Boltzmanns Theorem Revisited: Inaccurate Time-to-Action Clocks in Affective Disorders
- Authors: Ferber S.1, Weller A.1, Soreq H.2
-
Affiliations:
- Psychology Department and The Gonda Brain Research Center, Bar-Ilan University
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem
- Issue: Vol 22, No 11 (2024)
- Pages: 1762-1777
- Section: Neurology
- URL: https://rjraap.com/1570-159X/article/view/644365
- DOI: https://doi.org/10.2174/1570159X22666240315100326
- ID: 644365
Cite item
Full Text
Abstract
Timely goal-oriented behavior is essential for survival and is shaped by experience. In this paper, a multileveled approach was employed, ranging from the polymorphic level through thermodynamic molecular, cellular, intracellular, extracellular, non-neuronal organelles and electrophysiological waves, attesting for signal variability. By adopting Boltzmanns theorem as a thermodynamic conceptualization of brain work, we found deviations from excitation-inhibition balance and wave decoupling, leading to wider signal variability in affective disorders compared to healthy individuals. Recent evidence shows that the overriding on-off design of clock genes paces the accuracy of the multilevel parallel sequencing clocks and that the accuracy of the time-to-action is more crucial for healthy behavioral reactions than their rapidity or delays. In affective disorders, the multilevel clocks run free and lack accuracy of responsivity to environmentally triggered time-to-action as the clock genes are not able to rescue mitochondria organelles from oxidative stress to produce environmentally-triggered energy that is required for the accurate time-to-action and maintenance of the thermodynamic equilibrium. This maintenance, in turn, is dependent on clock gene transcription of electron transporters, leading to higher signal variability and less signal accuracy in affective disorders. From a Boltzmannian thermodynamic and energy-production perspective, the option of reversibility to a healthier time-toaction, reducing entropy is implied. We employed logic gates to show deviations from healthy levelwise communication and the reversed conditions through compensations implying the role of nonneural cells and the extracellular matrix in return to excitation-inhibition balance and accuracy in the time-to-action signaling.
About the authors
Sari Ferber
Psychology Department and The Gonda Brain Research Center, Bar-Ilan University
Author for correspondence.
Email: info@benthamscience.net
Aron Weller
Psychology Department and The Gonda Brain Research Center, Bar-Ilan University
Email: info@benthamscience.net
Hermona Soreq
The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem
Email: info@benthamscience.net
References
- Ferber, S.G. The concept of coregulation between neurobehavioral subsystems: The logic interplay between excitatory and inhibitory ends. Behav. Brain Sci., 2008, 31(3), 337-338. doi: 10.1017/S0140525X08004123
- Darwin, C. On the Origin of Species; PF Collier & Son: New York, 1909.
- Dunning, D.; Perie, M.; Story, A.L. Self-serving prototypes of social categories. J. Pers. Soc. Psychol., 1991, 61(6), 957-968. doi: 10.1037/0022-3514.61.6.957 PMID: 1774633
- Womelsdorf, T.; Valiante, T.A.; Sahin, N.T.; Miller, K.J.; Tiesinga, P. Dynamic circuit motifs underlying rhythmic gain control, gating and integration. Nat. Neurosci., 2014, 17(8), 1031-1039. doi: 10.1038/nn.3764 PMID: 25065440
- Williams, G.; Aldrich, A.; Theodorou, E.A. Model predictive path integral control: From theory to parallel computation. J. Guid. Control Dyn., 2017, 40(2), 344-357. doi: 10.2514/1.G001921
- Goodman, Z.T.; Bainter, S.A.; Kornfeld, S.; Chang, C.; Nomi, J.S.; Uddin, L.Q. Whole-brain functional dynamics track depressive symptom severity. Cereb. Cortex, 2021, 31(11), 4867-4876. doi: 10.1093/cercor/bhab047 PMID: 33774654
- Akiskal, H.S. Validating hard and soft phenotypes within the bipolar spectrum: continuity or discontinuity? J. Affect. Disord., 2003, 73(1-2), 1-5. doi: 10.1016/s0165-0327(02)00390-7 PMID: 12507732
- Goldstein, S.; Lebowitz, J.L. On the (Boltzmann) entropy of non-equilibrium systems. Physica D, 2004, 193(1-4), 53-66. doi: 10.1016/j.physd.2004.01.008
- Maxwell, J.C. A dynamical theory of the electromagnetic field. Proc. R. Soc. Lond., 1865, 155, 459-512.
- Gibbs, J. Elementary principles in statistical mechanics. In: Developed with Special Reference to the Rational Foundation of Thermodynamics; C. Scribners sons, 1902.
- Collell, G.; Fauquet, J. Brain activity and cognition: A connection from thermodynamics and information theory. Front. Psychol., 2015, 6, 818. doi: 10.3389/fpsyg.2015.00818 PMID: 26136709
- Ferber, S.G.; Weller, A.; Soreq, H. Control systems theory revisited: New insights on the brain clocks of time-to-action. Front. Neurosci., 2023, 17, 1171765. doi: 10.3389/fnins.2023.1171765 PMID: 37378011
- Cassano, G.B.; Rucci, P.; Frank, E.; Fagiolini, A.; DellOsso, L.; Shear, M.K.; Kupfer, D.J. The mood spectrum in unipolar and bipolar disorder: Arguments for a unitary approach. Am. J. Psychiatry, 2004, 161(7), 1264-1269. doi: 10.1176/appi.ajp.161.7.1264 PMID: 15229060
- Ferber, S.G.; Als, H.; McAnulty, G.; Klinger, G.; Weller, A. Multi-level hypothalamic neuromodulation of self-regulation and cognition in preterm infants: Towards a control systems model. Compr. Psychoneuroendocrinol., 2022, 9, 100109. doi: 10.1016/j.cpnec.2021.100109 PMID: 35755927
- Lee, S.Y.; Chen, S.L.; Chang, Y.H.; Chen, S.H.; Chu, C.H.; Huang, S.Y.; Tzeng, N.S.; Wang, C.L.; Wang, L.J.; Lee, I.H.; Yeh, T.L.; Lu, R-B.; Yang, Y.K.; Lu, R.B. Genotype variant associated with add-on memantine in bipolar II disorder. Int. J. Neuropsychopharmacol., 2014, 17(2), 189-197. doi: 10.1017/S1461145713000825 PMID: 24103632
- Kennaway, D.J. Review: Clock genes at the heart of depression. J. Psychopharmacol., 2010, 24(S2), 5-14. doi: 10.1177/1359786810372980 PMID: 20663803
- Watson, D.; Wiese, D.; Vaidya, J.; Tellegen, A. The two general activation systems of affect: Structural findings, evolutionary considerations, and psychobiological evidence. J. Pers. Soc. Psychol., 1999, 76(5), 820-838. doi: 10.1037/0022-3514.76.5.820
- Teicher, M.H.; Glod, C.A.; Magnus, E.; Harper, D.; Benson, G.; Krueger, K.; McGreenery, C.E. Circadian rest-activity disturbances in seasonal affective disorder. Arch. Gen. Psychiatry, 1997, 54(2), 124-130. doi: 10.1001/archpsyc.1997.01830140034007 PMID: 9040280
- Souêtre, E.; Salvati, E.; Belugou, J.L.; Pringuey, D.; Candito, M.; Krebs, B.; Ardisson, J.L.; Darcourt, G. Circadian rhythms in depression and recovery: Evidence for blunted amplitude as the main chronobiological abnormality. Psychiatry Res., 1989, 28(3), 263-278. doi: 10.1016/0165-1781(89)90207-2 PMID: 2762432
- Sjöholm, L.K.; Backlund, L.; Cheteh, E.H.; Ek, I.R.; Frisén, L.; Schalling, M.; Ösby, U.; Lavebratt, C.; Nikamo, P. CRY2 is associated with rapid cycling in bipolar disorder patients. PLoS One, 2010, 5(9), e12632. doi: 10.1371/journal.pone.0012632 PMID: 20856823
- Kelley, A.E.; Baldo, B.A.; Pratt, W.E. A proposed hypothalamic-thalamic-striatal axis for the integration of energy balance, arousal, and food reward. J. Comp. Neurol., 2005, 493(1), 72-85. doi: 10.1002/cne.20769 PMID: 16255002
- Hansen, J.M.; Jones, D.P.; Harris, C. The redox theory of development. Antioxid. Redox Signal., 2020, 32(10), 715-740. doi: 10.1089/ars.2019.7976 PMID: 31891515
- Artioli, P.; Lorenzi, C.; Pirovano, A.; Serretti, A.; Benedetti, F.; Catalano, M.; Smeraldi, E. How do genes exert their role? Period 3 gene variants and possible influences on mood disorder phenotypes. Eur. Neuropsychopharmacol., 2007, 17(9), 587-594. doi: 10.1016/j.euroneuro.2007.03.004 PMID: 17512705
- Koefoed, P.; Andreassen, O.A.; Bennike, B.; Dam, H.; Djurovic, S.; Hansen, T.; Jorgensen, M.B.; Kessing, L.V.; Melle, I.; Møller, G.L; Mors, O.; Werge, T.; Mellerup, E. Combinations of SNPs related to signal transduction in bipolar disorder. PLoS One, 2011, 6(8), e23812. doi: 10.1371/journal.pone.0023812 PMID: 21897858
- Abdolahi, S.; Zare-Chahoki, A.; Noorbakhsh, F.; Gorji, A. A review of molecular interplay between neurotrophins and MiRNAs in neuropsychological disorders. Mol. Neurobiol., 2022, 59, 6260-6280.
- Winek, K.; Soreq, H.; Meisel, A. Regulators of cholinergic signaling in disorders of the central nervous system. J. Neurochem., 2021, 158(6), 1425-1438. doi: 10.1111/jnc.15332 PMID: 33638173
- Winek, K.; Lobentanzer, S.; Nadorp, B.; Dubnov, S.; Dames, C.; Jagdmann, S.; Moshitzky, G.; Hotter, B.; Meisel, C.; Greenberg, D.S.; Shifman, S.; Klein, J.; Shenhar-Tsarfaty, S.; Meisel, A.; Soreq, H. Transfer RNA fragments replace microRNA regulators of the cholinergic poststroke immune blockade. Proc. Natl. Acad. Sci., 2020, 117(51), 32606-32616. doi: 10.1073/pnas.2013542117 PMID: 33288717
- Kiltschewskij, D.J.; Cairns, M.J. Transcriptome-wide analysis of interplay between mRNA stability, translation and small RNAs in response to neuronal membrane depolarization. Int. J. Mol. Sci., 2020, 21(19), 7086. doi: 10.3390/ijms21197086 PMID: 32992958
- Hannestad, J.O.; Cosgrove, K.P.; DellaGioia, N.F.; Perkins, E.; Bois, F.; Bhagwagar, Z.; Seibyl, J.P.; McClure-Begley, T.D.; Picciotto, M.R.; Esterlis, I. Changes in the cholinergic system between bipolar depression and euthymia as measured with 123I5IA single photon emission computed tomography. Biol. Psychiatry, 2013, 74(10), 768-776. doi: 10.1016/j.biopsych.2013.04.004 PMID: 23773793
- Fang, H.; Tu, S.; Sheng, J.; Shao, A. Depression in sleep disturbance: A review on a bidirectional relationship, mechanisms and treatment. J. Cell. Mol. Med., 2019, 23(4), 2324-2332. doi: 10.1111/jcmm.14170 PMID: 30734486
- Soreq, H. Checks and balances on cholinergic signaling in brain and body function. Trends Neurosci., 2015, 38(7), 448-458. doi: 10.1016/j.tins.2015.05.007 PMID: 26100140
- Wang, X.J. Decision making in recurrent neuronal circuits. Neuron, 2008, 60(2), 215-234. doi: 10.1016/j.neuron.2008.09.034 PMID: 18957215
- Buzsáki, G.; Wang, X.J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci., 2012, 35(1), 203-225. doi: 10.1146/annurev-neuro-062111-150444 PMID: 22443509
- Atagün, M.İ. Brain oscillations in bipolar disorder and lithium-induced changes. Neuropsychiatr. Dis. Treat., 2016, 12, 589-601. doi: 10.2147/NDT.S100597 PMID: 27022264
- Northoff, G. Spatiotemporal psychopathology I: No rest for the brains resting state activity in depression? Spatiotemporal psychopathology of depressive symptoms. J. Affect. Disord., 2016, 190, 854-866. doi: 10.1016/j.jad.2015.05.007 PMID: 26048657
- Grande, I.; Fries, G.R.; Kunz, M.; Kapczinski, F. The role of BDNF as a mediator of neuroplasticity in bipolar disorder. Psychiatry Investig., 2010, 7(4), 243-250. doi: 10.4306/pi.2010.7.4.243 PMID: 21253407
- Fernandes, B.S.; Molendijk, M.L.; Köhler, C.A; Soares, J.C; Leite, C.M.G.S.; Machado-Vieira, R.; Ribeiro, T.L.; Silva, J.C; Sales, P.M.G.; Quevedo, J.; Oertel-Kn öchel, V.; Vieta, E.; González-Pinto, A.; Berk, M.; Carvalho, A.F. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: A meta-analysis of 52 studies. BMC Med., 2015, 13, 1-22.
- Kantamneni, S. Cross-talk and regulation between glutamate and GABAB receptors. Front. Cell. Neurosci., 2015, 9, 135. doi: 10.3389/fncel.2015.00135 PMID: 25914625
- Rivolta, D.; Heidegger, T.; Scheller, B.; Sauer, A.; Schaum, M.; Birkner, K.; Singer, W.; Wibral, M.; Uhlhaas, P.J. Ketamine dysregulates the amplitude and connectivity of high-frequency oscillations in cortical-subcortical networks in humans: Evidence from resting-state magnetoencephalography-recordings. Schizophr. Bull., 2015, 41(5), 1105-1114. doi: 10.1093/schbul/sbv051 PMID: 25987642
- Rebola, N.; Srikumar, B.N.; Mulle, C. Activity‐dependent synaptic plasticity of NMDA receptors. J. Physiol., 2010, 588(1), 93-99. doi: 10.1113/jphysiol.2009.179382 PMID: 19822542
- Björkholm, C.; Monteggia, L.M. BDNF - a key transducer of antidepressant effects. Neuropharmacology, 2016, 102, 72-79. doi: 10.1016/j.neuropharm.2015.10.034 PMID: 26519901
- Ghasemi, M.; Phillips, C.; Fahimi, A.; McNerney, M.W.; Salehi, A. Mechanisms of action and clinical efficacy of NMDA receptor modulators in mood disorders. Neurosci. Biobehav. Rev., 2017, 80, 555-572. doi: 10.1016/j.neubiorev.2017.07.002 PMID: 28711661
- Kim, Y.K.; Na, K.S. Role of glutamate receptors and glial cells in the pathophysiology of treatment-resistant depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 70, 117-126. doi: 10.1016/j.pnpbp.2016.03.009 PMID: 27046518
- Deutschenbaur, L.; Beck, J.; Kiyhankhadiv, A.; Mühlhauser, M.; Borgwardt, S.; Walter, M.; Hasler, G.; Sollberger, D.; Lang, U.E. Role of calcium, glutamate and NMDA in major depression and therapeutic application. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 325-333. doi: 10.1016/j.pnpbp.2015.02.015 PMID: 25747801
- Iadarola, N.D.; Niciu, M.J.; Richards, E.M.; Vande Voort, J.L.; Ballard, E.D.; Lundin, N.B.; Nugent, A.C.; Machado-Vieira, R.; Zarate, C.A., Jr Ketamine and other N-methyl-D-aspartate receptor antagonists in the treatment of depression: a perspective review. Ther. Adv. Chronic Dis., 2015, 6(3), 97-114. doi: 10.1177/2040622315579059 PMID: 25954495
- Zhang, J.C.; Yao, W.; Hashimoto, K.A. Arketamine, a new rapid-acting antidepressant: A historical review and future directions. Neuropharmacology, 2022, 218, 109219.
- Duman, R.S. Neurobiology of stress, depression, and rapid acting antidepressants: remodeling synaptic connections. Depress. Anxiety, 2014, 31(4), 291-296. doi: 10.1002/da.22227 PMID: 24616149
- Szczepankiewicz, A.; Skibinska, M.; Suwalska, A.; Hauser, J.; Rybakowski, J.K. The association study of three FYN polymorphisms with prophylactic lithium response in bipolar patients. Hum. Psychopharmacol., 2009, 24(4), 287-291. doi: 10.1002/hup.1018 PMID: 19330793
- Abdolmaleky, H.M.; Thiagalingam, S.; Wilcox, M. Genetics and epigenetics in major psychiatric disorders: Dilemmas, achievements, applications, and future scope. Am. J. Pharmacogenomics, 2005, 5(3), 149-160. doi: 10.2165/00129785-200505030-00002 PMID: 15952869
- Polyakova, M.; Stuke, K.; Schuemberg, K.; Mueller, K.; Schoenknecht, P.; Schroeter, M.L. BDNF as a biomarker for successful treatment of mood disorders: A systematic & quantitative meta-analysis. J. Affect. Disord., 2015, 174, 432-440. doi: 10.1016/j.jad.2014.11.044 PMID: 25553404
- Duman, R.S.; Deyama, S.; Fogaça, M.V. Role of BDNF in the pathophysiology and treatment of depression: Activity‐dependent effects distinguish rapid‐acting antidepressants. Eur. J. Neurosci., 2021, 53(1), 126-139. doi: 10.1111/ejn.14630 PMID: 31811669
- Vega-Núñez, A.; Gómez-Sánchez-Lafuente, C.; Mayoral-Cleries, F.; Bordallo, A.; Rodríguez de Fonseca, F.; Suárez,, J.; Guzmán-Parra, J. Clinical value of inflammatory and neurotrophic biomarkers in bipolar disorder: A systematic review and meta-analysis. Biomedicines, 2022, 10(6), 1368. doi: 10.3390/biomedicines10061368 PMID: 35740389
- Barbosa, I.G.; Rocha, N.P.; Miranda, A.S.; Huguet, R.B.; Bauer, M.E.; Reis, H.J.; Teixeira, A.L. Increased BDNF levels in long-term bipolar disorder patients. Rev. Bras. Psiquiatr., 2013, 35(1), 67-69. doi: 10.1016/j.rbp.2012.05.011 PMID: 23567603
- Yamada, K.; Nabeshima, T. Interaction of BDNF/TrkB signaling with NMDA receptor in learning and memory. Drug News Perspect., 2004, 17(7), 435-438. doi: 10.1358/dnp.2004.17.7.863702 PMID: 15514702
- Huntenburg, J.M.; Bazin, P.L.; Margulies, D.S. Large-scale gradients in human cortical organization. Trends Cogn. Sci., 2018, 22(1), 21-31. doi: 10.1016/j.tics.2017.11.002 PMID: 29203085
- Sharma, V.; Singh, T.G.; Kaur, A.; Mannan, A.; Dhiman, S. Brain-derived neurotrophic factor: A novel dynamically regulated therapeutic modulator in neurological disorders. Neurochem. Res., 2022, 48(2), 317-339.
- Goddard, C.A.; Sridharan, D.; Huguenard, J.R.; Knudsen, E.I. Gamma oscillations are generated locally in an attention-related midbrain network. Neuron, 2012, 73(3), 567-580. doi: 10.1016/j.neuron.2011.11.028 PMID: 22325207
- Wyllie, D.J.A.; Livesey, M.R.; Hardingham, G.E. Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology, 2013, 74, 4-17. doi: 10.1016/j.neuropharm.2013.01.016 PMID: 23376022
- Alcaro, A.; Panksepp, J.; Witczak, J.; Hayes, D.J.; Northoff, G. Is subcortical-cortical midline activity in depression mediated by glutamate and GABA? A cross-species translational approach. Neurosci. Biobehav. Rev., 2010, 34(4), 592-605. doi: 10.1016/j.neubiorev.2009.11.023 PMID: 19958790
- Moolamalla, S.T.R.; Vinod, P.K. Genome-scale metabolic modelling predicts biomarkers and therapeutic targets for neuropsychiatric disorders. Comput. Biol. Med., 2020, 125, 103994. doi: 10.1016/j.compbiomed.2020.103994 PMID: 32980779
- Kang, L.L.; Zhang, D.M.; Jiao, R.Q.; Pan, S.M.; Zhao, X.J.; Zheng, Y.J.; Chen, T.Y.; Kong, L.D. Pterostilbene attenuates fructose-induced myocardial fibrosis by inhibiting ROS-driven Pitx2c/MiR-15b pathway. Oxid. Med. Cell. Longev., 2019, 2019, 1243215.
- Van Drunen, R.; Eckel-Mahan, K. Circadian rhythms as modulators of brain health during development and throughout aging. Front. Neural Circuits, 2023, 16, 1059229. doi: 10.3389/fncir.2022.1059229 PMID: 36741032
- Su, Z.; Wilson, B.; Kumar, P.; Dutta, A. Noncanonical Roles of tRNAs: tRNA fragments and beyond. Annu. Rev. Genet., 2020, 54(1), 47-69. doi: 10.1146/annurev-genet-022620-101840 PMID: 32841070
- Nawrot, B.; Sochacka, E.; Düchler, M. tRNA structural and functional changes induced by oxidative stress. Cell. Mol. Life Sci., 2011, 68(24), 4023-4032. doi: 10.1007/s00018-011-0773-8 PMID: 21833586
- Jang, C.; Lahens, N.F.; Hogenesch, J.B.; Sehgal, A. Ribosome profiling reveals an important role for translational control in circadian gene expression. Genome Res., 2015, 25(12), 1836-1847. doi: 10.1101/gr.191296.115 PMID: 26338483
- Siwek, M.; Sowa-Kućma, M.; Dudek, D.; Styczeń, K.; Szewczyk, B.; Kotarska, K.; Misztak, P.; Pilc, A.; Wolak, M.; Nowak, G. Oxidative stress markers in affective disorders. Pharmacol. Rep., 2013, 65(6), 1558-1571. doi: 10.1016/S1734-1140(13)71517-2 PMID: 24553004
- Rossetti, A.C.; Paladini, M.S.; Riva, M.A.; Molteni, R. Oxidation-reduction mechanisms in psychiatric disorders: A novel target for pharmacological intervention. Pharmacol. Ther., 2020, 210, 107520. doi: 10.1016/j.pharmthera.2020.107520 PMID: 32165136
- Miller, A.M.; Daniels, R.M.; Sheng, J.A.; Wu, T.J.; Handa, R.J. Glucocorticoid regulation of diurnal spine plasticity in the murine ventromedial prefrontal cortex. J. Neuroendocrinol., 2022, 34(12), e13212. doi: 10.1111/jne.13212 PMID: 36426781
- Anderson, G. Linking the biological underpinnings of depression: Role of mitochondria interactions with melatonin, inflammation, sirtuins, tryptophan catabolites, DNA repair and oxidative and nitrosative stress, with consequences for classification and cognition. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 80(Pt C), 255-266. doi: 10.1016/j.pnpbp.2017.04.022 PMID: 28433458
- Anderson, G. Depression pathophysiology: Astrocyte mitochondrial melatonergic pathway as crucial hub. Int. J. Mol. Sci., 2022, 24(1), 350. doi: 10.3390/ijms24010350 PMID: 36613794
- Anderson, G.; Almulla, A.F.; Reiter, R.J.; Maes, M. Redefining autoimmune disorders pathoetiology: Implications for mood and psychotic disorders association with neurodegenerative and classical autoimmune disorders. Cells, 2023, 12(9), 1237. doi: 10.3390/cells12091237 PMID: 37174637
- Tan, D.X.; Manchester, L.C.; Liu, X.; Rosales-Corral, S.A.; Acuna-Castroviejo, D.; Reiter, R.J. Mitochondria and chloroplasts as the original sites of melatonin synthesis: A hypothesis related to melatonins primary function and evolution in eukaryotes. J. Pineal Res., 2013, 54(2), 127-138. doi: 10.1111/jpi.12026 PMID: 23137057
- de Goede, P.; Wefers, J.; Brombacher, E.C.; Schrauwen, P.; Kalsbeek, A. Circadian rhythms in mitochondrial respiration. J. Mol. Endocrinol., 2018, 60(3), R115-R130. doi: 10.1530/JME-17-0196 PMID: 29378772
- Zisapel, N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br. J. Pharmacol., 2018, 175(16), 3190-3199. doi: 10.1111/bph.14116 PMID: 29318587
- Caddy, C.; Giaroli, G.; White, T.P.; Shergill, S.S.; Tracy, D.K. Ketamine as the prototype glutamatergic antidepressant: Pharmacodynamic actions, and a systematic review and meta-analysis of efficacy. Ther. Adv. Psychopharmacol., 2014, 4(2), 75-99. doi: 10.1177/2045125313507739 PMID: 24688759
- Goldstein Ferber, S.; Shoval, G.; Zalsman, G.; Mikulincer, M.; Weller, A. Between action and emotional survival during the COVID-19 era: Sensorimotor pathways as control systems of transdiagnostic anxiety-related intolerance to uncertainty. Front. Psychiatry, 2021, 12, 680403. doi: 10.3389/fpsyt.2021.680403 PMID: 34393847
- He, W.; Bai, J.; Chen, X.; Suo, D.; Wang, S.; Guo, Q.; Yin, W.; Geng, D.; Wang, M.; Pan, G.; Zhao, X.; Li, B. Reversible dougong structured receptor-ligand recognition for building dynamic extracellular matrix mimics. Proc. Natl. Acad. Sci., 2022, 119(8), e2117221119. doi: 10.1073/pnas.2117221119 PMID: 35181608
- Dzyubenko, E.; Fleischer, M.; Manrique-Castano, D.; Borbor, M.; Kleinschnitz, C.; Faissner, A.; Hermann, D.M. Inhibitory control in neuronal networks relies on the extracellular matrix integrity. Cell. Mol. Life Sci., 2021, 78(14), 5647-5663. doi: 10.1007/s00018-021-03861-3 PMID: 34128077
- Ahmed, R.; Nakahata, Y.; Shinohara, K.; Bessho, Y. Cellular senescence triggers altered circadian clocks with a prolonged period and delayed phases. Front. Neurosci., 2021, 15, 638122. doi: 10.3389/fnins.2021.638122 PMID: 33568972
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem., 2017, 86(1), 715-748. doi: 10.1146/annurev-biochem-061516-045037 PMID: 28441057
- Wirz-Justice, A.; Benedetti, F. Perspectives in affective disorders: Clocks and sleep. Eur. J. Neurosci., 2020, 51(1), 346-365. doi: 10.1111/ejn.14362 PMID: 30702783
- Ortinski, P.I.; Reissner, K.J.; Turner, J.; Anderson, T.L.; Scimemi, A. Control of complex behavior by astrocytes and microglia. Neurosci. Biobehav. Rev., 2022, 137, 104651. doi: 10.1016/j.neubiorev.2022.104651 PMID: 35367512
- Comai, S.; Gobbi, G. Unveiling the role of melatonin MT2 receptors in sleep, anxiety and other neuropsychiatric diseases: A novel target in psychopharmacology. J. Psychiatry Neurosci., 2014, 39(1), 6-21. doi: 10.1503/jpn.130009 PMID: 23971978
- Freeman, S.A.; Desmazières, A.; Fricker, D.; Lubetzki, C. Sol-Foulon, N. Mechanisms of sodium channel clustering and its influence on axonal impulse conduction. Cell. Mol. Life Sci., 2016, 73(4), 723-735. doi: 10.1007/s00018-015-2081-1 PMID: 26514731
- Hofmann, K.; Rodriguez-Rodriguez, R.; Gaebler, A.; Casals, N.; Scheller, A.; Kuerschner, L. Astrocytes and oligodendrocytes in grey and white matter regions of the brain metabolize fatty acids. Sci. Rep., 2017, 7(1), 10779. doi: 10.1038/s41598-017-11103-5 PMID: 28883484
- Cyrino, L.A.R.; Delwing-de Lima, D.; Ullmann, O.M.; Maia, T.P. Concepts of neuroinflammation and their relationship with impaired mitochondrial functions in bipolar disorder. Front. Behav. Neurosci., 2021, 15, 609487. doi: 10.3389/fnbeh.2021.609487 PMID: 33732117
- Tohidpour, A.; Morgun, A.V.; Boitsova, E.B.; Malinovskaya, N.A.; Martynova, G.P.; Khilazheva, E.D.; Kopylevich, N.V.; Gertsog, G.E.; Salmina, A.B. Neuroinflammation and infection: Molecular mechanisms associated with dysfunction of neurovascular unit. Front. Cell. Infect. Microbiol., 2017, 7, 276. doi: 10.3389/fcimb.2017.00276 PMID: 28676848
- Arcuri, C.; Mecca, C.; Bianchi, R.; Giambanco, I.; Donato, R. The pathophysiological role of microglia in dynamic surveillance, phagocytosis and structural remodeling of the developing CNS. Front. Mol. Neurosci., 2017, 10, 191. doi: 10.3389/fnmol.2017.00191 PMID: 28674485
- Xing, C.; Zhou, Y.; Xu, H.; Ding, M.; Zhang, Y.; Zhang, M.; Hu, M.; Huang, X.; Song, L. Sleep disturbance induces depressive behaviors and neuroinflammation by altering the circadian oscillations of clock genes in rats. Neurosci. Res., 2021, 171, 124-132. doi: 10.1016/j.neures.2021.03.006 PMID: 33785408
- Giebultowicz, J.M. Circadian regulation of metabolism and healthspan in Drosophila. Free Radic. Biol. Med., 2018, 119, 62-68. doi: 10.1016/j.freeradbiomed.2017.12.025 PMID: 29277395
- Shi, S.; White, M.J.; Borsetti, H.M.; Pendergast, J.S.; Hida, A.; Ciarleglio, C.M.; de Verteuil, P.A.; Cadar, A.G.; Cala, C.; McMahon, D.G.; Shelton, R.C.; Williams, S.M.; Johnson, C.H. Molecular analyses of circadian gene variants reveal sex-dependent links between depression and clocks. Transl. Psychiatry, 2016, 6(3), e748. doi: 10.1038/tp.2016.9 PMID: 26926884
- Cuesta, M.; Mendoza, J.; Clesse, D.; Pévet, P.; Challet, E. Serotonergic activation potentiates light resetting of the main circadian clock and alters clock gene expression in a diurnal rodent. Exp. Neurol., 2008, 210(2), 501-513. doi: 10.1016/j.expneurol.2007.11.026 PMID: 18190911
- Stasenko, S.V.; Kazantsev, V.B. Information encoding in bursting spiking neural network modulated by astrocytes. Entropy, 2023, 25(5), 745. doi: 10.3390/e25050745 PMID: 37238500
- Gollihue, J.L.; Norris, C.M. Astrocyte mitochondria: Central players and potential therapeutic targets for neurodegenerative diseases and injury. Ageing Res. Rev., 2020, 59, 101039. doi: 10.1016/j.arr.2020.101039 PMID: 32105849
- Bernstein, H.G.; Meyer-Lotz, G.; Dobrowolny, H.; Bannier, J.; Steiner, J.; Walter, M.; Bogerts, B. Reduced density of glutamine synthetase immunoreactive astrocytes in different cortical areas in major depression but not in bipolar I disorder. Front. Cell. Neurosci., 2015, 9, 273. doi: 10.3389/fncel.2015.00273 PMID: 26321908
- Altshuler, L.L.; Abulseoud, O.A.; Foland-Ross, L.; Bartzokis, G.; Chang, S.; Mintz, J.; Hellemann, G.; Vinters, H.V. Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disord., 2010, 12(5), 541-549. doi: 10.1111/j.1399-5618.2010.00838.x PMID: 20712756
- Dudek, K.A.; Dion-Albert, L.; Kaufmann, F.N.; Tuck, E.; Lebel, M.; Menard, C. Neurobiology of resilience in depression: Immune and vascular insights from human and animal studies. Eur. J. Neurosci., 2021, 53(1), 183-221. doi: 10.1111/ejn.14547 PMID: 31421056
- Gupta, A.; Wolff, A.; Northoff, D.G. Extending the "resting state hypothesis of depression" - dynamics and topography of abnormal rest-task modulation. Psychiatry Res. Neuroimaging, 2021, 317, 111367. doi: 10.1016/j.pscychresns.2021.111367 PMID: 34555652
- Zhang, Y.; Lei, L.; Liu, Z.; Gao, M.; Liu, Z.; Sun, N.; Yang, C.; Zhang, A.; Wang, Y.; Zhang, K. Theta oscillations: A rhythm difference comparison between major depressive disorder and anxiety disorder. Front. Psychiatry, 2022, 13, 827536. doi: 10.3389/fpsyt.2022.827536 PMID: 35990051
- Dharmadhikari, A.S.; Tandle, A.L.; Jaiswal, S.V.; Sawant, V.A.; Vahia, V.N.; Jog, N. Frontal theta asymmetry as a biomarker of depression. East Asian Arch. Psychiatry, 2018, 28(1), 17-22. PMID: 29576552
- Sunaga, M.; Takei, Y.; Kato, Y.; Tagawa, M.; Suto, T.; Hironaga, N.; Ohki, T.; Takahashi, Y.; Fujihara, K.; Sakurai, N.; Ujita, K.; Tsushima, Y.; Fukuda, M. Frequency-specific resting connectome in bipolar disorder: An MEG study. Front. Psychiatry, 2020, 11, 597. doi: 10.3389/fpsyt.2020.00597 PMID: 32670117
- Sunaga, M.; Takei, Y.; Kato, Y.; Tagawa, M.; Suto, T.; Hironaga, N.; Sakurai, N.; Fukuda, M. The characteristics of power spectral density in bipolar disorder at the resting state. Clin. EEG Neurosci., 2021, 54(6), 574-58. PMID: 34677105
- Yang, Y.; Zhong, N.; Imamura, K.; Lu, S.; Li, M.; Zhou, H.; Li, H.; Yang, X.; Wan, Z.; Wang, G.; Hu, B.; Li, K. Task and resting-state fMRI reveal altered salience responses to positive stimuli in patients with major depressive disorder. PLoS One, 2016, 11(5), e0155092. doi: 10.1371/journal.pone.0155092 PMID: 27192082
- Sambataro, F.; Visintin, E.; Doerig, N.; Brakowski, J.; Holtforth, M.G.; Seifritz, E.; Spinelli, S. Altered dynamics of brain connectivity in major depressive disorder at-rest and during task performance. Psychiatry Res. Neuroimaging, 2017, 259, 1-9. doi: 10.1016/j.pscychresns.2016.11.001 PMID: 27918910
- Bares, M.; Brunovsky, M.; Novak, T.; Kopecek, M.; Stopkova, P.; Sos, P.; Krajca, V. Höschl, C. The change of prefrontal QEEG theta cordance as a predictor of response to bupropion treatment in patients who had failed to respond to previous antidepressant treatments. Eur. Neuropsychopharmacol., 2010, 20(7), 459-466. doi: 10.1016/j.euroneuro.2010.03.007 PMID: 20421161
- Bares, M.; Novak, T.; Kopecek, M.; Brunovsky, M.; Stopkova, P. Höschl, C. The effectiveness of prefrontal theta cordance and early reduction of depressive symptoms in the prediction of antidepressant treatment outcome in patients with resistant depression: analysis of naturalistic data. Eur. Arch. Psychiatry Clin. Neurosci., 2015, 265(1), 73-82. doi: 10.1007/s00406-014-0506-8 PMID: 24848366
- Knott, V.; Mahoney, C.; Kennedy, S.; Evans, K. EEG correlates of acute and chronic paroxetine treatment in depression. J. Affect. Disord., 2002, 69(1-3), 241-249. doi: 10.1016/S0165-0327(01)00308-1 PMID: 12103473
- DOnofrio, S.; Urbano, F.J.; Messias, E.; Garcia-Rill, E. Lithium decreases the effects of neuronal calcium sensor protein 1 in pedunculopontine neurons. Physiol. Rep., 2016, 4(6), e12740. doi: 10.14814/phy2.12740 PMID: 27033453
- Yasin, S.; Hussain, S.A.; Aslan, S.; Raza, I.; Muzammel, M.; Othmani, A. EEG based major depressive disorder and bipolar disorder detection using neural networks: A review. Comput. Methods Programs Biomed., 2021, 202, 106007. doi: 10.1016/j.cmpb.2021.106007 PMID: 33657466
- Magioncalda, P.; Martino, M.; Conio, B.; Escelsior, A.; Piaggio, N.; Presta, A.; Marozzi, V.; Rocchi, G.; Anastasio, L.; Vassallo, L.; Ferri, F.; Huang, Z.; Roccatagliata, L.; Pardini, M.; Northoff, G.; Amore, M. Functional connectivity and neuronal variability of resting state activity in bipolar disorder-reduction and decoupling in anterior cortical midline structures. Hum. Brain Mapp., 2015, 36(2), 666-682. doi: 10.1002/hbm.22655 PMID: 25307723
- Lally, N.; Mullins, P.G.; Roberts, M.V.; Price, D.; Gruber, T.; Haenschel, C. Glutamatergic correlates of gamma-band oscillatory activity during cognition: A concurrent ER-MRS and EEG study. Neuroimage, 2014, 85(Pt 2), 823-833. doi: 10.1016/j.neuroimage.2013.07.049 PMID: 23891885
- Lobentanzer, S.; Hanin, G.; Klein, J.; Soreq, H. Integrative transcriptomics reveals sexually dimorphic control of the cholinergic/neurokine interface in schizophrenia and bipolar disorder. Cell Rep., 2019, 29(3), 764-777.e5. doi: 10.1016/j.celrep.2019.09.017 PMID: 31618642
- Simchovitz-Gesher, A.; Soreq, H. Pharmaceutical implications of sex-related rna divergence in psychiatric disorders. Trends Pharmacol. Sci., 2020, 41(11), 840-850. doi: 10.1016/j.tips.2020.09.003 PMID: 33012545
- Barbash, S.; Shifman, S.; Soreq, H. Global coevolution of human microRNAs and their target genes. Mol. Biol. Evol., 2014, 31(5), 1237-1247. doi: 10.1093/molbev/msu090 PMID: 24600049
Supplementary files
