, J.; King, A.E.; Atkinson, R.A.K.; Warraich, S.T.; Sundaramoorthy, V.; Blair, I.; Farg, M.A.; Atkin, J.D. ALS-associated mutant FUS inhibits macroautophagy which is restored by overexpression of Rab1. Cell Death Discov., 2015, 1(1), 15030. doi: 10.1038/cddiscovery.2015.30 PMID: 27551461
  120. Purice, M.D.; Taylor, J.P. Linking hnRNP function to ALS and FTD pathology. Front. Neurosci., 2018, 12, 326. doi: 10.3389/fnins.2018.00326 PMID: 29867335
  121. Renaud, L.; Picher-Martel, V.; Codron, P.; Julien, J.P. Key role of UBQLN2 in pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia. Acta Neuropathol. Commun., 2019, 7(1), 103. doi: 10.1186/s40478-019-0758-7 PMID: 31319884
  122. Burk, K.; Pasterkamp, R.J. Disrupted neuronal trafficking in amyotrophic lateral sclerosis. Acta Neuropathol., 2019, 137(6), 859-877. doi: 10.1007/s00401-019-01964-7 PMID: 30721407
  123. Theunissen, F.; West, P.K.; Brennan, S.; Petrović, B.; Hooshmand, K.; Akkari, P.A.; Keon, M.; Guennewig, B. New perspectives on cytoskeletal dysregulation and mitochondrial mislocalization in amyotrophic lateral sclerosis. Transl. Neurodegener., 2021, 10(1), 46. doi: 10.1186/s40035-021-00272-z PMID: 34789332
  124. Kieran, D.; Hafezparast, M.; Bohnert, S.; Dick, J.R.T.; Martin, J.; Schiavo, G.; Fisher, E.M.C.; Greensmith, L. A mutation in dynein rescues axonal transport defects and extends the life span of ALS mice. J. Cell Biol., 2005, 169(4), 561-567. doi: 10.1083/jcb.200501085 PMID: 15911875
  125. Shi, Y.; Lin, S.; Staats, K.A.; Li, Y.; Chang, W.H.; Hung, S.T.; Hendricks, E.; Linares, G.R.; Wang, Y.; Son, E.Y.; Wen, X.; Kisler, K.; Wilkinson, B.; Menendez, L.; Sugawara, T.; Woolwine, P.; Huang, M.; Cowan, M.J.; Ge, B.; Koutsodendris, N.; Sandor, K.P.; Komberg, J.; Vangoor, V.R.; Senthilkumar, K.; Hennes, V.; Seah, C.; Nelson, A.R.; Cheng, T.Y.; Lee, S.J.J.; August, P.R.; Chen, J.A.; Wisniewski, N.; Hanson-Smith, V.; Belgard, T.G.; Zhang, A.; Coba, M.; Grunseich, C.; Ward, M.E.; van den Berg, L.H.; Pasterkamp, R.J.; Trotti, D.; Zlokovic, B.V.; Ichida, J.K. Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat. Med., 2018, 24(3), 313-325. doi: 10.1038/nm.4490 PMID: 29400714
  126. Slowicka, K.; Vereecke, L.; van Loo, G. Cellular functions of optineurin in health and disease. Trends Immunol., 2016, 37(9), 621-633. doi: 10.1016/j.it.2016.07.002 PMID: 27480243
  127. Rademakers, R.; van Blitterswijk, M. Excess of rare damaging TUBA4A variants suggests cytoskeletal defects in ALS. Neuron, 2014, 84(2), 241-243. doi: 10.1016/j.neuron.2014.10.002 PMID: 25374348
  128. Laird, F.M.; Farah, M.H.; Ackerley, S.; Hoke, A.; Maragakis, N.; Rothstein, J.D.; Griffin, J.; Price, D.L.; Martin, L.J.; Wong, P.C. Motor neuron disease occurring in a mutant dynactin mouse model is characterized by defects in vesicular trafficking. J. Neurosci., 2008, 28(9), 1997-2005. doi: 10.1523/JNEUROSCI.4231-07.2008 PMID: 18305234
  129. Nicolas, A.; Kenna, K.P.; Renton, A.E.; Ticozzi, N.; Faghri, F.; Chia, R.; Dominov, J.A.; Kenna, B.J.; Nalls, M.A.; Keagle, P.; Rivera, A.M.; van Rheenen, W.; Murphy, N.A.; van Vugt, J.J.F.A.; Geiger, J.T.; Van der Spek, R.A.; Pliner, H.A. Shankaracharya; Smith, B.N.; Marangi, G.; Topp, S.D.; Abramzon, Y.; Gkazi, A.S.; Eicher, J.D.; Kenna, A.; Mora, G.; Calvo, A.; Mazzini, L.; Riva, N.; Mandrioli, J.; Caponnetto, C.; Battistini, S.; Volanti, P.; La Bella, V.; Conforti, F.L.; Borghero, G.; Messina, S.; Simone, I.L.; Trojsi, F.; Salvi, F.; Logullo, F.O.; D’Alfonso, S.; Corrado, L.; Capasso, M.; Ferrucci, L.; Moreno, C.A.M.; Kamalakaran, S.; Goldstein, D.B.; Gitler, A.D.; Harris, T.; Myers, R.M.; Phatnani, H.; Musunuri, R.L.; Evani, U.S.; Abhyankar, A.; Zody, M.C.; Kaye, J.; Finkbeiner, S.; Wyman, S.K.; LeNail, A.; Lima, L.; Fraenkel, E.; Svendsen, C.N.; Thompson, L.M.; Van Eyk, J.E.; Berry, J.D.; Miller, T.M.; Kolb, S.J.; Cudkowicz, M.; Baxi, E.; Benatar, M.; Taylor, J.P.; Rampersaud, E.; Wu, G.; Wuu, J.; Lauria, G.; Verde, F.; Fogh, I.; Tiloca, C.; Comi, G.P.; Sorarù, G.; Cereda, C.; Corcia, P.; Laaksovirta, H.; Myllykangas, L.; Jansson, L.; Valori, M.; Ealing, J.; Hamdalla, H.; Rollinson, S.; Pickering-Brown, S.; Orrell, R.W.; Sidle, K.C.; Malaspina, A.; Hardy, J.; Singleton, A.B.; Johnson, J.O.; Arepalli, S.; Sapp, P.C.; McKenna-Yasek, D.; Polak, M.; Asress, S.; Al-Sarraj, S.; King, A.; Troakes, C.; Vance, C.; de Belleroche, J.; Baas, F.; ten Asbroek, A.L.M.A.; Muñoz-Blanco, J.L.; Hernandez, D.G.; Ding, J.; Gibbs, J.R.; Scholz, S.W.; Floeter, M.K.; Campbell, R.H.; Landi, F.; Bowser, R.; Pulst, S.M.; Ravits, J.M.; MacGowan, D.J.L.; Kirby, J.; Pioro, E.P.; Pamphlett, R.; Broach, J.; Gerhard, G.; Dunckley, T.L.; Brady, C.B.; Kowall, N.W.; Troncoso, J.C.; Le Ber, I.; Mouzat, K.; Lumbroso, S.; Heiman-Patterson, T.D.; Kamel, F.; Van Den Bosch, L.; Baloh, R.H.; Strom, T.M.; Meitinger, T.; Shatunov, A.; Van Eijk, K.R.; de Carvalho, M.; Kooyman, M.; Middelkoop, B.; Moisse, M.; McLaughlin, R.L.; Van Es, M.A.; Weber, M.; Boylan, K.B.; Van Blitterswijk, M.; Rademakers, R.; Morrison, K.E.; Basak, A.N.; Mora, J.S.; Drory, V.E.; Shaw, P.J.; Turner, M.R.; Talbot, K.; Hardiman, O.; Williams, K.L.; Fifita, J.A.; Nicholson, G.A.; Blair, I.P.; Rouleau, G.A.; Esteban-Pérez, J.; García-Redondo, A.; Al-Chalabi, A.; Rogaeva, E.; Zinman, L.; Ostrow, L.W.; Maragakis, N.J.; Rothstein, J.D.; Simmons, Z.; Cooper-Knock, J.; Brice, A.; Goutman, S.A.; Feldman, E.L.; Gibson, S.B.; Taroni, F.; Ratti, A.; Gellera, C.; Van Damme, P.; Robberecht, W.; Fratta, P.; Sabatelli, M.; Lunetta, C.; Ludolph, A.C.; Andersen, P.M.; Weishaupt, J.H.; Camu, W.; Trojanowski, J.Q.; Van Deerlin, V.M.; Brown, R.H., Jr; van den Berg, L.H.; Veldink, J.H.; Harms, M.B.; Glass, J.D.; Stone, D.J.; Tienari, P.; Silani, V.; Chiò, A.; Shaw, C.E.; Traynor, B.J.; Landers, J.E.; Logullo, F.O.; Simone, I.; Logroscino, G.; Salvi, F.; Bartolomei, I.; Borghero, G.; Murru, M.R.; Costantino, E.; Pani, C.; Puddu, R.; Caredda, C.; Piras, V.; Tranquilli, S.; Cuccu, S.; Corongiu, D.; Melis, M.; Milia, A.; Marrosu, F.; Marrosu, M.G.; Floris, G.; Cannas, A.; Tranquilli, S.; Capasso, M.; Caponnetto, C.; Mancardi, G.; Origone, P.; Mandich, P.; Conforti, F.L.; Cavallaro, S.; Mora, G.; Marinou, K.; Sideri, R.; Penco, S.; Mosca, L.; Lunetta, C.; Pinter, G.L.; Corbo, M.; Riva, N.; Carrera, P.; Volanti, P.; Mandrioli, J.; Fini, N.; Fasano, A.; Tremolizzo, L.; Arosio, A.; Ferrarese, C.; Trojsi, F.; Tedeschi, G.; Monsurrò, M.R.; Piccirillo, G.; Femiano, C.; Ticca, A.; Ortu, E.; La Bella, V.; Spataro, R.; Colletti, T.; Sabatelli, M.; Zollino, M.; Conte, A.; Luigetti, M.; Lattante, S.; Marangi, G.; Santarelli, M.; Petrucci, A.; Pugliatti, M.; Pirisi, A.; Parish, L.D.; Occhineri, P.; Giannini, F.; Battistini, S.; Ricci, C.; Benigni, M.; Cau, T.B.; Loi, D.; Calvo, A.; Moglia, C.; Brunetti, M.; Barberis, M.; Restagno, G.; Casale, F.; Marrali, G.; Fuda, G.; Ossola, I.; Cammarosano, S.; Canosa, A.; Ilardi, A.; Manera, U.; Grassano, M.; Tanel, R.; Pisano, F.; Harms, M.B.; Goldstein, D.B.; Shneider, N.A.; Goutman, S.; Simmons, Z.; Miller, T.M.; Chandran, S.; Pal, S.; Manousakis, G.; Appel, S.H.; Simpson, E.; Wang, L.; Baloh, R.H.; Gibson, S.; Bedlack, R.; Lacomis, D.; Sareen, D.; Sherman, A.; Bruijn, L.; Penny, M.; Allen, A.S.; Appel, S.; Baloh, R.H.; Bedlack, R.S.; Boone, B.E.; Brown, R.; Carulli, J.P.; Chesi, A.; Chung, W.K.; Cirulli, E.T.; Cooper, G.M.; Couthouis, J.; Day-Williams, A.G.; Dion, P.A.; Gibson, S.; Gitler, A.D.; Glass, J.D.; Goldstein, D.B.; Han, Y.; Harms, M.B.; Harris, T.; Hayes, S.D.; Jones, A.L.; Keebler, J.; Krueger, B.J.; Lasseigne, B.N.; Levy, S.E.; Lu, Y-F.; Maniatis, T.; McKenna-Yasek, D.; Miller, T.M.; Myers, R.M.; Petrovski, S.; Pulst, S.M.; Raphael, A.R.; Ravits, J.M.; Ren, Z.; Rouleau, G.A.; Sapp, P.C.; Shneider, N.A.; Simpson, E.; Sims, K.B.; Staropoli, J.F.; Waite, L.L.; Wang, Q.; Wimbish, J.R.; Xin, W.W.; Phatnani, H.; Kwan, J.; Sareen, D.; Broach, J.R.; Simmons, Z.; Arcila-Londono, X.; Lee, E.B.; Van Deerlin, V.M.; Shneider, N.A.; Fraenkel, E.; Ostrow, L.W.; Baas, F.; Zaitlen, N.; Berry, J.D.; Malaspina, A.; Fratta, P.; Cox, G.A.; Thompson, L.M.; Finkbeiner, S.; Dardiotis, E.; Miller, T.M.; Chandran, S.; Pal, S.; Hornstein, E.; MacGowan, D.J.; Heiman-Patterson, T.; Hammell, M.G.; Patsopoulos, N.A.; Dubnau, J.; Nath, A.; Kaye, J.; Finkbeiner, S.; Wyman, S.; LeNail, A.; Lima, L.; Fraenkel, E.; Rothstein, J.D.; Svendsen, C.N.; Thompson, L.M.; Van Eyk, J.; Maragakis, N.J.; Berry, J.D.; Glass, J.D.; Miller, T.M.; Kolb, S.J.; Baloh, R.H.; Cudkowicz, M.; Baxi, E.; Benatar, M.; Taylor, J.P.; Wu, G.; Rampersaud, E.; Wuu, J.; Rademakers, R.; Züchner, S.; Schule, R.; McCauley, J.; Hussain, S.; Cooley, A.; Wallace, M.; Clayman, C.; Barohn, R.; Statland, J.; Ravits, J.; Swenson, A.; Jackson, C.; Trivedi, J.; Khan, S.; Katz, J.; Jenkins, L.; Burns, T.; Gwathmey, K.; Caress, J.; McMillan, C.; Elman, L.; Pioro, E.; Heckmann, J.; So, Y.; Walk, D.; Maiser, S.; Zhang, J.; Silani, V.; Ticozzi, N.; Gellera, C.; Ratti, A.; Taroni, F.; Lauria, G.; Verde, F.; Fogh, I.; Tiloca, C.; Comi, G.P.; Sorarù, G.; Cereda, C.; D’Alfonso, S.; Corrado, L.; De Marchi, F.; Corti, S.; Ceroni, M.; Mazzini, L.; Siciliano, G.; Filosto, M.; Inghilleri, M.; Peverelli, S.; Colombrita, C.; Poletti, B.; Maderna, L.; Del Bo, R.; Gagliardi, S.; Querin, G.; Bertolin, C.; Pensato, V.; Castellotti, B.; Camu, W.; Mouzat, K.; Lumbroso, S.; Corcia, P.; Meininger, V.; Besson, G.; Lagrange, E.; Clavelou, P.; Guy, N.; Couratier, P.; Vourch, P.; Danel, V.; Bernard, E.; Lemasson, G.; Al Kheifat, A.; Al-Chalabi, A.; Andersen, P.; Basak, A.N.; Blair, I.P.; Chio, A.; Cooper-Knock, J.; Corcia, P.; Couratier, P.; de Carvalho, M.; Dekker, A.; Drory, V.; Redondo, A.G.; Gotkine, M.; Hardiman, O.; Hide, W.; Iacoangeli, A.; Glass, J.; Kenna, K.; Kiernan, M.; Kooyman, M.; Landers, J.; McLaughlin, R.; Middelkoop, B.; Mill, J.; Neto, M.M.; Moisse, M.; Pardina, J.M.; Morrison, K.; Newhouse, S.; Pinto, S.; Pulit, S.; Robberecht, W.; Shatunov, A.; Shaw, P.; Shaw, C.; Silani, V.; Sproviero, W.; Tazelaar, G.; Ticozzi, N.; van Damme, P.; van den Berg, L.; van der Spek, R.; van Eijk, K.; van Es, M.; van Rheenen, W.; van Vugt, J.; Veldink, J.; Weber, M.; Williams, K.L.; Zatz, M.; Bauer, D.C.; Twine, N.A. Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97(6), 1268-1283.e6. doi: 10.1016/j.neuron.2018.02.027 PMID: 29566793
  130. Ackerley, S.; Grierson, A.J.; Banner, S.; Perkinton, M.S.; Brownlees, J.; Byers, H.L.; Ward, M.; Thornhill, P.; Hussain, K.; Waby, J.S.; Anderton, B.H.; Cooper, J.D.; Dingwall, C.; Leigh, P.N.; Shaw, C.E.; Miller, C.C.J. p38α stress-activated protein kinase phosphorylates neurofilaments and is associated with neurofilament pathology in amyotrophic lateral sclerosis. Mol. Cell. Neurosci., 2004, 26(2), 354-364. doi: 10.1016/j.mcn.2004.02.009 PMID: 15207859
  131. Brownlees, J.; Yates, A.; Bajaj, N.P.; Davis, D.; Anderton, B.H.; Leigh, P.N. Phosphorylation of neurofilament heavy chain side-arms by stress activated protein kinase-1b/Jun N-terminal kinase-3. J. Cell Sci., 2000, 113(Pt 3), 401-407. doi: 10.1242/jcs.113.3.401
  132. Deshpande, M.; Feiger, Z.; Shilton, A.K.; Luo, C.C.; Silverman, E.; Rodal, A.A. Role of BMP receptor traffic in synaptic growth defects in an ALS model. Mol. Biol. Cell, 2016, 27(19), 2898-2910. doi: 10.1091/mbc.E16-07-0519 PMID: 27535427
  133. Aoki, Y.; Manzano, R.; Lee, Y.; Dafinca, R.; Aoki, M.; Douglas, A.G.L.; Varela, M.A.; Sathyaprakash, C.; Scaber, J.; Barbagallo, P.; Vader, P.; Mäger, I.; Ezzat, K.; Turner, M.R.; Ito, N.; Gasco, S.; Ohbayashi, N.; El Andaloussi, S.; Takeda, S.; Fukuda, M.; Talbot, K.; Wood, M.J.A. C9orf72 and RAB7L1 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia. Brain, 2017, 140(4), 887-897. doi: 10.1093/brain/awx024 PMID: 28334866
  134. Zhen, Y.; Stenmark, H. Cellular functions of Rab GTPases at a glance. J. Cell Sci., 2015, 128(17), jcs.166074. doi: 10.1242/jcs.166074 PMID: 26272922
  135. Lai, C.; Xie, C.; McCormack, S.G.; Chiang, H.C.; Michalak, M.K.; Lin, X.; Chandran, J.; Shim, H.; Shimoji, M.; Cookson, M.R.; Huganir, R.L.; Rothstein, J.D.; Price, D.L.; Wong, P.C.; Martin, L.J.; Zhu, J.J.; Cai, H. Amyotrophic lateral sclerosis 2-deficiency leads to neuronal degeneration in amyotrophic lateral sclerosis through altered AMPA receptor trafficking. J. Neurosci., 2006, 26(45), 11798-11806. doi: 10.1523/JNEUROSCI.2084-06.2006 PMID: 17093100
  136. Ritson, G.P.; Custer, S.K.; Freibaum, B.D.; Guinto, J.B.; Geffel, D.; Moore, J.; Tang, W.; Winton, M.J.; Neumann, M.; Trojanowski, J.Q.; Lee, V.M.Y.; Forman, M.S.; Taylor, J.P. TDP-43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97. J. Neurosci., 2010, 30(22), 7729-7739. doi: 10.1523/JNEUROSCI.5894-09.2010 PMID: 20519548
  137. Gwon, Y.; Maxwell, B.A.; Kolaitis, R.M.; Zhang, P.; Kim, H.J.; Taylor, J.P. Ubiquitination of G3BP1 mediates stress granule disassembly in a context-specific manner. Science, 2021, 372(6549), eabf6548. doi: 10.1126/science.abf6548 PMID: 34739333
  138. Bertolin, C.; Querin, G.; Bozzoni, V.; Martinelli, I.; De Bortoli, M.; Rampazzo, A.; Gellera, C.; Pegoraro, E.; Sorarù, G. NewFIG 4 gene mutations causing aggressive ALS. Eur. J. Neurol., 2018, 25(3), e41-e42. doi: 10.1111/ene.13559 PMID: 29464931
  139. Zhang, K.; Daigle, J.G.; Cunningham, K.M.; Coyne, A.N.; Ruan, K.; Grima, J.C.; Bowen, K.E.; Wadhwa, H.; Yang, P.; Rigo, F.; Taylor, J.P.; Gitler, A.D.; Rothstein, J.D.; Lloyd, T.E. Stress granule assembly disrupts nucleocytoplasmic transport. Cell, 2018, 173(4), 958-971.e17. doi: 10.1016/j.cell.2018.03.025 PMID: 29628143
  140. Ederle, H.; Funk, C.; Abou-Ajram, C.; Hutten, S.; Funk, E.B.E.; Kehlenbach, R.H.; Bailer, S.M.; Dormann, D. Nuclear egress of TDP-43 and FUS occurs independently of Exportin-1/CRM1. Sci. Rep., 2018, 8(1), 7084. doi: 10.1038/s41598-018-25007-5 PMID: 29728564
  141. Ciryam, P.; Antalek, M.; Cid, F.; Tartaglia, G.G.; Dobson, C.M.; Guettsches, A.K.; Eggers, B.; Vorgerd, M.; Marcus, K.; Kley, R.A.; Morimoto, R.I.; Vendruscolo, M.; Weihl, C.C. A metastable subproteome underlies inclusion formation in muscle proteinopathies. Acta Neuropathol. Commun., 2019, 7(1), 197. doi: 10.1186/s40478-019-0853-9 PMID: 31796104
  142. Yerbury, J.J.; Farrawell, N.E.; McAlary, L. Proteome homeostasis dysfunction: A unifying principle in ALS pathogenesis. Trends Neurosci., 2020, 43(5), 274-284. doi: 10.1016/j.tins.2020.03.002 PMID: 32353332
  143. Medinas, D.B.; Valenzuela, V.; Hetz, C. Proteostasis disturbance in amyotrophic lateral sclerosis. Hum. Mol. Genet., 2017, 26(R2), R91-R104. doi: 10.1093/hmg/ddx274 PMID: 28977445
  144. Bendotti, C.; Marino, M.; Cheroni, C.; Fontana, E.; Crippa, V.; Poletti, A.; De Biasi, S. Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: Implication for protein aggregation and immune response. Prog. Neurobiol., 2012, 97(2), 101-126. doi: 10.1016/j.pneurobio.2011.10.001 PMID: 22033150
  145. Ramesh, N.; Pandey, U.B. Autophagy dysregulation in ALS: When protein aggregates get out of hand. Front. Mol. Neurosci., 2017, 10, 263. doi: 10.3389/fnmol.2017.00263 PMID: 28878620
  146. Prasad, A.; Bharathi, V.; Sivalingam, V.; Girdhar, A.; Patel, B.K. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front. Mol. Neurosci., 2019, 12, 25. doi: 10.3389/fnmol.2019.00025 PMID: 30837838
  147. Ivanova, M.I.; Sievers, S.A.; Guenther, E.L.; Johnson, L.M.; Winkler, D.D.; Galaleldeen, A. Aggregation-triggering segments of SOD1 fibril formation support a common pathway for familial and sporadic ALS. Proc. Natl. Acad. Sci., 2014, 111, 197. doi: 10.1073/pnas.1320786110
  148. Deng, H.X.; Zhai, H.; Bigio, E.H.; Yan, J.; Fecto, F.; Ajroud, K.; Mishra, M.; Ajroud-Driss, S.; Heller, S.; Sufit, R.; Siddique, N.; Mugnaini, E.; Siddique, T. FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Ann. Neurol., 2010, 67(6), NA. doi: 10.1002/ana.22051 PMID: 20517935
  149. Pokrishevsky, E.; Grad, L.I.; Yousefi, M.; Wang, J.; Mackenzie, I.R.; Cashman, N.R. Aberrant localization of FUS and TDP43 is associated with misfolding of SOD1 in amyotrophic lateral sclerosis. PLoS One, 2012, 7(4), e35050. doi: 10.1371/journal.pone.0035050 PMID: 22493728
  150. Williams, K.L.; Warraich, S.T.; Yang, S.; Solski, J.A.; Fernando, R.; Rouleau, G.A.; Nicholson, G.A.; Blair, I.P. UBQLN2/ubiquilin 2 mutation and pathology in familial amyotrophic lateral sclerosis. Neurobiol. Aging, 2012, 33(10), 2527.e3-2527.e10. doi: 10.1016/j.neurobiolaging.2012.05.008 PMID: 22717235
  151. Schmitz, A.; Pinheiro, M.J.; Oertig, I.; Maharjan, N.; Saxena, S. Emerging perspectives on dipeptide repeat proteins in C9ORF72 ALS/FTD. Front. Cell. Neurosci., 2021, 15, 637548. doi: 10.3389/fncel.2021.637548 PMID: 33679328
  152. Gafson, A.R.; Barthélemy, N.R.; Bomont, P.; Carare, R.O.; Durham, H.D.; Julien, J.P.; Kuhle, J.; Leppert, D.; Nixon, R.A.; Weller, R.O.; Zetterberg, H.; Matthews, P.M. Neurofilaments: neurobiological foundations for biomarker applications. Brain, 2020, 143(7), 1975-1998. doi: 10.1093/brain/awaa098 PMID: 32408345
  153. Kabashi, E.; Agar, J.N.; Strong, M.J.; Durham, H.D. Impaired proteasome function in sporadic amyotrophic lateral sclerosis. Amyotroph. Lateral Scler., 2012, 13(4), 367-371. doi: 10.3109/17482968.2012.686511 PMID: 22632443
  154. Cheroni, C.; Marino, M.; Tortarolo, M.; Veglianese, P.; De Biasi, S.; Fontana, E.; Zuccarello, L.V.; Maynard, C.J.; Dantuma, N.P.; Bendotti, C. Functional alterations of the ubiquitin-proteasome system in motor neurons of a mouse model of familial amyotrophic lateral sclerosis. Hum. Mol. Genet., 2009, 18(1), 82-96. doi: 10.1093/hmg/ddn319 PMID: 18826962
  155. Kabashi, E.; Agar, J.N.; Taylor, D.M.; Minotti, S.; Durham, H.D. Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis. J. Neurochem., 2004, 89(6), 1325-1335. doi: 10.1111/j.1471-4159.2004.02453.x PMID: 15189335
  156. Kitajima, Y.; Yoshioka, K.; Suzuki, N. The ubiquitin–proteasome system in regulation of the skeletal muscle homeostasis and atrophy: from basic science to disorders. J. Physiol. Sci., 2020, 70(1), 40. doi: 10.1186/s12576-020-00768-9 PMID: 32938372
  157. Barthelme, D.; Jauregui, R.; Sauer, R.T. An ALS disease mutation in Cdc48/p97 impairs 20S proteasome binding and proteolytic communication. Protein Sci., 2015, 24(9), 1521-1527. doi: 10.1002/pro.2740 PMID: 26134898
  158. Le, N.T.T.; Chang, L.; Kovlyagina, I.; Georgiou, P.; Safren, N.; Braunstein, K.E.; Kvarta, M.D.; Van Dyke, A.M.; LeGates, T.A.; Philips, T.; Morrison, B.M.; Thompson, S.M.; Puche, A.C.; Gould, T.D.; Rothstein, J.D.; Wong, P.C.; Monteiro, M.J. Motor neuron disease, TDP-43 pathology, and memory deficits in mice expressing ALS–FTD-linked UBQLN2 mutations. Proc. Natl. Acad. Sci. USA, 2016, 113(47), E7580-E7589. doi: 10.1073/pnas.1608432113 PMID: 27834214
  159. Williams, K.L.; Topp, S.; Yang, S.; Smith, B.; Fifita, J.A.; Warraich, S.T.; Zhang, K.Y.; Farrawell, N.; Vance, C.; Hu, X.; Chesi, A.; Leblond, C.S.; Lee, A.; Rayner, S.L.; Sundaramoorthy, V.; Dobson-Stone, C.; Molloy, M.P.; van Blitterswijk, M.; Dickson, D.W.; Petersen, R.C.; Graff-Radford, N.R.; Boeve, B.F.; Murray, M.E.; Pottier, C.; Don, E.; Winnick, C.; McCann, E.P.; Hogan, A.; Daoud, H.; Levert, A.; Dion, P.A.; Mitsui, J.; Ishiura, H.; Takahashi, Y.; Goto, J.; Kost, J.; Gellera, C.; Gkazi, A.S.; Miller, J.; Stockton, J.; Brooks, W.S.; Boundy, K.; Polak, M.; Muñoz-Blanco, J.L.; Esteban-Pérez, J.; Rábano, A.; Hardiman, O.; Morrison, K.E.; Ticozzi, N.; Silani, V.; de Belleroche, J.; Glass, J.D.; Kwok, J.B.J.; Guillemin, G.J.; Chung, R.S.; Tsuji, S.; Brown, R.H., Jr; García-Redondo, A.; Rademakers, R.; Landers, J.E.; Gitler, A.D.; Rouleau, G.A.; Cole, N.J.; Yerbury, J.J.; Atkin, J.D.; Shaw, C.E.; Nicholson, G.A.; Blair, I.P. CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nat. Commun., 2016, 7(1), 11253. doi: 10.1038/ncomms11253 PMID: 27080313
  160. Ling, S.C.; Polymenidou, M.; Cleveland, D.W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron, 2013, 79(3), 416-438. doi: 10.1016/j.neuron.2013.07.033 PMID: 23931993
  161. Dudman, J.; Qi, X. Stress Granule Dysregulation in Amyotrophic Lateral Sclerosis. Front. Cell. Neurosci., 2020, 14, 598517. doi: 10.3389/fncel.2020.598517 PMID: 33281563
  162. McAlary, L.; Plotkin, S.S.; Yerbury, J.J.; Cashman, N.R. Prion-like propagation of protein misfolding and aggregation in amyotrophic lateral sclerosis. Front. Mol. Neurosci., 2019, 12, 262. doi: 10.3389/fnmol.2019.00262 PMID: 31736708
  163. Nolan, M.; Talbot, K.; Ansorge, O. Pathogenesis of FUS-associated ALS and FTD: insights from rodent models. Acta Neuropathol. Commun., 2016, 4(1), 99. doi: 10.1186/s40478-016-0358-8 PMID: 27600654
  164. Kitamura, A.; Nakayama, Y.; Shibasaki, A.; Taki, A.; Yuno, S.; Takeda, K.; Yahara, M.; Tanabe, N.; Kinjo, M. Interaction of RNA with a C-terminal fragment of the amyotrophic lateral sclerosis-associated TDP43 reduces cytotoxicity. Sci. Rep., 2016, 6(1), 19230. doi: 10.1038/srep19230 PMID: 26757674
  165. Birsa, N.; Bentham, M.P.; Fratta, P. Cytoplasmic functions of TDP-43 and FUS and their role in ALS. Semin. Cell Dev. Biol., 2020, 99, 193-201. doi: 10.1016/j.semcdb.2019.05.023 PMID: 31132467
  166. Ratti, A.; Buratti, E. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J. Neurochem., 2016, 138(Suppl. 1), 95-111. doi: 10.1111/jnc.13625 PMID: 27015757
  167. Balendra, R.; Isaacs, A.M. C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat. Rev. Neurol., 2018, 14(9), 544-558. doi: 10.1038/s41582-018-0047-2 PMID: 30120348
  168. Tang, X.; Toro, A. T G, S.; Gao, J.; Chalk, J.; Oskarsson, B.; Zhang, K. Divergence, convergence, and therapeutic implications: A cell biology perspective of C9ORF72-ALS/FTD. Mol. Neurodegener., 2020, 15(1), 34. doi: 10.1186/s13024-020-00383-7 PMID: 32513219
  169. Ayaki, T.; Ito, H.; Komure, O.; Kamada, M.; Nakamura, M.; Wate, R.; Kusaka, H.; Yamaguchi, Y.; Li, F.; Kawakami, H.; Urushitani, M.; Takahashi, R. Multiple proteinopathies in familial ALS cases with optineurin mutations. J. Neuropathol. Exp. Neurol., 2018, 77(2), 128-138. doi: 10.1093/jnen/nlx109 PMID: 29272468
  170. Münch, C.; O’Brien, J. Bertolotti, A Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc. Natl. Acad. Sci., 2011, 108(9), 3548-3553. doi: 10.1073/pnas.1017275108
  171. Geser, F.; Brandmeir, N.J.; Kwong, L.K.; Martinez-Lage, M.; Elman, L.; McCluskey, L.; Xie, S.X.; Lee, V.M.Y.; Trojanowski, J.Q. Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch. Neurol., 2008, 65(5), 636-641. doi: 10.1001/archneur.65.5.636 PMID: 18474740
  172. Sun, Y.; Curle, A.J.; Haider, A.M.; Balmus, G. The role of DNA damage response in amyotrophic lateral sclerosis. Essays Biochem., 2020, 64(5), 847-861. doi: 10.1042/EBC20200002 PMID: 33078197
  173. Hewitt, G.; Carroll, B.; Sarallah, R.; Correia-Melo, C.; Ogrodnik, M.; Nelson, G.; Otten, E.G.; Manni, D.; Antrobus, R.; Morgan, B.A.; von Zglinicki, T.; Jurk, D.; Seluanov, A.; Gorbunova, V.; Johansen, T.; Passos, J.F.; Korolchuk, V.I. SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. Autophagy, 2016, 12(10), 1917-1930. doi: 10.1080/15548627.2016.1210368 PMID: 27391408
  174. Konopka, A.; Whelan, D.R.; Jamali, M.S.; Perri, E.; Shahheydari, H.; Toth, R.P.; Parakh, S.; Robinson, T.; Cheong, A.; Mehta, P.; Vidal, M.; Ragagnin, A.M.G.; Khizhnyak, I.; Jagaraj, C.J.; Galper, J.; Grima, N.; Deva, A.; Shadfar, S.; Nicholson, G.A.; Yang, S.; Cutts, S.M.; Horejsi, Z.; Bell, T.D.M.; Walker, A.K.; Blair, I.P.; Atkin, J.D. Impaired NHEJ repair in amyotrophic lateral sclerosis is associated with TDP-43 mutations. Mol. Neurodegener., 2020, 15(1), 51. doi: 10.1186/s13024-020-00386-4 PMID: 32907630
  175. Wang, H.; Guo, W.; Mitra, J.; Hegde, P.M.; Vandoorne, T.; Eckelmann, B.J.; Mitra, S.; Tomkinson, A.E.; Van Den Bosch, L.; Hegde, M.L. Mutant FUS causes DNA ligation defects to inhibit oxidative damage repair in Amyotrophic Lateral Sclerosis. Nat. Commun., 2018, 9(1), 3683. doi: 10.1038/s41467-018-06111-6 PMID: 30206235
  176. Kawaguchi, T.; Rollins, M.G.; Moinpour, M.; Morera, A.A.; Ebmeier, C.C.; Old, W.M.; Schwartz, J.C. Changes to the TDP-43 and FUS Interactomes Induced by DNA Damage. J. Proteome Res., 2020, 19(1), 360-370. doi: 10.1021/acs.jproteome.9b00575 PMID: 31693373
  177. Haeusler, A.R.; Donnelly, C.J.; Periz, G.; Simko, E.A.J.; Shaw, P.G.; Kim, M.S.; Maragakis, N.J.; Troncoso, J.C.; Pandey, A.; Sattler, R.; Rothstein, J.D.; Wang, J. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature, 2014, 507(7491), 195-200. doi: 10.1038/nature13124 PMID: 24598541
  178. Farg, M.A.; Konopka, A.; Soo, K.Y.; Ito, D.; Atkin, J.D. The DNA damage response (DDR) is induced by the C9orf72 repeat expansion in amyotrophic lateral sclerosis. Hum. Mol. Genet., 2017, 26(15), 2882-2896. doi: 10.1093/hmg/ddx170 PMID: 28481984
  179. Nihei, Y.; Mori, K.; Werner, G.; Arzberger, T.; Zhou, Q.; Khosravi, B.; Japtok, J.; Hermann, A.; Sommacal, A.; Weber, M.; Kamp, F.; Nuscher, B.; Edbauer, D.; Haass, C. Poly-glycine–alanine exacerbates C9orf72 repeat expansion-mediated DNA damage via sequestration of phosphorylated ATM and loss of nuclear hnRNPA3. Acta Neuropathol., 2020, 139(1), 99-118. doi: 10.1007/s00401-019-02082-0 PMID: 31642962
  180. Kok, J.R.; Palminha, N.M.; Dos Santos Souza, C.; El-Khamisy, S.F.; Ferraiuolo, L. DNA damage as a mechanism of neurodegeneration in ALS and a contributor to astrocyte toxicity. Cell. Mol. Life Sci., 2021, 78(15), 5707-5729. doi: 10.1007/s00018-021-03872-0 PMID: 34173837
  181. Zhang, Y.J.; Guo, L.; Gonzales, P.K.; Gendron, T.F.; Wu, Y.; Jansen-West, K.; O’Raw, A.D.; Pickles, S.R.; Prudencio, M.; Carlomagno, Y.; Gachechiladze, M.A.; Ludwig, C.; Tian, R.; Chew, J.; DeTure, M.; Lin, W.L.; Tong, J.; Daughrity, L.M.; Yue, M.; Song, Y.; Andersen, J.W.; Castanedes-Casey, M.; Kurti, A.; Datta, A.; Antognetti, G.; McCampbell, A.; Rademakers, R.; Oskarsson, B.; Dickson, D.W.; Kampmann, M.; Ward, M.E.; Fryer, J.D.; Link, C.D.; Shorter, J.; Petrucelli, L. Heterochromatin anomalies and double-stranded RNA accumulation underlie C9orf72 poly(PR) toxicity. Science, 2019, 363(6428), eaav2606. doi: 10.1126/science.aav2606 PMID: 30765536
  182. Tanaka, Y.; Chen, Z.J. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal., 2012, 5(214), ra20. doi: 10.1126/scisignal.2002521 PMID: 22394562
  183. Tadic, V.; Prell, T.; Lautenschlaeger, J.; Grosskreutz, J. The ER mitochondria calcium cycle and ER stress response as therapeutic targets in amyotrophic lateral sclerosis. Front. Cell. Neurosci., 2014, 8, 147. doi: 10.3389/fncel.2014.00147 PMID: 24910594
  184. Stoica, R.; Paillusson, S.; Gomez-Suaga, P.; Mitchell, J.C.; Lau, D.H.W.; Gray, E.H.; Sancho, R.M.; Vizcay-Barrena, G.; De Vos, K.J.; Shaw, C.E.; Hanger, D.P.; Noble, W.; Miller, C.C.J. ALS/FTD ‐associated FUS activates GSK ‐3β to disrupt the VAPB – PTPIP 51 interaction and ER –mitochondria associations. EMBO Rep., 2016, 17(9), 1326-1342. doi: 10.15252/embr.201541726 PMID: 27418313
  185. Vicencio, E.; Beltrán, S.; Labrador, L.; Manque, P.; Nassif, M.; Woehlbier, U. Implications of selective autophagy dysfunction for ALS pathology. Cells, 2020, 9(2), 381. doi: 10.3390/cells9020381 PMID: 32046060
  186. Sprenkle, N.T.; Sims, S.G.; Sánchez, C.L.; Meares, G.P. Endoplasmic reticulum stress and inflammation in the central nervous system. Mol. Neurodegener., 2017, 12(1), 42. doi: 10.1186/s13024-017-0183-y PMID: 28545479
  187. Lee, D.Y.; Jeon, G.S.; Sung, J.J. ALS-Linked Mutant SOD1 associates with TIA-1 and alters stress granule dynamics. Neurochem. Res., 2020, 45(12), 2884-2893. doi: 10.1007/s11064-020-03137-5 PMID: 33025330
  188. Matus, S.; Valenzuela, V.; Medinas, D.B.; Hetz, C. Er dysfunction and protein folding stress in ALS. Int. J. Cell Biol., 2013, 2013, 1-12. doi: 10.1155/2013/674751 PMID: 24324498
  189. Perri, E.; Parakh, S.; Atkin, J. Protein Disulphide Isomerases: emerging roles of PDI and ERp57 in the nervous system and as therapeutic targets for ALS. Expert Opin. Ther. Targets, 2017, 21(1), 37-49. doi: 10.1080/14728222.2016.1254197 PMID: 27786579
  190. Wang, L.; Popko, B.; Roos, R.P. The unfolded protein response in familial amyotrophic lateral sclerosis. Hum. Mol. Genet., 2011, 20(5), 1008-1015. doi: 10.1093/hmg/ddq546 PMID: 21159797
  191. Borgese, N.; Iacomino, N.; Colombo, S.F.; Navone, F. The Link between VAPB loss of function and amyotrophic lateral sclerosis. Cells, 2021, 10(8), 1865. doi: 10.3390/cells10081865 PMID: 34440634
  192. Sundaramoorthy, V.; Sultana, J.M.; Atkin, J.D. Golgi fragmentation in amyotrophic lateral sclerosis, an overview of possible triggers and consequences. Front. Neurosci., 2015, 9, 400. doi: 10.3389/fnins.2015.00400 PMID: 26578862
  193. van Dis, V.; Kuijpers, M.; Haasdijk, E.D.; Teuling, E.; Oakes, S.A.; Hoogenraad, C.C.; Jaarsma, D. Golgi fragmentation precedes neuromuscular denervation and is associated with endosome abnormalities in SOD1-ALS mouse motor neurons. Acta Neuropathol. Commun., 2014, 2(1), 38. doi: 10.1186/2051-5960-2-38 PMID: 24708899
  194. Sasaki, S.; Iwata, M. Mitochondrial alterations in the spinal cord of patients with sporadic amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol., 2007, 66(1), 10-16. doi: 10.1097/nen.0b013e31802c396b PMID: 17204932
  195. Singh, T.; Jiao, Y.; Ferrando, L.M.; Yablonska, S.; Li, F.; Horoszko, E.C.; Lacomis, D.; Friedlander, R.M.; Carlisle, D.L. Neuronal mitochondrial dysfunction in sporadic amyotrophic lateral sclerosis is developmentally regulated. Sci. Rep., 2021, 11(1), 18916. doi: 10.1038/s41598-021-97928-7 PMID: 34556702
  196. Thau, N.; Knippenberg, S.; Körner, S.; Rath, K.J.; Dengler, R.; Petri, S. Decreased mRNA expression of PGC-1α and PGC-1α-regulated factors in the SOD1G93A ALS mouse model and in human sporadic ALS. J. Neuropathol. Exp. Neurol., 2012, 71(12), 1064-1074. doi: 10.1097/NEN.0b013e318275df4b PMID: 23147503
  197. Moller, A.; Bauer, C.S.; Cohen, R.N.; Webster, C.P.; De Vos, K.J. Amyotrophic lateral sclerosis-associated mutant SOD1 inhibits anterograde axonal transport of mitochondria by reducing Miro1 levels. Hum. Mol. Genet., 2017, 26(23), 4668-4679. doi: 10.1093/hmg/ddx348 PMID: 28973175
  198. Davis, S.A.; Itaman, S.; Khalid-Janney, C.M.; Sherard, J.A.; Dowell, J.A.; Cairns, N.J.; Gitcho, M.A. TDP-43 interacts with mitochondrial proteins critical for mitophagy and mitochondrial dynamics. Neurosci. Lett., 2018, 678, 8-15. doi: 10.1016/j.neulet.2018.04.053 PMID: 29715546
  199. Chen, J.; Bassot, A.; Giuliani, F.; Simmen, T. Amyotrophic lateral sclerosis (ALS): Stressed by dysfunctional mitochondria-endoplasmic reticulum contacts (MERCs). Cells, 2021, 10(7), 1789. doi: 10.3390/cells10071789 PMID: 34359958
  200. Wang, T.; Liu, H.; Itoh, K.; Oh, S.; Zhao, L.; Murata, D.; Sesaki, H.; Hartung, T.; Na, C.H.; Wang, J. C9orf72 regulates energy homeostasis by stabilizing mitochondrial complex I assembly. Cell Metab., 2021, 33(3), 531-546.e9. doi: 10.1016/j.cmet.2021.01.005 PMID: 33545050
  201. Obrador, E.; Salvador, R.; López-Blanch, R.; Jihad-Jebbar, A.; Vallés, S.L.; Estrela, J.M. Oxidative stress, neuroinflammation and mitochondria in the pathophysiology of amyotrophic lateral sclerosis. Antioxidants, 2020, 9(9), 901. doi: 10.3390/antiox9090901 PMID: 32971909
  202. Smith, E.F.; Shaw, P.J.; De Vos, K.J. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci. Lett., 2019, 710, 132933. doi: 10.1016/j.neulet.2017.06.052 PMID: 28669745
  203. Kazama, M.; Kato, Y.; Kakita, A.; Noguchi, N.; Urano, Y.; Masui, K.; Niida-Kawaguchi, M.; Yamamoto, T.; Watabe, K.; Kitagawa, K.; Shibata, N. Astrocytes release glutamate via cystine/glutamate antiporter upregulated in response to increased oxidative stress related to sporadic amyotrophic lateral sclerosis. Neuropathology, 2020, 40(6), 587-598. doi: 10.1111/neup.12716 PMID: 33305472
  204. Pollari, E.; Goldsteins, G.; Bart, G.; Koistinaho, J.; Giniatullin, R. The role of oxidative stress in degeneration of the neuromuscular junction in amyotrophic lateral sclerosis. Front. Cell. Neurosci., 2014, 8, 131. doi: 10.3389/fncel.2014.00131 PMID: 24860432
  205. Tsang, C.K.; Liu, Y.; Thomas, J.; Zhang, Y.; Zheng, X.F.S. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nat. Commun., 2014, 5(1), 3446. doi: 10.1038/ncomms4446 PMID: 24647101
  206. Goh, C.W.; Lee, I.C.; Sundaram, J.R.; George, S.E.; Yusoff, P.; Brush, M.H.; Sze, N.S.K.; Shenolikar, S. Chronic oxidative stress promotes GADD34-mediated phosphorylation of the TAR DNA-binding protein TDP-43, a modification linked to neurodegeneration. J. Biol. Chem., 2018, 293(1), 163-176. doi: 10.1074/jbc.M117.814111 PMID: 29109149
  207. Jagaraj, C.J.; Parakh, S.; Atkin, J.D. Emerging evidence highlighting the importance of redox dysregulation in the pathogenesis of amyotrophic lateral sclerosis (ALS). Front. Cell. Neurosci., 2021, 14, 581950. doi: 10.3389/fncel.2020.581950 PMID: 33679322
  208. Zala, D.; Hinckelmann, M.V.; Yu, H.; Lyra da Cunha, M.M.; Liot, G.; Cordelières, F.P.; Marco, S.; Saudou, F. Vesicular glycolysis provides on-board energy for fast axonal transport. Cell, 2013, 152(3), 479-491. doi: 10.1016/j.cell.2012.12.029 PMID: 23374344
  209. Wang, T.; Tian, X.; Kim, H.B.; Jang, Y.; Huang, Z.; Na, C.H.; Wang, J. Intracellular energy controls dynamics of stress-induced ribonucleoprotein granules. Nat. Commun., 2022, 13(1), 5584. doi: 10.1038/s41467-022-33079-1 PMID: 36151083
  210. Rodriguez-Rodriguez, P.; Fernandez, E.; Almeida, A.; Bolaños, J.P. Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death Differ., 2012, 19(10), 1582-1589. doi: 10.1038/cdd.2012.33 PMID: 22421967
  211. Vandoorne, T.; De Bock, K.; Van Den Bosch, L. Energy metabolism in ALS: an underappreciated opportunity? Acta Neuropathol., 2018, 135(4), 489-509. doi: 10.1007/s00401-018-1835-x PMID: 29549424
  212. Pennetta, G.; Welte, M.A. Emerging links between lipid droplets and motor neuron diseases. Dev. Cell, 2018, 45(4), 427-432. doi: 10.1016/j.devcel.2018.05.002 PMID: 29787708
  213. Cistaro, A.; Pagani, M.; Montuschi, A.; Calvo, A.; Moglia, C.; Canosa, A.; Restagno, G.; Brunetti, M.; Traynor, B.J.; Nobili, F.; Carrara, G.; Fania, P.; Lopiano, L.; Valentini, M.C.; Chiò, A. The metabolic signature of C9ORF72-related ALS: FDG PET comparison with nonmutated patients. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(5), 844-852. doi: 10.1007/s00259-013-2667-5 PMID: 24445987
  214. Marini, C.; Morbelli, S.; Cistaro, A.; Campi, C.; Caponnetto, C.; Bauckneht, M.; Bellini, A.; Buschiazzo, A.; Calamia, I.; Beltrametti, M.C.; Margotti, S.; Fania, P.; Poggi, I.; Cabona, C.; Capitanio, S.; Piva, R.; Calvo, A.; Moglia, C.; Canosa, A.; Massone, A.; Nobili, F.; Mancardi, G.; Chiò, A.; Piana, M.; Sambuceti, G. Interplay between spinal cord and cerebral cortex metabolism in amyotrophic lateral sclerosis. Brain, 2018, 141(8), 2272-2279. doi: 10.1093/brain/awy152 PMID: 30730551
  215. Bauckneht, M.; Lai, R.; Miceli, A.; Schenone, D.; Cossu, V.; Donegani, M.I.; Raffa, S.; Borra, A.; Marra, S.; Campi, C.; Orengo, A.; Massone, A.M.; Tagliafico, A.; Caponnetto, C.; Cabona, C.; Cistaro, A.; Chiò, A.; Morbelli, S.; Nobili, F.; Sambuceti, G.; Piana, M.; Marini, C. Spinal cord hypermetabolism extends to skeletal muscle in amyotrophic lateral sclerosis: a computational approach to 18F-fluorodeoxyglucose PET/CT images. EJNMMI Res., 2020, 10(1), 23. doi: 10.1186/s13550-020-0607-5 PMID: 32201914
  216. Miyazaki, K.; Masamoto, K.; Morimoto, N.; Kurata, T.; Mimoto, T.; Obata, T.; Kanno, I.; Abe, K. Early and progressive impairment of spinal blood flow-glucose metabolism coupling in motor neuron degeneration of ALS model mice. J. Cereb. Blood Flow Metab., 2012, 32(3), 456-467. doi: 10.1038/jcbfm.2011.155 PMID: 22068226
  217. Dodge, J.C.; Treleaven, C.M.; Fidler, J.A.; Tamsett, T.J.; Bao, C.; Searles, M.; Taksir, T.V.; Misra, K.; Sidman, R.L.; Cheng, S.H.; Shihabuddin, L.S. Metabolic signatures of amyotrophic lateral sclerosis reveal insights into disease pathogenesis. Proc. Natl. Acad. Sci. USA, 2013, 110(26), 10812-10817. doi: 10.1073/pnas.1308421110 PMID: 23754387
  218. Tefera, T.W.; Steyn, F.J.; Ngo, S.T.; Borges, K. CNS glucose metabolism in Amyotrophic Lateral Sclerosis: a therapeutic target? Cell Biosci., 2021, 11(1), 14. doi: 10.1186/s13578-020-00511-2 PMID: 33431046
  219. Steyn, F.J.; Li, R.; Kirk, S.E.; Tefera, T.W.; Xie, T.Y.; Tracey, T.J.; Kelk, D.; Wimberger, E.; Garton, F.C.; Roberts, L.; Chapman, S.E.; Coombes, J.S.; Leevy, W.M.; Ferri, A.; Valle, C.; René, F.; Loeffler, J.P.; McCombe, P.A.; Henderson, R.D.; Ngo, S.T. Altered skeletal muscle glucose-fatty acid flux in amyotrophic lateral sclerosis. Brain Commun., 2020, 2(2), fcaa154. doi: 10.1093/braincomms/fcaa154 PMID: 33241210
  220. Tefera, T.W.; Borges, K. Neuronal glucose metabolism is impaired while astrocytic TCA cycling is unaffected at symptomatic stages in the hSOD1 G93A mouse model of amyotrophic lateral sclerosis. J. Cereb. Blood Flow Metab., 2019, 39(9), 1710-1724. doi: 10.1177/0271678X18764775 PMID: 29553298
  221. Lee, H.; Lee, J.J.; Park, N.Y.; Dubey, S.K.; Kim, T.; Ruan, K.; Lim, S.B.; Park, S.H.; Ha, S.; Kovlyagina, I.; Kim, K.; Kim, S.; Oh, Y.; Kim, H.; Kang, S.U.; Song, M.R.; Lloyd, T.E.; Maragakis, N.J.; Hong, Y.B.; Eoh, H.; Lee, G. Multi-omic analysis of selectively vulnerable motor neuron subtypes implicates altered lipid metabolism in ALS. Nat. Neurosci., 2021, 24(12), 1673-1685. doi: 10.1038/s41593-021-00944-z PMID: 34782793
  222. Palamiuc, L.; Schlagowski, A.; Ngo, S.T.; Vernay, A.; Dirrig-Grosch, S.; Henriques, A.; Boutillier, A.L.; Zoll, J.; Echaniz-Laguna, A.; Loeffler, J.P.; René, F. A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis. EMBO Mol. Med., 2015, 7(5), 526-546. doi: 10.15252/emmm.201404433 PMID: 25820275
  223. Yudkoff, M.; Daikhin, Y.; Horyn, O.; Nissim, I.; Nissim, I. Ketosis and brain handling of glutamate, glutamine, and GABA. Epilepsia, 2008, 49(Suppl. 8), 73-75. doi: 10.1111/j.1528-1167.2008.01841.x PMID: 19049594
  224. Scaricamazza, S.; Salvatori, I.; Giacovazzo, G.; Loeffler, J.P.; Renè, F.; Rosina, M.; Quessada, C.; Proietti, D.; Heil, C.; Rossi, S.; Battistini, S.; Giannini, F.; Volpi, N.; Steyn, F.J.; Ngo, S.T.; Ferraro, E.; Madaro, L.; Coccurello, R.; Valle, C.; Ferri, A. Skeletal-muscle metabolic reprogramming in ALS-SOD1G93A mice predates disease onset and is a promising therapeutic target. iScience, 2020, 23(5), 101087. doi: 10.1016/j.isci.2020.101087 PMID: 32371370
  225. Szelechowski, M.; Amoedo, N.; Obre, E.; Léger, C.; Allard, L.; Bonneu, M.; Claverol, S.; Lacombe, D.; Oliet, S.; Chevallier, S.; Le Masson, G.; Rossignol, R. Metabolic reprogramming in amyotrophic lateral sclerosis. Sci. Rep., 2018, 8(1), 3953. doi: 10.1038/s41598-018-22318-5 PMID: 29500423
  226. Dodge, J.C.; Jensen, E.H.; Yu, J.; Sardi, S.P.; Bialas, A.R.; Taksir, T.V.; Bangari, D.S.; Shihabuddin, L.S. Neutral lipid cacostasis contributes to disease pathogenesis in amyotrophic lateral sclerosis. J. Neurosci., 2020, 40(47), 9137-9147. doi: 10.1523/JNEUROSCI.1388-20.2020 PMID: 33051352
  227. Henriques, A.; Huebecker, M.; Blasco, H.; Keime, C.; Andres, C.R.; Corcia, P.; Priestman, D.A.; Platt, F.M.; Spedding, M.; Loeffler, J.P. Inhibition of β-Glucocerebrosidase activity preserves motor unit integrity in a mouse model of amyotrophic lateral sclerosis. Sci. Rep., 2017, 7(1), 5235. doi: 10.1038/s41598-017-05313-0 PMID: 28701774
  228. Sipione, S.; Monyror, J.; Galleguillos, D.; Steinberg, N.; Kadam, V. Gangliosides in the brain: Physiology, pathophysiology and therapeutic applications. Front. Neurosci., 2020, 14, 572965. doi: 10.3389/fnins.2020.572965 PMID: 33117120
  229. Tracey, T.J.; Steyn, F.J.; Wolvetang, E.J.; Ngo, S.T. Neuronal lipid metabolism: multiple pathways driving functional outcomes in health and disease. Front. Mol. Neurosci., 2018, 11, 10. doi: 10.3389/fnmol.2018.00010 PMID: 29410613
  230. Schmitt, F.; Hussain, G.; Dupuis, L.; Loeffler, J.P.; Henriques, A. A plural role for lipids in motor neuron diseases: Energy, signaling and structure. Front. Cell. Neurosci., 2014, 8, 25. doi: 10.3389/fncel.2014.00025 PMID: 24600344
  231. Mouzat, K.; Molinari, N.; Kantar, J.; Polge, A.; Corcia, P.; Couratier, P.; Clavelou, P.; Juntas-Morales, R.; Pageot, N.; Lobaccaro, J.M.A.; Raoul, C.; Lumbroso, S.; Camu, W. Liver X receptor genes variants modulate ALS phenotype. Mol. Neurobiol., 2018, 55(3), 1959-1965. doi: 10.1007/s12035-017-0453-2 PMID: 28244008
  232. Wills, A.M.; Hubbard, J.; Macklin, E.A.; Glass, J.; Tandan, R.; Simpson, E.P.; Brooks, B.; Gelinas, D.; Mitsumoto, H.; Mozaffar, T.; Hanes, G.P.; Ladha, S.S.; Heiman-Patterson, T.; Katz, J.; Lou, J.S.; Mahoney, K.; Grasso, D.; Lawson, R.; Yu, H.; Cudkowicz, M. Hypercaloric enteral nutrition in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet, 2014, 383(9934), 2065-2072. doi: 10.1016/S0140-6736(14)60222-1 PMID: 24582471
  233. Fang, F.; Ingre, C.; Roos, P.; Kamel, F.; Piehl, F. Risk factors for amyotrophic lateral sclerosis. Clin. Epidemiol., 2015, 7, 181-193. doi: 10.2147/CLEP.S37505 PMID: 25709501
  234. Goutman, S.A.; Feldman, E.L. Voicing the Need for Amyotrophic Lateral Sclerosis Environmental Research. JAMA Neurol., 2020, 77(5), 543-544. doi: 10.1001/jamaneurol.2020.0051 PMID: 32119032
  235. Allis, C.D.; Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet., 2016, 17(8), 487-500. doi: 10.1038/nrg.2016.59 PMID: 27346641
  236. Worpenberg, L.; Paolantoni, C.; Roignant, J-Y. Functional interplay within the epitranscriptome: Reality or fiction? BioEssays, 2021, e2100174. doi: 10.1002/bies.202100174 PMID: 34873719
  237. Appleby-Mallinder, C.; Schaber, E.; Kirby, J.; Shaw, P.J.; Cooper-Knock, J.; Heath, P.R.; Highley, J.R. TDP43 proteinopathy is associated with aberrant DNA methylation in human amyotrophic lateral sclerosis. Neuropathol. Appl. Neurobiol., 2021, 47(1), 61-72. doi: 10.1111/nan.12625 PMID: 32365404
  238. Ozyurt, T.; Gautam, M. Differential epigenetic signature of corticospinal motor neurons in ALS. Brain Sci., 2021, 11(6), 754. doi: 10.3390/brainsci11060754 PMID: 34200232
  239. Xi, Z.; Zhang, M.; Bruni, A.C.; Maletta, R.G.; Colao, R.; Fratta, P.; Polke, J.M.; Sweeney, M.G.; Mudanohwo, E.; Nacmias, B.; Sorbi, S.; Tartaglia, M.C.; Rainero, I.; Rubino, E.; Pinessi, L.; Galimberti, D.; Surace, E.I.; McGoldrick, P.; McKeever, P.; Moreno, D.; Sato, C.; Liang, Y.; Keith, J.; Zinman, L.; Robertson, J.; Rogaeva, E. The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients. Acta Neuropathol., 2015, 129(5), 715-727. doi: 10.1007/s00401-015-1401-8 PMID: 25716178
  240. Wong, M.; Gertz, B.; Chestnut, B.A.; Martin, L.J. Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS. Front. Cell. Neurosci., 2013, 7, 279. doi: 10.3389/fncel.2013.00279 PMID: 24399935
  241. Simpson, C.L.; Lemmens, R.; Miskiewicz, K.; Broom, W.J.; Hansen, V.K.; van Vught, P.W.J.; Landers, J.E.; Sapp, P.; Van Den Bosch, L.; Knight, J.; Neale, B.M.; Turner, M.R.; Veldink, J.H.; Ophoff, R.A.; Tripathi, V.B.; Beleza, A.; Shah, M.N.; Proitsi, P.; Van Hoecke, A.; Carmeliet, P.; Horvitz, H.R.; Leigh, P.N.; Shaw, C.E.; van den Berg, L.H.; Sham, P.C.; Powell, J.F.; Verstreken, P.; Brown, R.H., Jr; Robberecht, W.; Al-Chalabi, A. Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum. Mol. Genet., 2009, 18(3), 472-481. doi: 10.1093/hmg/ddn375 PMID: 18996918
  242. Taes, I.; Timmers, M.; Hersmus, N.; Bento-Abreu, A.; Van Den Bosch, L.; Van Damme, P.; Auwerx, J.; Robberecht, W. Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS. Hum. Mol. Genet., 2013, 22(9), 1783-1790. doi: 10.1093/hmg/ddt028 PMID: 23364049
  243. Chen, S.; Zhang, X.J.; Li, L.X.; Wang, Y.; Zhong, R.J.; Le, W. Histone deacetylase 6 delays motor neuron degeneration by ameliorating the autophagic flux defect in a transgenic mouse model of amyotrophic lateral sclerosis. Neurosci. Bull., 2015, 31(4), 459-468. doi: 10.1007/s12264-015-1539-3 PMID: 26164555
  244. Pigna, E.; Simonazzi, E.; Sanna, K.; Bernadzki, K.M.; Proszynski, T.; Heil, C.; Palacios, D.; Adamo, S.; Moresi, V. Histone deacetylase 4 protects from denervation and skeletal muscle atrophy in a murine model of amyotrophic lateral sclerosis. EBioMedicine, 2019, 40, 717-732. doi: 10.1016/j.ebiom.2019.01.038 PMID: 30713114
  245. Tibshirani, M.; Tradewell, M.L.; Mattina, K.R.; Minotti, S.; Yang, W.; Zhou, H.; Strong, M.J.; Hayward, L.J.; Durham, H.D. Cytoplasmic sequestration of FUS/TLS associated with ALS alters histone marks through loss of nuclear protein arginine methyltransferase 1. Hum. Mol. Genet., 2015, 24(3), 773-786. doi: 10.1093/hmg/ddu494 PMID: 25274782
  246. Masala, A.; Sanna, S.; Esposito, S.; Rassu, M.; Galioto, M.; Zinellu, A.; Carru, C.; Carrì, M.T.; Iaccarino, C.; Crosio, C. Epigenetic changes associated with the expression of amyotrophic lateral sclerosis (ALS) causing genes. Neuroscience, 2018, 390, 1-11. doi: 10.1016/j.neuroscience.2018.08.009 PMID: 30134203
  247. Vijayakumar, U.G.; Milla, V.; Cynthia Stafford, M.Y.; Bjourson, A.J.; Duddy, W.; Duguez, S.M.R. A systematic review of suggested molecular strata, biomarkers and their tissue sources in ALS. Front. Neurol., 2019, 10, 400. doi: 10.3389/fneur.2019.00400 PMID: 31139131
  248. Foggin, S.; Mesquita-Ribeiro, R.; Dajas-Bailador, F.; Layfield, R. Biological significance of microRNA biomarkers in ALS-innocent bystanders or disease culprits? Front. Neurol., 2019, 10, 578. doi: 10.3389/fneur.2019.00578 PMID: 31244752
  249. Ravnik-Glavač, M.; Glavač, D. Circulating RNAs as potential Biomarkers in amyotrophic lateral sclerosis. Int. J. Mol. Sci., 2020, 21(5), 1714. doi: 10.3390/ijms21051714 PMID: 32138249
  250. Angelova, M.T.; Dimitrova, D.G.; Dinges, N.; Lence, T.; Worpenberg, L.; Carré, C.; Roignant, J.Y. The emerging field of epitranscriptomics in neurodevelopmental and neuronal disorders. Front. Bioeng. Biotechnol., 2018, 6, 46. doi: 10.3389/fbioe.2018.00046 PMID: 29707539
  251. Hosaka, T.; Tsuji, H.; Tamaoka, A. Biomolecular modifications linked to oxidative stress in amyotrophic lateral sclerosis: determining promising biomarkers related to oxidative stress. Processes (Basel), 2021, 9(9), 1667. doi: 10.3390/pr9091667
  252. Hideyama, T.; Yamashita, T.; Aizawa, H.; Tsuji, S.; Kakita, A.; Takahashi, H.; Kwak, S. Profound downregulation of the RNA editing enzyme ADAR2 in ALS spinal motor neurons. Neurobiol. Dis., 2012, 45(3), 1121-1128. doi: 10.1016/j.nbd.2011.12.033 PMID: 22226999
  253. Sasaki, S.; Yamashita, T.; Shin, K. Autophagy in spinal motor neurons of conditional ADAR2-knockout mice: An implication for a role of calcium in increased autophagy flux in ALS. Neurosci. Lett., 2015, 598, 79-84. doi: 10.1016/j.neulet.2015.05.025 PMID: 25980994
  254. Moore, S.; Alsop, E.; Lorenzini, I.; Starr, A.; Rabichow, B.E.; Mendez, E.; Levy, J.L.; Burciu, C.; Reiman, R.; Chew, J.; Belzil, V.V.; W. Dickson, D. Robertson, J.; Staats, K.A.; Ichida, J.K.; Petrucelli, L.; Van Keuren-Jensen, K.; Sattler, R. ADAR2 mislocalization and widespread RNA editing aberrations in C9orf72-mediated ALS/FTD. Acta Neuropathol., 2019, 138(1), 49-65. doi: 10.1007/s00401-019-01999-w PMID: 30945056
  255. Quoibion, A. m6A RNA Methylation and TARDBP, a Gene Implicated in Amyotrophic Lateral Sclerosis. McGill University: Montréal, 2017. Thesis.
  256. Kim, H.J.; Kim, N.C.; Wang, Y.D.; Scarborough, E.A.; Moore, J.; Diaz, Z.; MacLea, K.S.; Freibaum, B.; Li, S.; Molliex, A.; Kanagaraj, A.P.; Carter, R.; Boylan, K.B.; Wojtas, A.M.; Rademakers, R.; Pinkus, J.L.; Greenberg, S.A.; Trojanowski, J.Q.; Traynor, B.J.; Smith, B.N.; Topp, S.; Gkazi, A.S.; Miller, J.; Shaw, C.E.; Kottlors, M.; Kirschner, J.; Pestronk, A.; Li, Y.R.; Ford, A.F.; Gitler, A.D.; Benatar, M.; King, O.D.; Kimonis, V.E.; Ross, E.D.; Weihl, C.C.; Shorter, J.; Taylor, J.P. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature, 2013, 495(7442), 467-473. doi: 10.1038/nature11922 PMID: 23455423
  257. Mitropoulos, K.; Merkouri, P.E.; Xiromerisiou, G.; Balasopoulou, A.; Charalampidou, K.; Galani, V.; Zafeiri, K.V.; Dardiotis, E.; Ralli, S.; Deretzi, G.; John, A.; Kydonopoulou, K.; Papadopoulou, E.; di Pardo, A.; Akcimen, F.; Loizedda, A.; Dobričić, V.; Novaković, I.; Kostić, V.S.; Mizzi, C.; Peters, B.A.; Basak, N.; Orrù, S.; Kiskinis, E.; Cooper, D.N.; Gerou, S.; Drmanac, R.; Bartsakoulia, M.; Tsermpini, E.E.; Hadjigeorgiou, G.M.; Ali, B.R.; Katsila, T.; Patrinos, G.P. Genomic variants in the FTO gene are associated with sporadic amyotrophic lateral sclerosis in Greek patients. Hum. Genomics, 2017, 11(1), 30. doi: 10.1186/s40246-017-0126-2 PMID: 29216901
  258. Blanco, S.; Dietmann, S.; Flores, J.V.; Hussain, S.; Kutter, C.; Humphreys, P.; Lukk, M.; Lombard, P.; Treps, L.; Popis, M.; Kellner, S.; Hölter, S.M.; Garrett, L.; Wurst, W.; Becker, L.; Klopstock, T.; Fuchs, H.; Gailus-Durner, V.; Hrabĕ de Angelis, M.; Káradóttir, R.T.; Helm, M.; Ule, J.; Gleeson, J.G.; Odom, D.T.; Frye, M. Aberrant methylation of t RNA s links cellular stress to neuro‐developmental disorders. EMBO J., 2014, 33(18), 2020-2039. doi: 10.15252/embj.201489282 PMID: 25063673
  259. Hartung, T.; Rhein, M.; Kalmbach, N.; Thau-Habermann, N.; Naujock, M.; Müschen, L.; Frieling, H.; Sterneckert, J.; Hermann, A.; Wegner, F.; Petri, S. Methylation and expression of mutant FUS in motor neurons differentiated from induced pluripotent stem cells from ALS patients. Front. Cell Dev. Biol., 2021, 9, 774751. doi: 10.3389/fcell.2021.774751 PMID: 34869374
  260. Hogg, M.C.; Rayner, M.; Susdalzew, S.; Monsefi, N.; Crivello, M.; Woods, I.; Resler, A.; Blackbourn, L.; Fabbrizio, P.; Trolese, M.C.; Nardo, G.; Bendotti, C.; van den Berg, L.H.; van Es, M.A.; Prehn, J.H.M. 5′ValCAC tRNA fragment generated as part of a protective angiogenin response provides prognostic value in amyotrophic lateral sclerosis. Brain Commun., 2020, 2(2), fcaa138. doi: 10.1093/braincomms/fcaa138 PMID: 33543130
  261. Taylor, R.; Hamid, F.; Fielding, T.; Gordon, P.M.; Maloney, M.; Makeyev, E.V.; Houart, C. Prematurely terminated intron-retaining mRNAs invade axons in SFPQ null-driven neurodegeneration and are a hallmark of ALS. Nat. Commun., 2022, 13(1), 6994. doi: 10.1038/s41467-022-34331-4 PMID: 36414621
  262. Mead, R.J.; Shan, N.; Reiser, H.J.; Marshall, F.; Shaw, P.J. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. Nat. Rev. Drug Discov., 2023, 22(3), 185-212. doi: 10.1038/s41573-022-00612-2 PMID: 36543887
  263. Corcia, P.; Beltran, S.; Bakkouche, S.E.; Couratier, P. Therapeutic news in ALS. Rev. Neurol., 2021, 177(5), 544-549. doi: 10.1016/j.neurol.2020.12.003
  264. Ketabforoush, A.H.M.E.; Chegini, R.; Barati, S.; Tahmasebi, F.; Moghisseh, B.; Joghataei, M.T.; Faghihi, F.; Azedi, F. Masitinib: The promising actor in the next season of the amyotrophic lateral sclerosis treatment series. Biomed. Pharmacother., 2023, 160, 114378. doi: 10.1016/j.biopha.2023.114378 PMID: 36774721
  265. Eisen, A.; Kim, S.; Pant, B. Amyotrophic lateral sclerosis (ALS): A phylogenetic disease of the corticomotoneuron? Muscle Nerve, 1992, 15(2), 219-224. doi: 10.1002/mus.880150215 PMID: 1549143
  266. Marques, C.; Burg, T.; Scekic-Zahirovic, J.; Fischer, M.; Rouaux, C. Upper and lower motor neuron degenerations are somatotopically related and temporally ordered in the Sod1 mouse model of amyotrophic lateral sclerosis. Brain Sci., 2021, 11(3), 369. doi: 10.3390/brainsci11030369 PMID: 33805792
  267. Lu, S.; Hu, J.; Arogundade, O.A.; Goginashvili, A.; Vazquez-Sanchez, S.; Diedrich, J.K.; Gu, J.; Blum, J.; Oung, S.; Ye, Q.; Yu, H.; Ravits, J.; Liu, C.; Yates, J.R., III; Cleveland, D.W. Heat-shock chaperone HSPB1 regulates cytoplasmic TDP-43 phase separation and liquid-to-gel transition. Nat. Cell Biol., 2022, 24(9), 1378-1393. doi: 10.1038/s41556-022-00988-8 PMID: 36075972
  268. Pradhan, J.; Noakes, P.G.; Bellingham, M.C. The role of altered BDNF/TrkB signaling in amyotrophic lateral sclerosis. Front. Cell. Neurosci., 2019, 13, 368. doi: 10.3389/fncel.2019.00368 PMID: 31456666
  269. Paganoni, S.; Berry, J.D.; Quintana, M.; Macklin, E.; Saville, B.R.; Detry, M.A.; Chase, M.; Sherman, A.V.; Yu, H.; Drake, K.; Andrews, J.; Shefner, J.; Chibnik, L.B.; Vestrucci, M.; Cudkowicz, M.E. Adaptive platform trials to transform amyotrophic lateral sclerosis therapy development. Ann. Neurol., 2022, 91(2), 165-175. doi: 10.1002/ana.26285 PMID: 34935174
  270. Jacquez, G.M.; Sabel, C.E.; Shi, C. Genetic GIScience: toward a place-based synthesis of the genome, exposome, and behavome. Ann. Assoc. Am. Geogr., 2015, 105(3), 454-472. doi: 10.1080/00045608.2015.1018777 PMID: 26339073
  271. Fidler, J.A.; Treleaven, C.M.; Frakes, A.; Tamsett, T.J.; McCrate, M.; Cheng, S.H.; Shihabuddin, L.S.; Kaspar, B.K.; Dodge, J.C. Disease progression in a mouse model of amyotrophic lateral sclerosis: the influence of chronic stress and corticosterone. FASEB J., 2011, 25(12), 4369-4377. doi: 10.1096/fj.11-190819 PMID: 21876068
  272. Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775. doi: 10.1038/nrn2214 PMID: 17882254
  273. Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811. doi: 10.1089/ars.2009.3074 PMID: 20446769
  274. Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J. Vitagenes, cellular stress response, and acetylcarnitine: Relevance to hormesis. Biofactors, 2009, 35(2), 146-160. doi: 10.1002/biof.22 PMID: 19449442
  275. Anzilotti, S.; Brancaccio, P.; Simeone, G.; Valsecchi, V.; Vinciguerra, A.; Secondo, A.; Petrozziello, T.; Guida, N.; Sirabella, R.; Cuomo, O.; Cepparulo, P.; Herchuelz, A.; Amoroso, S.; Di Renzo, G.; Annunziato, L.; Pignataro, G. Preconditioning, induced by sub-toxic dose of the neurotoxin L-BMAA, delays ALS progression in mice and prevents Na+/Ca2+ exchanger 3 downregulation. Cell Death Dis., 2018, 9(2), 206. doi: 10.1038/s41419-017-0227-9 PMID: 29434186
  276. Siracusa, R.; Scuto, M.; Fusco, R.; Trovato, A.; Ontario, M.L.; Crea, R.; Di Paola, R.; Cuzzocrea, S.; Calabrese, V. Anti-inflammatory and anti-oxidant activity of Hidrox® in rotenone-induced Parkinson’s disease in mice. Antioxidants, 2020, 9(9), 824. doi: 10.3390/antiox9090824 PMID: 32899274
  277. Kim, D.; Nguyen, M.D.; Dobbin, M.M.; Fischer, A.; Sananbenesi, F.; Rodgers, J.T.; Delalle, I.; Baur, J.A.; Sui, G.; Armour, S.M.; Puigserver, P.; Sinclair, D.A.; Tsai, L.H. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J., 2007, 26(13), 3169-3179. doi: 10.1038/sj.emboj.7601758 PMID: 17581637
  278. Calabrese, E.J.; Calabrese, V.; Giordano, J. Brain health promotion: Tactics within a strategic approach based upon valid, yet evolving scientific evidence. Mech. Ageing Dev., 2022, 201, 111605. doi: 10.1016/j.mad.2021.111605 PMID: 34798081
  279. Bauer, P.O. Methylation of C9orf72 expansion reduces RNA foci formation and dipeptide-repeat proteins expression in cells. Neurosci. Lett., 2016, 612, 204-209. doi: 10.1016/j.neulet.2015.12.018 PMID: 26690922
  280. Lam, F.; Chu, J.; Choi, J.S.; Cao, C.; Hitchens, T.K.; Silverman, S.K. Epigenetic MRI: noninvasive imaging of DNA methylation in the brain. BioRxiv, 2021, 2021.08.20.457113. doi: 10.1101/2021.08.20.457113
  281. Choi, S.Y.; Lee, J.H.; Chung, A.Y.; Jo, Y.; Shin, J.; Park, H.C.; Kim, H.; Lopez-Gonzalez, R.; Ryu, J.R.; Sun, W. Prevention of mitochondrial impairment by inhibition of protein phosphatase 1 activity in amyotrophic lateral sclerosis. Cell Death Dis., 2020, 11(10), 888. doi: 10.1038/s41419-020-03102-8 PMID: 33087694
  282. Paganoni, S.; Hendrix, S.; Dickson, S.P.; Knowlton, N.; Berry, J.D.; Elliott, M.A. Effect of sodium phenylbutyrate/taurursodiol on tracheostomy/ventilation-free survival and hospitalisation in amyotrophic lateral sclerosis: Long-term results from the Centaur trial. J Neurol. Neurosurg. Amp. Psychiatry, 2022, 93, 871. doi: 10.1136/jnnp-2022-329024
  283. Klingl, Y.E.; Pakravan, D.; Van Den, B.L. Opportunities for histone deacetylase inhibition in amyotrophic lateral sclerosis. Br. J. Pharmacol., 2020, 178(6), 1353-1372. doi: 10.1111/bph.15217
  284. Xia, Z.; Tang, M.; Ma, J.; Zhang, H.; Gimple, R.C.; Prager, B.C.; Tang, H.; Sun, C.; Liu, F.; Lin, P.; Mei, Y.; Du, R.; Rich, J.N.; Xie, Q. Epitranscriptomic editing of the RNA N6-methyladenosine modification by dCasRx conjugated methyltransferase and demethylase. Nucleic Acids Res., 2021, 49(13), 7361-7374. doi: 10.1093/nar/gkab517 PMID: 34181729
  285. Batra, R.; Nelles, D.A.; Pirie, E.; Blue, S.M.; Marina, R.J.; Wang, H.; Chaim, I.A.; Thomas, J.D.; Zhang, N.; Nguyen, V.; Aigner, S.; Markmiller, S.; Xia, G.; Corbett, K.D.; Swanson, M.S.; Yeo, G.W. Elimination of toxic microsatellite repeat expansion RNA by RNA-targeting Cas9. Cell, 2017, 170(5), 899-912.e10. doi: 10.1016/j.cell.2017.07.010 PMID: 28803727
  286. Keogh, M.J.; Wei, W.; Aryaman, J.; Wilson, I.; Talbot, K.; Turner, M.R.; McKenzie, C.A.; Troakes, C.; Attems, J.; Smith, C.; Al Sarraj, S.; Morris, C.M.; Ansorge, O.; Pickering-Brown, S.; Jones, N.; Ironside, J.W.; Chinnery, P.F. Oligogenic genetic variation of neurodegenerative disease genes in 980 postmortem human brains. J. Neurol. Neurosurg. Psychiatry, 2018, 89(8), 813-816. doi: 10.1136/jnnp-2017-317234 PMID: 29332010
  287. Chiò, A.; Mazzini, L.; D’Alfonso, S.; Corrado, L.; Canosa, A.; Moglia, C.; Manera, U.; Bersano, E.; Brunetti, M.; Barberis, M.; Veldink, J.H.; van den Berg, L.H.; Pearce, N.; Sproviero, W.; McLaughlin, R.; Vajda, A.; Hardiman, O.; Rooney, J.; Mora, G.; Calvo, A.; Al-Chalabi, A. The multistep hypothesis of ALS revisited. Neurology, 2018, 91(7), e635-e642. doi: 10.1212/WNL.0000000000005996 PMID: 30045958

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers