Boltzmann’s Theorem Revisited: Inaccurate Time-to-Action Clocks in Affective Disorders


Cite item

Full Text

Abstract

Timely goal-oriented behavior is essential for survival and is shaped by experience. In this paper, a multileveled approach was employed, ranging from the polymorphic level through thermodynamic molecular, cellular, intracellular, extracellular, non-neuronal organelles and electrophysiological waves, attesting for signal variability. By adopting Boltzmann’s theorem as a thermodynamic conceptualization of brain work, we found deviations from excitation-inhibition balance and wave decoupling, leading to wider signal variability in affective disorders compared to healthy individuals. Recent evidence shows that the overriding on-off design of clock genes paces the accuracy of the multilevel parallel sequencing clocks and that the accuracy of the time-to-action is more crucial for healthy behavioral reactions than their rapidity or delays. In affective disorders, the multilevel clocks run free and lack accuracy of responsivity to environmentally triggered time-to-action as the clock genes are not able to rescue mitochondria organelles from oxidative stress to produce environmentally-triggered energy that is required for the accurate time-to-action and maintenance of the thermodynamic equilibrium. This maintenance, in turn, is dependent on clock gene transcription of electron transporters, leading to higher signal variability and less signal accuracy in affective disorders. From a Boltzmannian thermodynamic and energy-production perspective, the option of reversibility to a healthier time-toaction, reducing entropy is implied. We employed logic gates to show deviations from healthy levelwise communication and the reversed conditions through compensations implying the role of nonneural cells and the extracellular matrix in return to excitation-inhibition balance and accuracy in the time-to-action signaling.

About the authors

Sari Ferber

Psychology Department and The Gonda Brain Research Center, Bar-Ilan University

Author for correspondence.
Email: info@benthamscience.net

Aron Weller

Psychology Department and The Gonda Brain Research Center, Bar-Ilan University

Email: info@benthamscience.net

Hermona Soreq

The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem

Email: info@benthamscience.net

References

  1. Ferber, S.G. The concept of coregulation between neurobehavioral subsystems: The logic interplay between excitatory and inhibitory ends. Behav. Brain Sci., 2008, 31(3), 337-338. doi: 10.1017/S0140525X08004123
  2. Darwin, C. On the Origin of Species; PF Collier & Son: New York, 1909.
  3. Dunning, D.; Perie, M.; Story, A.L. Self-serving prototypes of social categories. J. Pers. Soc. Psychol., 1991, 61(6), 957-968. doi: 10.1037/0022-3514.61.6.957 PMID: 1774633
  4. Womelsdorf, T.; Valiante, T.A.; Sahin, N.T.; Miller, K.J.; Tiesinga, P. Dynamic circuit motifs underlying rhythmic gain control, gating and integration. Nat. Neurosci., 2014, 17(8), 1031-1039. doi: 10.1038/nn.3764 PMID: 25065440
  5. Williams, G.; Aldrich, A.; Theodorou, E.A. Model predictive path integral control: From theory to parallel computation. J. Guid. Control Dyn., 2017, 40(2), 344-357. doi: 10.2514/1.G001921
  6. Goodman, Z.T.; Bainter, S.A.; Kornfeld, S.; Chang, C.; Nomi, J.S.; Uddin, L.Q. Whole-brain functional dynamics track depressive symptom severity. Cereb. Cortex, 2021, 31(11), 4867-4876. doi: 10.1093/cercor/bhab047 PMID: 33774654
  7. Akiskal, H.S. Validating ‘hard’ and ‘soft’ phenotypes within the bipolar spectrum: continuity or discontinuity? J. Affect. Disord., 2003, 73(1-2), 1-5. doi: 10.1016/s0165-0327(02)00390-7 PMID: 12507732
  8. Goldstein, S.; Lebowitz, J.L. On the (Boltzmann) entropy of non-equilibrium systems. Physica D, 2004, 193(1-4), 53-66. doi: 10.1016/j.physd.2004.01.008
  9. Maxwell, J.C. A dynamical theory of the electromagnetic field. Proc. R. Soc. Lond., 1865, 155, 459-512.
  10. Gibbs, J. Elementary principles in statistical mechanics. In: Developed with Special Reference to the Rational Foundation of Thermodynamics; C. Scribner’s sons, 1902.
  11. Collell, G.; Fauquet, J. Brain activity and cognition: A connection from thermodynamics and information theory. Front. Psychol., 2015, 6, 818. doi: 10.3389/fpsyg.2015.00818 PMID: 26136709
  12. Ferber, S.G.; Weller, A.; Soreq, H. Control systems theory revisited: New insights on the brain clocks of time-to-action. Front. Neurosci., 2023, 17, 1171765. doi: 10.3389/fnins.2023.1171765 PMID: 37378011
  13. Cassano, G.B.; Rucci, P.; Frank, E.; Fagiolini, A.; Dell’Osso, L.; Shear, M.K.; Kupfer, D.J. The mood spectrum in unipolar and bipolar disorder: Arguments for a unitary approach. Am. J. Psychiatry, 2004, 161(7), 1264-1269. doi: 10.1176/appi.ajp.161.7.1264 PMID: 15229060
  14. Ferber, S.G.; Als, H.; McAnulty, G.; Klinger, G.; Weller, A. Multi-level hypothalamic neuromodulation of self-regulation and cognition in preterm infants: Towards a control systems model. Compr. Psychoneuroendocrinol., 2022, 9, 100109. doi: 10.1016/j.cpnec.2021.100109 PMID: 35755927
  15. Lee, S.Y.; Chen, S.L.; Chang, Y.H.; Chen, S.H.; Chu, C.H.; Huang, S.Y.; Tzeng, N.S.; Wang, C.L.; Wang, L.J.; Lee, I.H.; Yeh, T.L.; Lu, R-B.; Yang, Y.K.; Lu, R.B. Genotype variant associated with add-on memantine in bipolar II disorder. Int. J. Neuropsychopharmacol., 2014, 17(2), 189-197. doi: 10.1017/S1461145713000825 PMID: 24103632
  16. Kennaway, D.J. Review: Clock genes at the heart of depression. J. Psychopharmacol., 2010, 24(S2), 5-14. doi: 10.1177/1359786810372980 PMID: 20663803
  17. Watson, D.; Wiese, D.; Vaidya, J.; Tellegen, A. The two general activation systems of affect: Structural findings, evolutionary considerations, and psychobiological evidence. J. Pers. Soc. Psychol., 1999, 76(5), 820-838. doi: 10.1037/0022-3514.76.5.820
  18. Teicher, M.H.; Glod, C.A.; Magnus, E.; Harper, D.; Benson, G.; Krueger, K.; McGreenery, C.E. Circadian rest-activity disturbances in seasonal affective disorder. Arch. Gen. Psychiatry, 1997, 54(2), 124-130. doi: 10.1001/archpsyc.1997.01830140034007 PMID: 9040280
  19. Souêtre, E.; Salvati, E.; Belugou, J.L.; Pringuey, D.; Candito, M.; Krebs, B.; Ardisson, J.L.; Darcourt, G. Circadian rhythms in depression and recovery: Evidence for blunted amplitude as the main chronobiological abnormality. Psychiatry Res., 1989, 28(3), 263-278. doi: 10.1016/0165-1781(89)90207-2 PMID: 2762432
  20. Sjöholm, L.K.; Backlund, L.; Cheteh, E.H.; Ek, I.R.; Frisén, L.; Schalling, M.; Ösby, U.; Lavebratt, C.; Nikamo, P. CRY2 is associated with rapid cycling in bipolar disorder patients. PLoS One, 2010, 5(9), e12632. doi: 10.1371/journal.pone.0012632 PMID: 20856823
  21. Kelley, A.E.; Baldo, B.A.; Pratt, W.E. A proposed hypothalamic-thalamic-striatal axis for the integration of energy balance, arousal, and food reward. J. Comp. Neurol., 2005, 493(1), 72-85. doi: 10.1002/cne.20769 PMID: 16255002
  22. Hansen, J.M.; Jones, D.P.; Harris, C. The redox theory of development. Antioxid. Redox Signal., 2020, 32(10), 715-740. doi: 10.1089/ars.2019.7976 PMID: 31891515
  23. Artioli, P.; Lorenzi, C.; Pirovano, A.; Serretti, A.; Benedetti, F.; Catalano, M.; Smeraldi, E. How do genes exert their role? Period 3 gene variants and possible influences on mood disorder phenotypes. Eur. Neuropsychopharmacol., 2007, 17(9), 587-594. doi: 10.1016/j.euroneuro.2007.03.004 PMID: 17512705
  24. Koefoed, P.; Andreassen, O.A.; Bennike, B.; Dam, H.; Djurovic, S.; Hansen, T.; Jorgensen, M.B.; Kessing, L.V.; Melle, I.; Møller, G.L; Mors, O.; Werge, T.; Mellerup, E. Combinations of SNPs related to signal transduction in bipolar disorder. PLoS One, 2011, 6(8), e23812. doi: 10.1371/journal.pone.0023812 PMID: 21897858
  25. Abdolahi, S.; Zare-Chahoki, A.; Noorbakhsh, F.; Gorji, A. A review of molecular interplay between neurotrophins and MiRNAs in neuropsychological disorders. Mol. Neurobiol., 2022, 59, 6260-6280.
  26. Winek, K.; Soreq, H.; Meisel, A. Regulators of cholinergic signaling in disorders of the central nervous system. J. Neurochem., 2021, 158(6), 1425-1438. doi: 10.1111/jnc.15332 PMID: 33638173
  27. Winek, K.; Lobentanzer, S.; Nadorp, B.; Dubnov, S.; Dames, C.; Jagdmann, S.; Moshitzky, G.; Hotter, B.; Meisel, C.; Greenberg, D.S.; Shifman, S.; Klein, J.; Shenhar-Tsarfaty, S.; Meisel, A.; Soreq, H. Transfer RNA fragments replace microRNA regulators of the cholinergic poststroke immune blockade. Proc. Natl. Acad. Sci., 2020, 117(51), 32606-32616. doi: 10.1073/pnas.2013542117 PMID: 33288717
  28. Kiltschewskij, D.J.; Cairns, M.J. Transcriptome-wide analysis of interplay between mRNA stability, translation and small RNAs in response to neuronal membrane depolarization. Int. J. Mol. Sci., 2020, 21(19), 7086. doi: 10.3390/ijms21197086 PMID: 32992958
  29. Hannestad, J.O.; Cosgrove, K.P.; DellaGioia, N.F.; Perkins, E.; Bois, F.; Bhagwagar, Z.; Seibyl, J.P.; McClure-Begley, T.D.; Picciotto, M.R.; Esterlis, I. Changes in the cholinergic system between bipolar depression and euthymia as measured with 123I5IA single photon emission computed tomography. Biol. Psychiatry, 2013, 74(10), 768-776. doi: 10.1016/j.biopsych.2013.04.004 PMID: 23773793
  30. Fang, H.; Tu, S.; Sheng, J.; Shao, A. Depression in sleep disturbance: A review on a bidirectional relationship, mechanisms and treatment. J. Cell. Mol. Med., 2019, 23(4), 2324-2332. doi: 10.1111/jcmm.14170 PMID: 30734486
  31. Soreq, H. Checks and balances on cholinergic signaling in brain and body function. Trends Neurosci., 2015, 38(7), 448-458. doi: 10.1016/j.tins.2015.05.007 PMID: 26100140
  32. Wang, X.J. Decision making in recurrent neuronal circuits. Neuron, 2008, 60(2), 215-234. doi: 10.1016/j.neuron.2008.09.034 PMID: 18957215
  33. Buzsáki, G.; Wang, X.J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci., 2012, 35(1), 203-225. doi: 10.1146/annurev-neuro-062111-150444 PMID: 22443509
  34. Atagün, M.İ. Brain oscillations in bipolar disorder and lithium-induced changes. Neuropsychiatr. Dis. Treat., 2016, 12, 589-601. doi: 10.2147/NDT.S100597 PMID: 27022264
  35. Northoff, G. Spatiotemporal psychopathology I: No rest for the brain’s resting state activity in depression? Spatiotemporal psychopathology of depressive symptoms. J. Affect. Disord., 2016, 190, 854-866. doi: 10.1016/j.jad.2015.05.007 PMID: 26048657
  36. Grande, I.; Fries, G.R.; Kunz, M.; Kapczinski, F. The role of BDNF as a mediator of neuroplasticity in bipolar disorder. Psychiatry Investig., 2010, 7(4), 243-250. doi: 10.4306/pi.2010.7.4.243 PMID: 21253407
  37. Fernandes, B.S.; Molendijk, M.L.; Köhler, C.A; Soares, J.C; Leite, C.M.G.S.; Machado-Vieira, R.; Ribeiro, T.L.; Silva, J.C; Sales, P.M.G.; Quevedo, J.; Oertel-Kn öchel, V.; Vieta, E.; González-Pinto, A.; Berk, M.; Carvalho, A.F. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: A meta-analysis of 52 studies. BMC Med., 2015, 13, 1-22.
  38. Kantamneni, S. Cross-talk and regulation between glutamate and GABAB receptors. Front. Cell. Neurosci., 2015, 9, 135. doi: 10.3389/fncel.2015.00135 PMID: 25914625
  39. Rivolta, D.; Heidegger, T.; Scheller, B.; Sauer, A.; Schaum, M.; Birkner, K.; Singer, W.; Wibral, M.; Uhlhaas, P.J. Ketamine dysregulates the amplitude and connectivity of high-frequency oscillations in cortical-subcortical networks in humans: Evidence from resting-state magnetoencephalography-recordings. Schizophr. Bull., 2015, 41(5), 1105-1114. doi: 10.1093/schbul/sbv051 PMID: 25987642
  40. Rebola, N.; Srikumar, B.N.; Mulle, C. Activity‐dependent synaptic plasticity of NMDA receptors. J. Physiol., 2010, 588(1), 93-99. doi: 10.1113/jphysiol.2009.179382 PMID: 19822542
  41. Björkholm, C.; Monteggia, L.M. BDNF - a key transducer of antidepressant effects. Neuropharmacology, 2016, 102, 72-79. doi: 10.1016/j.neuropharm.2015.10.034 PMID: 26519901
  42. Ghasemi, M.; Phillips, C.; Fahimi, A.; McNerney, M.W.; Salehi, A. Mechanisms of action and clinical efficacy of NMDA receptor modulators in mood disorders. Neurosci. Biobehav. Rev., 2017, 80, 555-572. doi: 10.1016/j.neubiorev.2017.07.002 PMID: 28711661
  43. Kim, Y.K.; Na, K.S. Role of glutamate receptors and glial cells in the pathophysiology of treatment-resistant depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 70, 117-126. doi: 10.1016/j.pnpbp.2016.03.009 PMID: 27046518
  44. Deutschenbaur, L.; Beck, J.; Kiyhankhadiv, A.; Mühlhauser, M.; Borgwardt, S.; Walter, M.; Hasler, G.; Sollberger, D.; Lang, U.E. Role of calcium, glutamate and NMDA in major depression and therapeutic application. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 325-333. doi: 10.1016/j.pnpbp.2015.02.015 PMID: 25747801
  45. Iadarola, N.D.; Niciu, M.J.; Richards, E.M.; Vande Voort, J.L.; Ballard, E.D.; Lundin, N.B.; Nugent, A.C.; Machado-Vieira, R.; Zarate, C.A., Jr Ketamine and other N-methyl-D-aspartate receptor antagonists in the treatment of depression: a perspective review. Ther. Adv. Chronic Dis., 2015, 6(3), 97-114. doi: 10.1177/2040622315579059 PMID: 25954495
  46. Zhang, J.C.; Yao, W.; Hashimoto, K.A. Arketamine, a new rapid-acting antidepressant: A historical review and future directions. Neuropharmacology, 2022, 218, 109219.
  47. Duman, R.S. Neurobiology of stress, depression, and rapid acting antidepressants: remodeling synaptic connections. Depress. Anxiety, 2014, 31(4), 291-296. doi: 10.1002/da.22227 PMID: 24616149
  48. Szczepankiewicz, A.; Skibinska, M.; Suwalska, A.; Hauser, J.; Rybakowski, J.K. The association study of three FYN polymorphisms with prophylactic lithium response in bipolar patients. Hum. Psychopharmacol., 2009, 24(4), 287-291. doi: 10.1002/hup.1018 PMID: 19330793
  49. Abdolmaleky, H.M.; Thiagalingam, S.; Wilcox, M. Genetics and epigenetics in major psychiatric disorders: Dilemmas, achievements, applications, and future scope. Am. J. Pharmacogenomics, 2005, 5(3), 149-160. doi: 10.2165/00129785-200505030-00002 PMID: 15952869
  50. Polyakova, M.; Stuke, K.; Schuemberg, K.; Mueller, K.; Schoenknecht, P.; Schroeter, M.L. BDNF as a biomarker for successful treatment of mood disorders: A systematic & quantitative meta-analysis. J. Affect. Disord., 2015, 174, 432-440. doi: 10.1016/j.jad.2014.11.044 PMID: 25553404
  51. Duman, R.S.; Deyama, S.; Fogaça, M.V. Role of BDNF in the pathophysiology and treatment of depression: Activity‐dependent effects distinguish rapid‐acting antidepressants. Eur. J. Neurosci., 2021, 53(1), 126-139. doi: 10.1111/ejn.14630 PMID: 31811669
  52. Vega-Núñez, A.; Gómez-Sánchez-Lafuente, C.; Mayoral-Cleries, F.; Bordallo, A.; Rodríguez de Fonseca, F.; Suárez,, J.; Guzmán-Parra, J. Clinical value of inflammatory and neurotrophic biomarkers in bipolar disorder: A systematic review and meta-analysis. Biomedicines, 2022, 10(6), 1368. doi: 10.3390/biomedicines10061368 PMID: 35740389
  53. Barbosa, I.G.; Rocha, N.P.; Miranda, A.S.; Huguet, R.B.; Bauer, M.E.; Reis, H.J.; Teixeira, A.L. Increased BDNF levels in long-term bipolar disorder patients. Rev. Bras. Psiquiatr., 2013, 35(1), 67-69. doi: 10.1016/j.rbp.2012.05.011 PMID: 23567603
  54. Yamada, K.; Nabeshima, T. Interaction of BDNF/TrkB signaling with NMDA receptor in learning and memory. Drug News Perspect., 2004, 17(7), 435-438. doi: 10.1358/dnp.2004.17.7.863702 PMID: 15514702
  55. Huntenburg, J.M.; Bazin, P.L.; Margulies, D.S. Large-scale gradients in human cortical organization. Trends Cogn. Sci., 2018, 22(1), 21-31. doi: 10.1016/j.tics.2017.11.002 PMID: 29203085
  56. Sharma, V.; Singh, T.G.; Kaur, A.; Mannan, A.; Dhiman, S. Brain-derived neurotrophic factor: A novel dynamically regulated therapeutic modulator in neurological disorders. Neurochem. Res., 2022, 48(2), 317-339.
  57. Goddard, C.A.; Sridharan, D.; Huguenard, J.R.; Knudsen, E.I. Gamma oscillations are generated locally in an attention-related midbrain network. Neuron, 2012, 73(3), 567-580. doi: 10.1016/j.neuron.2011.11.028 PMID: 22325207
  58. Wyllie, D.J.A.; Livesey, M.R.; Hardingham, G.E. Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology, 2013, 74, 4-17. doi: 10.1016/j.neuropharm.2013.01.016 PMID: 23376022
  59. Alcaro, A.; Panksepp, J.; Witczak, J.; Hayes, D.J.; Northoff, G. Is subcortical-cortical midline activity in depression mediated by glutamate and GABA? A cross-species translational approach. Neurosci. Biobehav. Rev., 2010, 34(4), 592-605. doi: 10.1016/j.neubiorev.2009.11.023 PMID: 19958790
  60. Moolamalla, S.T.R.; Vinod, P.K. Genome-scale metabolic modelling predicts biomarkers and therapeutic targets for neuropsychiatric disorders. Comput. Biol. Med., 2020, 125, 103994. doi: 10.1016/j.compbiomed.2020.103994 PMID: 32980779
  61. Kang, L.L.; Zhang, D.M.; Jiao, R.Q.; Pan, S.M.; Zhao, X.J.; Zheng, Y.J.; Chen, T.Y.; Kong, L.D. Pterostilbene attenuates fructose-induced myocardial fibrosis by inhibiting ROS-driven Pitx2c/MiR-15b pathway. Oxid. Med. Cell. Longev., 2019, 2019, 1243215.
  62. Van Drunen, R.; Eckel-Mahan, K. Circadian rhythms as modulators of brain health during development and throughout aging. Front. Neural Circuits, 2023, 16, 1059229. doi: 10.3389/fncir.2022.1059229 PMID: 36741032
  63. Su, Z.; Wilson, B.; Kumar, P.; Dutta, A. Noncanonical Roles of tRNAs: tRNA fragments and beyond. Annu. Rev. Genet., 2020, 54(1), 47-69. doi: 10.1146/annurev-genet-022620-101840 PMID: 32841070
  64. Nawrot, B.; Sochacka, E.; Düchler, M. tRNA structural and functional changes induced by oxidative stress. Cell. Mol. Life Sci., 2011, 68(24), 4023-4032. doi: 10.1007/s00018-011-0773-8 PMID: 21833586
  65. Jang, C.; Lahens, N.F.; Hogenesch, J.B.; Sehgal, A. Ribosome profiling reveals an important role for translational control in circadian gene expression. Genome Res., 2015, 25(12), 1836-1847. doi: 10.1101/gr.191296.115 PMID: 26338483
  66. Siwek, M.; Sowa-Kućma, M.; Dudek, D.; Styczeń, K.; Szewczyk, B.; Kotarska, K.; Misztak, P.; Pilc, A.; Wolak, M.; Nowak, G. Oxidative stress markers in affective disorders. Pharmacol. Rep., 2013, 65(6), 1558-1571. doi: 10.1016/S1734-1140(13)71517-2 PMID: 24553004
  67. Rossetti, A.C.; Paladini, M.S.; Riva, M.A.; Molteni, R. Oxidation-reduction mechanisms in psychiatric disorders: A novel target for pharmacological intervention. Pharmacol. Ther., 2020, 210, 107520. doi: 10.1016/j.pharmthera.2020.107520 PMID: 32165136
  68. Miller, A.M.; Daniels, R.M.; Sheng, J.A.; Wu, T.J.; Handa, R.J. Glucocorticoid regulation of diurnal spine plasticity in the murine ventromedial prefrontal cortex. J. Neuroendocrinol., 2022, 34(12), e13212. doi: 10.1111/jne.13212 PMID: 36426781
  69. Anderson, G. Linking the biological underpinnings of depression: Role of mitochondria interactions with melatonin, inflammation, sirtuins, tryptophan catabolites, DNA repair and oxidative and nitrosative stress, with consequences for classification and cognition. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 80(Pt C), 255-266. doi: 10.1016/j.pnpbp.2017.04.022 PMID: 28433458
  70. Anderson, G. Depression pathophysiology: Astrocyte mitochondrial melatonergic pathway as crucial hub. Int. J. Mol. Sci., 2022, 24(1), 350. doi: 10.3390/ijms24010350 PMID: 36613794
  71. Anderson, G.; Almulla, A.F.; Reiter, R.J.; Maes, M. Redefining autoimmune disorders’ pathoetiology: Implications for mood and psychotic disorders’ association with neurodegenerative and classical autoimmune disorders. Cells, 2023, 12(9), 1237. doi: 10.3390/cells12091237 PMID: 37174637
  72. Tan, D.X.; Manchester, L.C.; Liu, X.; Rosales-Corral, S.A.; Acuna-Castroviejo, D.; Reiter, R.J. Mitochondria and chloroplasts as the original sites of melatonin synthesis: A hypothesis related to melatonin’s primary function and evolution in eukaryotes. J. Pineal Res., 2013, 54(2), 127-138. doi: 10.1111/jpi.12026 PMID: 23137057
  73. de Goede, P.; Wefers, J.; Brombacher, E.C.; Schrauwen, P.; Kalsbeek, A. Circadian rhythms in mitochondrial respiration. J. Mol. Endocrinol., 2018, 60(3), R115-R130. doi: 10.1530/JME-17-0196 PMID: 29378772
  74. Zisapel, N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br. J. Pharmacol., 2018, 175(16), 3190-3199. doi: 10.1111/bph.14116 PMID: 29318587
  75. Caddy, C.; Giaroli, G.; White, T.P.; Shergill, S.S.; Tracy, D.K. Ketamine as the prototype glutamatergic antidepressant: Pharmacodynamic actions, and a systematic review and meta-analysis of efficacy. Ther. Adv. Psychopharmacol., 2014, 4(2), 75-99. doi: 10.1177/2045125313507739 PMID: 24688759
  76. Goldstein Ferber, S.; Shoval, G.; Zalsman, G.; Mikulincer, M.; Weller, A. Between action and emotional survival during the COVID-19 era: Sensorimotor pathways as control systems of transdiagnostic anxiety-related intolerance to uncertainty. Front. Psychiatry, 2021, 12, 680403. doi: 10.3389/fpsyt.2021.680403 PMID: 34393847
  77. He, W.; Bai, J.; Chen, X.; Suo, D.; Wang, S.; Guo, Q.; Yin, W.; Geng, D.; Wang, M.; Pan, G.; Zhao, X.; Li, B. Reversible dougong structured receptor-ligand recognition for building dynamic extracellular matrix mimics. Proc. Natl. Acad. Sci., 2022, 119(8), e2117221119. doi: 10.1073/pnas.2117221119 PMID: 35181608
  78. Dzyubenko, E.; Fleischer, M.; Manrique-Castano, D.; Borbor, M.; Kleinschnitz, C.; Faissner, A.; Hermann, D.M. Inhibitory control in neuronal networks relies on the extracellular matrix integrity. Cell. Mol. Life Sci., 2021, 78(14), 5647-5663. doi: 10.1007/s00018-021-03861-3 PMID: 34128077
  79. Ahmed, R.; Nakahata, Y.; Shinohara, K.; Bessho, Y. Cellular senescence triggers altered circadian clocks with a prolonged period and delayed phases. Front. Neurosci., 2021, 15, 638122. doi: 10.3389/fnins.2021.638122 PMID: 33568972
  80. Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem., 2017, 86(1), 715-748. doi: 10.1146/annurev-biochem-061516-045037 PMID: 28441057
  81. Wirz-Justice, A.; Benedetti, F. Perspectives in affective disorders: Clocks and sleep. Eur. J. Neurosci., 2020, 51(1), 346-365. doi: 10.1111/ejn.14362 PMID: 30702783
  82. Ortinski, P.I.; Reissner, K.J.; Turner, J.; Anderson, T.L.; Scimemi, A. Control of complex behavior by astrocytes and microglia. Neurosci. Biobehav. Rev., 2022, 137, 104651. doi: 10.1016/j.neubiorev.2022.104651 PMID: 35367512
  83. Comai, S.; Gobbi, G. Unveiling the role of melatonin MT2 receptors in sleep, anxiety and other neuropsychiatric diseases: A novel target in psychopharmacology. J. Psychiatry Neurosci., 2014, 39(1), 6-21. doi: 10.1503/jpn.130009 PMID: 23971978
  84. Freeman, S.A.; Desmazières, A.; Fricker, D.; Lubetzki, C. Sol-Foulon, N. Mechanisms of sodium channel clustering and its influence on axonal impulse conduction. Cell. Mol. Life Sci., 2016, 73(4), 723-735. doi: 10.1007/s00018-015-2081-1 PMID: 26514731
  85. Hofmann, K.; Rodriguez-Rodriguez, R.; Gaebler, A.; Casals, N.; Scheller, A.; Kuerschner, L. Astrocytes and oligodendrocytes in grey and white matter regions of the brain metabolize fatty acids. Sci. Rep., 2017, 7(1), 10779. doi: 10.1038/s41598-017-11103-5 PMID: 28883484
  86. Cyrino, L.A.R.; Delwing-de Lima, D.; Ullmann, O.M.; Maia, T.P. Concepts of neuroinflammation and their relationship with impaired mitochondrial functions in bipolar disorder. Front. Behav. Neurosci., 2021, 15, 609487. doi: 10.3389/fnbeh.2021.609487 PMID: 33732117
  87. Tohidpour, A.; Morgun, A.V.; Boitsova, E.B.; Malinovskaya, N.A.; Martynova, G.P.; Khilazheva, E.D.; Kopylevich, N.V.; Gertsog, G.E.; Salmina, A.B. Neuroinflammation and infection: Molecular mechanisms associated with dysfunction of neurovascular unit. Front. Cell. Infect. Microbiol., 2017, 7, 276. doi: 10.3389/fcimb.2017.00276 PMID: 28676848
  88. Arcuri, C.; Mecca, C.; Bianchi, R.; Giambanco, I.; Donato, R. The pathophysiological role of microglia in dynamic surveillance, phagocytosis and structural remodeling of the developing CNS. Front. Mol. Neurosci., 2017, 10, 191. doi: 10.3389/fnmol.2017.00191 PMID: 28674485
  89. Xing, C.; Zhou, Y.; Xu, H.; Ding, M.; Zhang, Y.; Zhang, M.; Hu, M.; Huang, X.; Song, L. Sleep disturbance induces depressive behaviors and neuroinflammation by altering the circadian oscillations of clock genes in rats. Neurosci. Res., 2021, 171, 124-132. doi: 10.1016/j.neures.2021.03.006 PMID: 33785408
  90. Giebultowicz, J.M. Circadian regulation of metabolism and healthspan in Drosophila. Free Radic. Biol. Med., 2018, 119, 62-68. doi: 10.1016/j.freeradbiomed.2017.12.025 PMID: 29277395
  91. Shi, S.; White, M.J.; Borsetti, H.M.; Pendergast, J.S.; Hida, A.; Ciarleglio, C.M.; de Verteuil, P.A.; Cadar, A.G.; Cala, C.; McMahon, D.G.; Shelton, R.C.; Williams, S.M.; Johnson, C.H. Molecular analyses of circadian gene variants reveal sex-dependent links between depression and clocks. Transl. Psychiatry, 2016, 6(3), e748. doi: 10.1038/tp.2016.9 PMID: 26926884
  92. Cuesta, M.; Mendoza, J.; Clesse, D.; Pévet, P.; Challet, E. Serotonergic activation potentiates light resetting of the main circadian clock and alters clock gene expression in a diurnal rodent. Exp. Neurol., 2008, 210(2), 501-513. doi: 10.1016/j.expneurol.2007.11.026 PMID: 18190911
  93. Stasenko, S.V.; Kazantsev, V.B. Information encoding in bursting spiking neural network modulated by astrocytes. Entropy, 2023, 25(5), 745. doi: 10.3390/e25050745 PMID: 37238500
  94. Gollihue, J.L.; Norris, C.M. Astrocyte mitochondria: Central players and potential therapeutic targets for neurodegenerative diseases and injury. Ageing Res. Rev., 2020, 59, 101039. doi: 10.1016/j.arr.2020.101039 PMID: 32105849
  95. Bernstein, H.G.; Meyer-Lotz, G.; Dobrowolny, H.; Bannier, J.; Steiner, J.; Walter, M.; Bogerts, B. Reduced density of glutamine synthetase immunoreactive astrocytes in different cortical areas in major depression but not in bipolar I disorder. Front. Cell. Neurosci., 2015, 9, 273. doi: 10.3389/fncel.2015.00273 PMID: 26321908
  96. Altshuler, L.L.; Abulseoud, O.A.; Foland-Ross, L.; Bartzokis, G.; Chang, S.; Mintz, J.; Hellemann, G.; Vinters, H.V. Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disord., 2010, 12(5), 541-549. doi: 10.1111/j.1399-5618.2010.00838.x PMID: 20712756
  97. Dudek, K.A.; Dion-Albert, L.; Kaufmann, F.N.; Tuck, E.; Lebel, M.; Menard, C. Neurobiology of resilience in depression: Immune and vascular insights from human and animal studies. Eur. J. Neurosci., 2021, 53(1), 183-221. doi: 10.1111/ejn.14547 PMID: 31421056
  98. Gupta, A.; Wolff, A.; Northoff, D.G. Extending the "resting state hypothesis of depression" - dynamics and topography of abnormal rest-task modulation. Psychiatry Res. Neuroimaging, 2021, 317, 111367. doi: 10.1016/j.pscychresns.2021.111367 PMID: 34555652
  99. Zhang, Y.; Lei, L.; Liu, Z.; Gao, M.; Liu, Z.; Sun, N.; Yang, C.; Zhang, A.; Wang, Y.; Zhang, K. Theta oscillations: A rhythm difference comparison between major depressive disorder and anxiety disorder. Front. Psychiatry, 2022, 13, 827536. doi: 10.3389/fpsyt.2022.827536 PMID: 35990051
  100. Dharmadhikari, A.S.; Tandle, A.L.; Jaiswal, S.V.; Sawant, V.A.; Vahia, V.N.; Jog, N. Frontal theta asymmetry as a biomarker of depression. East Asian Arch. Psychiatry, 2018, 28(1), 17-22. PMID: 29576552
  101. Sunaga, M.; Takei, Y.; Kato, Y.; Tagawa, M.; Suto, T.; Hironaga, N.; Ohki, T.; Takahashi, Y.; Fujihara, K.; Sakurai, N.; Ujita, K.; Tsushima, Y.; Fukuda, M. Frequency-specific resting connectome in bipolar disorder: An MEG study. Front. Psychiatry, 2020, 11, 597. doi: 10.3389/fpsyt.2020.00597 PMID: 32670117
  102. Sunaga, M.; Takei, Y.; Kato, Y.; Tagawa, M.; Suto, T.; Hironaga, N.; Sakurai, N.; Fukuda, M. The characteristics of power spectral density in bipolar disorder at the resting state. Clin. EEG Neurosci., 2021, 54(6), 574-58. PMID: 34677105
  103. Yang, Y.; Zhong, N.; Imamura, K.; Lu, S.; Li, M.; Zhou, H.; Li, H.; Yang, X.; Wan, Z.; Wang, G.; Hu, B.; Li, K. Task and resting-state fMRI reveal altered salience responses to positive stimuli in patients with major depressive disorder. PLoS One, 2016, 11(5), e0155092. doi: 10.1371/journal.pone.0155092 PMID: 27192082
  104. Sambataro, F.; Visintin, E.; Doerig, N.; Brakowski, J.; Holtforth, M.G.; Seifritz, E.; Spinelli, S. Altered dynamics of brain connectivity in major depressive disorder at-rest and during task performance. Psychiatry Res. Neuroimaging, 2017, 259, 1-9. doi: 10.1016/j.pscychresns.2016.11.001 PMID: 27918910
  105. Bares, M.; Brunovsky, M.; Novak, T.; Kopecek, M.; Stopkova, P.; Sos, P.; Krajca, V. Höschl, C. The change of prefrontal QEEG theta cordance as a predictor of response to bupropion treatment in patients who had failed to respond to previous antidepressant treatments. Eur. Neuropsychopharmacol., 2010, 20(7), 459-466. doi: 10.1016/j.euroneuro.2010.03.007 PMID: 20421161
  106. Bares, M.; Novak, T.; Kopecek, M.; Brunovsky, M.; Stopkova, P. Höschl, C. The effectiveness of prefrontal theta cordance and early reduction of depressive symptoms in the prediction of antidepressant treatment outcome in patients with resistant depression: analysis of naturalistic data. Eur. Arch. Psychiatry Clin. Neurosci., 2015, 265(1), 73-82. doi: 10.1007/s00406-014-0506-8 PMID: 24848366
  107. Knott, V.; Mahoney, C.; Kennedy, S.; Evans, K. EEG correlates of acute and chronic paroxetine treatment in depression. J. Affect. Disord., 2002, 69(1-3), 241-249. doi: 10.1016/S0165-0327(01)00308-1 PMID: 12103473
  108. D’Onofrio, S.; Urbano, F.J.; Messias, E.; Garcia-Rill, E. Lithium decreases the effects of neuronal calcium sensor protein 1 in pedunculopontine neurons. Physiol. Rep., 2016, 4(6), e12740. doi: 10.14814/phy2.12740 PMID: 27033453
  109. Yasin, S.; Hussain, S.A.; Aslan, S.; Raza, I.; Muzammel, M.; Othmani, A. EEG based major depressive disorder and bipolar disorder detection using neural networks: A review. Comput. Methods Programs Biomed., 2021, 202, 106007. doi: 10.1016/j.cmpb.2021.106007 PMID: 33657466
  110. Magioncalda, P.; Martino, M.; Conio, B.; Escelsior, A.; Piaggio, N.; Presta, A.; Marozzi, V.; Rocchi, G.; Anastasio, L.; Vassallo, L.; Ferri, F.; Huang, Z.; Roccatagliata, L.; Pardini, M.; Northoff, G.; Amore, M. Functional connectivity and neuronal variability of resting state activity in bipolar disorder-reduction and decoupling in anterior cortical midline structures. Hum. Brain Mapp., 2015, 36(2), 666-682. doi: 10.1002/hbm.22655 PMID: 25307723
  111. Lally, N.; Mullins, P.G.; Roberts, M.V.; Price, D.; Gruber, T.; Haenschel, C. Glutamatergic correlates of gamma-band oscillatory activity during cognition: A concurrent ER-MRS and EEG study. Neuroimage, 2014, 85(Pt 2), 823-833. doi: 10.1016/j.neuroimage.2013.07.049 PMID: 23891885
  112. Lobentanzer, S.; Hanin, G.; Klein, J.; Soreq, H. Integrative transcriptomics reveals sexually dimorphic control of the cholinergic/neurokine interface in schizophrenia and bipolar disorder. Cell Rep., 2019, 29(3), 764-777.e5. doi: 10.1016/j.celrep.2019.09.017 PMID: 31618642
  113. Simchovitz-Gesher, A.; Soreq, H. Pharmaceutical implications of sex-related rna divergence in psychiatric disorders. Trends Pharmacol. Sci., 2020, 41(11), 840-850. doi: 10.1016/j.tips.2020.09.003 PMID: 33012545
  114. Barbash, S.; Shifman, S.; Soreq, H. Global coevolution of human microRNAs and their target genes. Mol. Biol. Evol., 2014, 31(5), 1237-1247. doi: 10.1093/molbev/msu090 PMID: 24600049

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers