Naturally Occurring Cholinesterase Inhibitors from Plants, Fungi, Algae, and Animals: A Review of the Most Effective Inhibitors Reported in 2012-2022


Цитировать

Полный текст

Аннотация

Since the development of the "cholinergic hypothesis" as an important therapeutic approach in the treatment of Alzheimer’s disease (AD), the scientific community has made a remarkable effort to discover new and effective molecules with the ability to inhibit the enzyme acetylcholinesterase (AChE). The natural function of this enzyme is to catalyze the hydrolysis of the neurotransmitter acetylcholine in the brain. Thus, its inhibition increases the levels of this neurochemical and improves the cholinergic functions in patients with AD alleviating the symptoms of this neurological disorder. In recent years, attention has also been focused on the role of another enzyme, butyrylcholinesterase (BChE), mainly in the advanced stages of AD, transforming this enzyme into another target of interest in the search for new anticholinesterase agents. Over the past decades, Nature has proven to be a rich source of bioactive compounds relevant to the discovery of new molecules with potential applications in AD therapy. Bioprospecting of new cholinesterase inhibitors among natural products has led to the discovery of an important number of new AChE and BChE inhibitors that became potential lead compounds for the development of anti-AD drugs. This review summarizes a total of 260 active compounds from 142 studies which correspond to the most relevant (IC50 ≤ 15 µM) research work published during 2012-2022 on plant-derived anticholinesterase compounds, as well as several potent inhibitors obtained from other sources like fungi, algae, and animals.

Об авторах

Ana Murray

INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur

Автор, ответственный за переписку.
Email: info@benthamscience.net

Brunella Biscussi

INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur

Email: info@benthamscience.net

Valeria Cavallaro

INQUISUR-CONICET, Departamento de Química,, Universidad Nacional del Sur

Email: info@benthamscience.net

Martina Donozo

INQUISUR-CONICET, Departamento de Química,, Universidad Nacional del Sur

Email: info@benthamscience.net

Silvana Rodriguez

INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur

Email: info@benthamscience.net

Список литературы

  1. Sharma, P.; Sharma, A.; Fayaz, F.; Wakode, S.; Pottoo, F.H. Biological Signatures of Alzheimer’s Disease. Curr. Top. Med. Chem., 2020, 20(9), 770-781. doi: 10.2174/1568026620666200228095553 PMID: 32108008
  2. Singh, R.K. Recent trends in the management of Alzheimer’s disease: Current therapeutic options and drug repurposing approaches. Curr. Neuropharmacol., 2020, 18(9), 868-882. doi: 10.2174/1570159X18666200128121920 PMID: 31989900
  3. Gąsiorowski, K.; Brokos, J.B.; Sochocka, M.; Ochnik, M.; Chojdak-Łukasiewicz, J.; Zajączkowska, K.; Fułek, M.; Leszek, J. Current and near-future treatment of Alzheimer’s disease. Curr. Neuropharmacol., 2022, 20(6), 1144-1157. doi: 10.2174/1570159X19666211202124239 PMID: 34856906
  4. Guzman-Martinez, L.; Maccioni, R.B.; Farías, G.A.; Fuentes, P.; Navarrete, L.P. Biomarkers for Alzheimer’s Disease. Curr. Alzheimer Res., 2019, 16(6), 518-528. doi: 10.2174/1567205016666190517121140 PMID: 31099321
  5. Stanciu, G.D.; Luca, A.; Rusu, R.N.; Bild, V.; Beschea Chiriac, S.I.; Solcan, C.; Bild, W.; Ababei, D.C. Alzheimer’s disease pharmacotherapy in relation to cholinergic system involvement. Biomolecules, 2019, 10(1), 40. doi: 10.3390/biom10010040 PMID: 31888102
  6. Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335. doi: 10.2174/1570159X11311030006 PMID: 24179466
  7. Sussman, J.L.; Silman, I. Acetylcholinesterase: structure and use as a model for specific cation—protein interactions. Curr. Opin. Struct. Biol., 1992, 2(5), 721-729. doi: 10.1016/0959-440X(92)90207-N
  8. Johnson, G.; Moore, S. The peripheral anionic site of acetylcholinesterase: structure, functions and potential role in rational drug design. Curr. Pharm. Des., 2006, 12(2), 217-225. doi: 10.2174/138161206775193127 PMID: 16454738
  9. De Ferrari, G.V.; Canales, M.A.; Shin, I.; Weiner, L.M.; Silman, I.; Inestrosa, N.C. A structural motif of acetylcholinesterase that promotes amyloid β-peptide fibril formation. Biochemistry, 2001, 40(35), 10447-10457. doi: 10.1021/bi0101392 PMID: 11523986
  10. Tang, H.; Zhao, H.T.; Zhong, S.M.; Wang, Z.Y.; Chen, Z.F.; Liang, H. Novel oxoisoaporphine-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation. Bioorg. Med. Chem. Lett., 2012, 22(6), 2257-2261. doi: 10.1016/j.bmcl.2012.01.090 PMID: 22341944
  11. Lockridge, O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol. Ther., 2015, 148, 34-46. doi: 10.1016/j.pharmthera.2014.11.011 PMID: 25448037
  12. Scheiner, M.; Hoffmann, M.; He, F.; Poeta, E.; Chatonnet, A.; Monti, B.; Maurice, T.; Decker, M. Selective pseudo-irreversible butyrylcholinesterase inhibitors transferring antioxidant moieties to the enzyme show pronounced neuroprotective efficacy in vitro and in vivo in an Alzheimer’s disease mouse model. J. Med. Chem., 2021, 64(13), 9302-9320. doi: 10.1021/acs.jmedchem.1c00534 PMID: 34152756
  13. Lockridge, O.; Bartels, C.F.; Vaughan, T.A.; Wong, C.K.; Norton, S.E.; Johnson, L.L. Complete amino acid sequence of human serum cholinesterase. J. Biol. Chem., 1987, 262(2), 549-557. doi: 10.1016/S0021-9258(19)75818-9 PMID: 3542989
  14. Furukawa-Hibi, Y.; Alkam, T.; Nitta, A.; Matsuyama, A.; Mizoguchi, H.; Suzuki, K.; Moussaoui, S.; Yu, Q.S.; Greig, N.H.; Nagai, T.; Yamada, K. Butyrylcholinesterase inhibitors ameliorate cognitive dysfunction induced by amyloid-β peptide in mice. Behav. Brain Res., 2011, 225(1), 222-229. doi: 10.1016/j.bbr.2011.07.035 PMID: 21820013
  15. Agatonovic-Kustrin, S.; Kettle, C.; Morton, D.W. A molecular approach in drug development for Alzheimer’s disease. Biomed. Pharmacother., 2018, 106, 553-565. doi: 10.1016/j.biopha.2018.06.147 PMID: 29990843
  16. Andrisano, V.; Naldi, M.; De Simone, A.; Bartolini, M. A patent review of butyrylcholinesterase inhibitors and reactivators 2010-2017. Expert Opin. Ther. Pat., 2018, 28(6), 455-465. doi: 10.1080/13543776.2018.1476494
  17. Wang, Y.H.; Wan, Q.L.; Gu, C.D.; Luo, H.R.; Long, C.L. Synthesis and biological evaluation of lycorine derivatives as dual inhibitors of humanacetylcholinesterase and butyrylcholinesterase. Chem. Cent. J., 2012, 6(1), 96. doi: 10.1186/1752-153X-6-96 PMID: 22958411
  18. Konrath, E.L.; Passos, C.S.; Klein-Júnior, L.C.; Henriques, A.T. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. J. Pharm. Pharmacol., 2013, 65(12), 1701-1725. doi: 10.1111/jphp.12090 PMID: 24236981
  19. Heinrich, M.; Lee Teoh, H. Galanthamine from snowdrop—the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. J. Ethnopharmacol., 2004, 92(2-3), 147-162. doi: 10.1016/j.jep.2004.02.012 PMID: 15137996
  20. Yang, G.; Wang, Y.; Tian, J.; Liu, J.P. Huperzine A for Alzheimer’s disease: A systematic review and meta-analysis of randomized clinical trials. PLoS One, 2013, 8(9), e74916. doi: 10.1371/journal.pone.0074916 PMID: 24086396
  21. Houghton, P.J.; Ren, Y.; Howes, M.J. Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep., 2006, 23(2), 181-199. doi: 10.1039/b508966m PMID: 16572227
  22. Williams, P.; Sorribas, A.; Howes, M.J.R. Natural products as a source of Alzheimer’s drug leads. Nat. Prod. Rep., 2011, 28(1), 48-77. doi: 10.1039/C0NP00027B PMID: 21072430
  23. Santos, T.C.; Gomes, T.M.; Pinto, B.A.S.; Camara, A.L.; Paes, A.M.A. Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s disease therapy. Front. Pharmacol., 2018, 9, 1192. doi: 10.3389/fphar.2018.01192 PMID: 30405413
  24. Tamfu, A.N.; Kucukaydin, S.; Yeskaliyeva, B.; Ozturk, M.; Dinica, R.M. Non-alkaloid cholinesterase inhibitory compounds from natural sources. Molecules, 2021, 26(18), 5582. doi: 10.3390/molecules26185582 PMID: 34577053
  25. Murray, A.; Faraoni, M.; Castro, M.; Alza, N.; Cavallaro, V. Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Curr. Neuropharmacol., 2013, 11(4), 388-413. doi: 10.2174/1570159X11311040004 PMID: 24381530
  26. Howes, M-J.R.; Houghton, P.J. Ethnobotanical treatment strategies against Alzheimer’s disease. Curr. Alzheimer Res., 2012, 9(1), 67-85. doi: 10.2174/156720512799015046 PMID: 22329652
  27. Maříková, J.; Mamun, A.A.; Shammari, L.A.; Korábečný, J.; Kučera, T.; Hulcová, D.; Kuneš, J.; Malaník, M.; Vašková, M.; Kohelová, E.; Nováková, L.; Cahlíková, L.; Pour, M. Structure elucidation and cholinesterase inhibition activity of two new minor amaryllidaceae alkaloids. Molecules, 2021, 26(5), 1279. doi: 10.3390/molecules26051279 PMID: 33652925
  28. Kohelová, E.; Maříková, J.; Korábečný, J.; Hulcová, D.; Kučera, T.; Jun, D.; Chlebek, J.; Jenčo, J.; Šafratová, M.; Hrabinová, M.; Ritomská, A.; Malaník, M.; Peřinová, R.; Breiterová, K.; Kuneš, J.; Nováková, L.; Opletal, L.; Cahlíková, L. Alkaloids of Zephyranthes citrina (Amaryllidaceae) and their implication to Alzheimer’s disease: Isolation, structural elucidation and biological activity. Bioorg. Chem., 2021, 107, 104567. doi: 10.1016/j.bioorg.2020.104567 PMID: 33387730
  29. Thorroad, S.; Worawittayanont, P.; Khunnawutmanotham, N.; Chimnoi, N.; Jumruksa, A.; Ruchirawat, S. Three new Lycopodium alkaloids from Huperzia carinata and Huperzia squarrosa. Tetrahedron, 2014, 70(43), 8017-8022. doi: 10.1016/j.tet.2014.08.042
  30. Tang, Y.; Fu, Y.; Xiong, J.; Li, M.; Ma, G.L.; Yang, G.X.; Wei, B.G.; Zhao, Y.; Zhang, H.Y.; Hu, J.F. Casuarinines A-J, lycodine-type alkaloids from Lycopodiastrum casuarinoides. J. Nat. Prod., 2013, 76(8), 1475-1484. doi: 10.1021/np4003355 PMID: 23941108
  31. Nguyen, V.T.; To, D.C.; Tran, M.H.; Oh, S.H.; Kim, J.A.; Ali, M.Y. Isolation of cholinesterase and β-secretase 1 inhibiting compounds from Lycopodiella cernua. Bioorg. Med. Chem., 2015, 23(13), 3126-3134. doi: 10.1016/j.bmc.2015.04.080
  32. Chaichompoo, W.; Rojsitthisak, P.; Pabuprapap, W.; Siriwattanasathien, Y.; Yotmanee, P.; Haritakun, W.; Suksamrarn, A. Stephapierrines A-H, new tetrahydroprotoberberine and aporphine alkaloids from the tubers of Stephania pierrei diels and their anti-cholinesterase activities. RSC Advances, 2021, 11(34), 21153-21169. doi: 10.1039/D1RA03276C PMID: 35479350
  33. Sousa, J.P.M.; Ramos, M.J.; Fernandes, P.A. Modern strategies for the diversification of the supply of natural compounds: the case of alkaloid painkillers. ChemBioChem, 2022, 23(10), e202100623. doi: 10.1002/cbic.202100623 PMID: 34971022
  34. Brunhofer, G.; Fallarero, A.; Karlsson, D.; Batista-Gonzalez, A.; Shinde, P.; Gopi Mohan, C.; Vuorela, P. Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: The case of chelerythrine. Bioorg. Med. Chem., 2012, 20(22), 6669-6679. doi: 10.1016/j.bmc.2012.09.040 PMID: 23062825
  35. Safa, N.; Trobec, T.; Holland, D.C.; Slazak, B.; Jacobsson, E.; Hawkes, J.A.; Frangež, R.; Sepčić, K.; Göransson, U.; Moodie, L.W.K.; Robertson, L.P. Spatial distribution and stability of cholinesterase inhibitory protoberberine alkaloids from Papaver setiferum. J. Nat. Prod., 2022, 85(1), 215-224. doi: 10.1021/acs.jnatprod.1c00980 PMID: 34910498
  36. Hao, D-C. Drug Metabolism and Disposition Diversity of Ranunculales Phytometabolites. In: Ranunculales Medicinal Plants; Academic Press, 2019; pp. 175-221. doi: 10.1016/B978-0-12-814232-5.00005-8
  37. Li, P.; Liu, S.; Liu, Q.; Shen, J.; Yang, R.; Jiang, B. Screening of acetylcholinesterase inhibitors and characterizing of phytochemical constituents from Dichocarpum auriculatum (Franch.) W.T. Wang & P. K. Hsiao through UPLC-MS combined with an acetylcholinesterase inhibition assay in vitro. J. Ethnopharmacol., 2019, 245, 112185.
  38. Lima, J.A.; Thiago, T.W.; da Fonseca, A.C.C.; do Amaral, R.F. Geissoschizoline, a promising alkaloid for Alzheimer’s disease: Inhibition of human cholinesterases, anti-inflammatory effects and molecular docking. Bioorg. Chem., 2020, 104, 104215. doi: 10.1016/j.bioorg.2020.104215
  39. Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G. Gaussian 03, revision C. 02; Gaussian, Inc.: Wallingford, CT, 2013.
  40. Liu, Y.M.; Feng, Y.D.; Lu, X.; Nie, J.B.; Li, W.; Wang, L.N. Isosteroidal alkaloids as potent dual-binding site inhibitors of both acetylcholinesterase and butyrylcholinesterase from the bulbs of Fritillaria walujewii. Eur. J. Med. Chem., 2017, 137, 280-291. doi: 10.1016/j.ejmech.2017.06.007
  41. Kitamura, Y.; Kaneko, K.; Shiro, M.; Chen, Y-P.; Hsu, H.; Lee, P.; Xu, G-J. Tortifoline, a novel (20S, 22R)-5.ALPHA.-cevanine alkaloid from Fritillaria tortifolia. Chem. Pharm. Bull. (Tokyo), 1989, 37(6), 1514-1516. doi: 10.1248/cpb.37.1514
  42. Liew, S.Y.; Khaw, K.Y.; Murugaiyah, V.; Looi, C.Y.; Wong, Y.L.; Mustafa, M.R.; Litaudon, M.; Awang, K. Natural indole butyrylcholinesterase inhibitors from Nauclea officinalis. Phytomedicine, 2015, 22(1), 45-48. doi: 10.1016/j.phymed.2014.11.003 PMID: 25636869
  43. Yu, P.; Chen, Z.; Liu, Y.; Gu, Z.; Wang, X.; Zhang, Y.; Ma, Y.; Dong, M.; Tian, Z. Bioactivity-Guided Separation of Anti-Cholinesterase Alkaloids from Uncaria rhynchophlly (Miq.) Miq. Ex Havil Based on HSCCC Coupled with Molecular Docking. Molecules, 2022, 27(6), 2013. doi: 10.3390/molecules27062013 PMID: 35335376
  44. Zhao, T.; Li, C.; Wang, S.; Song, X. Green tea (Camellia sinensis): A review of its phytochemistry, pharmacology, and toxicology. Molecules, 2022, 27(12), 3909. doi: 10.3390/molecules27123909 PMID: 35745040
  45. Gaur, R.; Ke, J.P.; Zhang, P.; Yang, Z.; Bao, G.H. Novel cinnamoylated flavoalkaloids identified in tea with acetylcholinesterase inhibition effect. J. Agric. Food Chem., 2020, 68(10), 3140-3148. doi: 10.1021/acs.jafc.9b08285 PMID: 32053361
  46. Aćimović M.G. Nutraceutical Potential of Apiaceae. In: Bioactive Molecules in Food; Mérillon, J-M.; Ramawat, K.G., Eds.; Springer International Publishing: Cham, 2017; pp. 1-31. doi: 10.1007/978-3-319-54528-8_17-1
  47. Thiviya, P.; Gamage, A.; Piumali, D.; Merah, O.; Madhujith, T. Apiaceae as an important source of antioxidants and their applications. Cosmetics, 2021, 8(4), 111. doi: 10.3390/cosmetics8040111
  48. Sarker, S.D.; Nahar, L. Natural medicine: The genus Angelica. Curr. Med. Chem., 2004, 11, 1479-1500.
  49. Ben Salem, S.; Jabrane, A.; Harzallah-Skhiri, F.; Ben Jannet, H. New bioactive dihydrofuranocoumarins from the roots of the Tunisian Ferula lutea (Poir.) maire. Bioorg. Med. Chem. Lett., 2013, 23, 4248-4252.
  50. Güvenalp, Z.; Özbek, H.; Yerdelen, K.Ö.; Yılmaz, G.; Kazaz, C.; Demirezer, L.Ö. Cholinesterase inhibition and molecular docking studies of sesquiterpene coumarin ethers from Heptaptera cilicica. Rec. Nat. Prod., 2017, 11(5), 462-467. doi: 10.25135/rnp.58.17.03.051
  51. Abdul Wahab, S.M.; Sivasothy, Y.; Liew, S.Y.; Litaudon, M.; Mohamad, J.; Awang, K. Natural cholinesterase inhibitors from Myristica cinnamomea king. Bioorg. Med. Chem. Lett., 2016, 26(15), 3785-3792. doi: 10.1016/j.bmcl.2016.05.046 PMID: 27236720
  52. Amir Rawa, M.S.; Nurul Azman, N.A.; Mohamad, S.; Nogawa, T.; Wahab, H.A. In vitro and in silico anti-acetylcholinesterase activity from Macaranga tanarius and Syzygium jambos. Molecules, 2022, 27(9), 2648. doi: 10.3390/molecules27092648 PMID: 35565998
  53. Kshirsagar, P.; Gaikwad, S.; Pai, S.; Desai, N.; Bapat, V. Evaluation of antioxidant capacity and phytochemical investigation of eleven Clusiaceae members from Western Ghats, India. Biocatal. Agric. Biotechnol., 2022, 44, 102476. doi: 10.1016/j.bcab.2022.102476
  54. Khaw, K.Y.; Choi, S.B.; Tan, S.C.; Wahab, H.A.; Chan, K.L.; Murugaiyah, V. Prenylated xanthones from mangosteen as promising cholinesterase inhibitors and their molecular docking studies. Phytomedicine, 2014, 21(11), 1303-1309. doi: 10.1016/j.phymed.2014.06.017 PMID: 25172794
  55. Rios, M.Y.; Ocampo-Acuña, Y.D.; Ramírez-Cisneros, M.Á.; Salazar-Rios, M.E. Furofuranone Lignans from Leucophyllum ambiguum. J. Nat. Prod., 2020, 83(5), 1424-1431. doi: 10.1021/acs.jnatprod.9b00759 PMID: 32239935
  56. Jung, H.A.; Karki, S.; Kim, J.H.; Choi, J.S. BACE1 and cholinesterase inhibitory activities of Nelumbo nucifera embryos. Arch. Pharm. Res., 2015, 38(6), 1178-1187. doi: 10.1007/s12272-014-0492-4 PMID: 25300425
  57. Mukherjee, P.K.; Mukherjee, D.; Maji, A.K.; Rai, S.; Heinrich, M. The sacred lotus (Nelumbo nucifera) - phytochemical and therapeutic profile. J. Pharm. Pharmacol., 2009, 61(4), 407-422. doi: 10.1211/jpp/61.04.0001 PMID: 19298686
  58. Gonzalez, E.P.; Hagenow, S.; Murillo, M.A.; Stark, H.; Suarez, L.C. Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ1-42 aggregation. Bioorg. Chem., 2020, 98, 103722. doi: 10.1016/j.bioorg.2020.103722
  59. Elsebai, M.F.; Ghabbour, H.A.; Marzouk, A.M.; Salmas, R.E.; Orhan, I.E.; Senol, F.S. Amberboin and lipidiol: X-ray crystalographic data, absolute configuration and inhibition of cholinesterase. Phytochem. Lett., 2018, 27, 44-48. doi: 10.1016/j.phytol.2018.06.023
  60. Bhakta, H.K.; Park, C.H.; Yokozawa, T.; Min, B.S.; Jung, H.A.; Choi, J.S. Kinetics and molecular docking studies of loganin, morroniside and 7-O-galloyl-d-sedoheptulose derived from Corni fructus as cholinesterase and β-secretase 1 inhibitors. Arch. Pharm. Res., 2016, 39(6), 794-805. doi: 10.1007/s12272-016-0745-5 PMID: 27106028
  61. Visen, P.K.S.; Saraswat, B.; Raj, K.; Bhaduri, A.P.; Dubey, M.P. Prevention of galactosamine - induced hepatic damage by the natural product loganin from the plant strychnos nux-vomica: studies on isolated hepatocytes and bile flow in rat. Phyther Res. John Wiley & Sons. Ltd, 1998, 12, 405-408. doi: 10.1002/(SICI)1099-1573(199809)12:6%3C405:AID-PTR322%3E3.0.CO
  62. Santi, M.D.; Arredondo, F.; Carvalho, D.; Echeverry, C.; Prunell, G.; Peralta, M.A.; Cabrera, J.L.; Ortega, M.G.; Savio, E.; Abin-Carriquiry, J.A. Neuroprotective effects of prenylated flavanones isolated from Dalea species, in vitro and in silico studies. Eur. J. Med. Chem., 2020, 206, 112718. PMID: 32861919
  63. Chen, M.; Zhao, H.; Cheng, Y.; Wang, L.; Alotaibi, S.H.; Zhang, Y. Anti-human glioma cancer potentials of neobavaisoflavone as natural antioxidant compound and its inhibition profiles for acetylcholinesterase and butyrylcholinesterase enzymes with molecular modeling and spin density distributions studies. J. Oleo Sci., 2022, 71, 277-288.
  64. Piemontese, L.; Vitucci, G.; Catto, M.; Laghezza, A.; Perna, F.M.; Rullo, M. Natural scaffolds with multi-target activity for the potential treatment of Alzheimer’s disease. Molecules, 2018, 23(9), 2182.
  65. Kato, Y.; Koshino, H.; Uzawa, J.; Anzai, K. Fungerin, a New Antifungal Alkaloid from Fusarium sp. Biosci. Biotechnol. Biochem., 1996, 60, 2081-2083. doi: 10.1271/bbb.60.2081
  66. Nong, X.H.; Wang, Y.F.; Zhang, X.Y.; Zhou, M.P.; Xu, X.Y.; Qi, S.H. Territrem and butyrolactone derivatives from a marine-derived fungus Aspergillus terreus. Mar. Drugs, 2014, 12, 6113-6124.
  67. Lee, J.P.; Kang, M-G.; Lee, J.Y.; Oh, J.M.; Baek, S.C.; Leem, H.H.; Park, D.; Cho, M.L.; Kim, H. Potent inhibition of acetylcholinesterase by sargachromanol I from Sargassum siliquastrum and by selected natural compounds. Bioorg. Chem., 2019, 89, 103043. PMID: 31200287
  68. Xiao, J.; Zhao, X.; Zhong, W.T.; Jiao, F.R.; Wang, X.L.; Ma, L. Bufadienolides from the venom of bufo bufo gargarizans and their enzyme inhibition activities and brine shrimp lethality. Nat. Prod. Commun., 2018, 13, 827-830.
  69. Spinelli, R.; Sanchis, I.; Aimaretti, F.M.; Attademo, A.M.; Portela, M.; Humpola, M.V.; Tonarelli, G.G.; Siano, A.S. Natural multi-target inhibitors of cholinesterases and monoamine oxidase enzymes with antioxidant potential from skin extracts of Hypsiboas cordobae and Pseudis minuta (Anura: Hylidae). Chem. Biodivers., 2019, 16(1), e1800472. doi: 10.1002/cbdv.201800472 PMID: 30412651
  70. Spinelli, R.; Aimaretti, F.M.; López, J.A.; Siano, A.S. Amphibian skin extracts as source of bioactive multi-target agents against different pathways of Alzheimer’s disease. Nat. Prod. Res., 2021, 35, 686-689.
  71. Botić, T.; Defant, A.; Zanini, P.; Žužek, M.C.; Frangež, R.; Janussen, D. Discorhabdin alkaloids from Antarctic latrunculia spp. sponges as a new class of cholinesterase inhibitors. Eur. J. Med. Chem., 2017, 136, 294-304.
  72. Olatunji, O.J.; Ogundajo, A.L.; Oladosu, I.A.; Changwichit, K.; Ingkaninan, K.; Yuenyongsawad, S. Non-competitive inhibition of acetylcholinesterase by bromotyrosine alkaloids. Nat. Prod. Commun., 2014, 9, 1559-1561. doi: 10.1177/1934578X1400901107
  73. Castellanos, F.; Amaya-García, F.; Tello, E.; Ramos, F.A.; Umaña, A.; Puyana, M. Screening of acetylcholinesterase inhibitors in marine organisms from the Caribbean Sea. Nat. Prod. Res., 2019, 33, 3533-3540. doi: 10.1080/14786419.2018.1481837
  74. Sibanyoni, M.N.; Chaudhary, S.K.; Chen, W.; Adhami, H.R.; Combrinck, S.; Maharaj, V. Isolation, in vitro evaluation and molecular docking of acetylcholinesterase inhibitors from South African Amaryllidaceae. Fitoterapia, 2020, 146, 104650. doi: 10.1016/j.fitote.2020.104650
  75. Zhan, G.; Liu, J.; Zhou, J.; Sun, B.; Aisa, H.A.; Yao, G. Amaryllidaceae alkaloids with new framework types from Zephyranthes candida as potent acetylcholinesterase inhibitors. Eur. J. Med. Chem., 2017, 127, 771-780. doi: 10.1016/j.ejmech.2016.10.057 PMID: 27823880
  76. Nilsu, T.; Thorroad, S.; Ruchirawat, S.; Thasana, N. Squarrosine a and pyrrolhuperzine a, new lycopodium alkaloids from thai and philippine Huperzia squarrosa. Planta Med., 2016, 82(11/12), 1046-1050. doi: 10.1055/s-0042-106904 PMID: 27191582
  77. Dong, L.B.; Wu, X.D.; Shi, X.; Zhang, Z.J.; Yang, J.; Zhao, Q.S. Phleghenrines A-D and Neophleghenrine A, Bioactive and structurally rigid Lycopodium alkaloids from Phlegmariurus henryi. Org. Lett., 2016, 18(18), 4498-4501. doi: 10.1021/acs.orglett.6b02065 PMID: 27583693
  78. Rukachaisirikul, T.; Kumjun, S.; Suebsakwong, P.; Apiratikul, N.; Suksamrarn, A. A new pyrrole alkaloid from the roots of Cissampelos pareira. Nat. Prod. Res., 2021, 35, 80-87. doi: 10.1080/14786419.2019.1614576
  79. Dong, J.W.; Cai, L.; Fang, Y.S.; Xiao, H.; Li, Z.J.; Ding, Z.T. Proaporphine and aporphine alkaloids with acetylcholinesterase inhibitory activity from Stephania epigaea. Fitoterapia, 2015, 104, 102-107. doi: 10.1016/j.fitote.2015.05.019 PMID: 26028544
  80. Kong, X.P.; Ren, H.Q.; Liu, E.Y.L.; Leung, K.W.; Guo, S.C.; Duan, R.; Dong, T.T.X.; Tsim, K.W.K. The cholinesterase inhibitory properties of stephaniae tetrandrae radix. Molecules, 2020, 25(24), 5914. doi: 10.3390/molecules25245914 PMID: 33327436
  81. Ahmad, H.; Ahmad, S.; Shah, S.A.A.; Latif, A.; Ali, M.; Khan, F.A.; Tahir, M.N.; Shaheen, F.; Wadood, A.; Ahmad, M. Antioxidant and anticholinesterase potential of diterpenoid alkaloids from Aconitum heterophyllum. Bioorg. Med. Chem., 2017, 25(13), 3368-3376. doi: 10.1016/j.bmc.2017.04.022 PMID: 28457693
  82. Kim, J.H.; Thao, N.P.; Han, Y.K.; Lee, Y.S.; Luyen, B.T.T.; Oanh, H.V.; Kim, Y.H.; Yang, S.Y. The insight of in vitro and in silico studies on cholinesterase inhibitors from the roots of Cimicifuga dahurica (Turcz.). Maxim. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1174-1180. doi: 10.1080/14756366.2018.1491847 PMID: 30286669
  83. Ahmad, H.; Ahmad, S.; Ali, M.; Latif, A.; Shah, S.A.A.; Naz, H.; ur Rahman, N.; Shaheen, F.; Wadood, A.; Khan, H.U.; Ahmad, M. Norditerpenoid alkaloids of Delphinium denudatum as cholinesterase inhibitors. Bioorg. Chem., 2018, 78, 427-435. doi: 10.1016/j.bioorg.2018.04.008 PMID: 29698893
  84. Cheenpracha, S.; Jitonnom, J.; Komek, M.; Ritthiwigrom, T.; Laphookhieo, S. Acetylcholinesterase inhibitory activity and molecular docking study of steroidal alkaloids from Holarrhena pubescens barks. Steroids, 2016, 108, 92-98. doi: 10.1016/j.steroids.2016.01.018 PMID: 26850468
  85. Fadaeinasab, M.; Basiri, A.; Kia, Y.; Karimian, H.; Ali, H.M.; Murugaiyah, V. New indole alkaloids from the bark of rauvolfia reflexa and their cholinesterase inhibitory activity. Cell. Physiol. Biochem., 2015, 37(5), 1997-2011. doi: 10.1159/000438560
  86. Kashyap, P.; Kalaiselvan, V.; Kumar, R.; Kumar, S. Ajmalicine and reserpine: Indole alkaloids as multi-target directed ligands towards factors implicated in Alzheimer’s disease. Molecules, 2020, 25(7), 1609. doi: 10.3390/molecules25071609 PMID: 32244635
  87. Park, J.H.; Whang, W.K. Bioassay-guided isolation of anti-Alzheimer active components from the aerial parts of hedyotis diffusa and simultaneous analysis for marker compounds. Molecules, 2020, 25(24), 5867. doi: 10.3390/molecules25245867 PMID: 33322478
  88. Li, N.; Zhu, H.T.; Wang, D.; Zhang, M.; Yang, C.R.; Zhang, Y.J. New flavoalkaloids with potent α-glucosidase and acetylcholinesterase inhibitory activities from yunnan black tea ‘Jin-Ya’. J. Agric. Food Chem., 2020, 68(30), 7955-7963. doi: 10.1021/acs.jafc.0c02401 PMID: 32628847
  89. Wang, W.; Fu, X.W.; Dai, X.L.; Hua, F.; Chu, G.X.; Chu, M.J.; Hu, F.L.; Ling, T.J.; Gao, L.P.; Xie, Z.W.; Wan, X.C.; Bao, G.H. Novel acetylcholinesterase inhibitors from Zijuan tea and biosynthetic pathway of caffeoylated catechin in tea plant. Food Chem., 2017, 237, 1172-1178. doi: 10.1016/j.foodchem.2017.06.011 PMID: 28763966
  90. Meng, X.H.; Zhu, H.T.; Yan, H.; Wang, D.; Yang, C.R.; Zhang, Y.J. C-8 N-Ethyl-2-pyrrolidinone-substituted flavan-3-ols from the leaves of Camellia sinensis var. pubilimba. J. Agric. Food Chem., 2018, 66, 7150-7155. doi: 10.1021/acs.jafc.8b02066
  91. Kwon, Y.; Kim, H.P.; Kim, M.J.; Chun, W. Acetylcholinesterase inhibitors from Angelica polymorpha stem. Nat. Prod. Sci., 2017, 23(2), 97-102. doi: 10.20307/nps.2017.23.2.97
  92. Adhami, H.R.; Fitz, V.; Lubich, A.; Kaehlig, H.; Zehl, M.; Krenn, L. Acetylcholinesterase inhibitors from galbanum, the oleo gum-resin of Ferula gummosa Boiss. Phytochem. Lett., 2014, 10, lxxxii-lxxxvii. doi: 10.1016/j.phytol.2014.08.023
  93. Park, S.Y.; Lee, N.; Lee, S.; Kim, M.J.; Chun, W.; Kim, H.P.; Yang, H.J.; Lee, H.S.; Kwon, Y. A new 3, 4-epoxyfurocoumarin from Heracleum moellendorffii roots. Nat. Prod. Sci., 2017, 23(3), 213-216. doi: 10.20307/nps.2017.23.3.213
  94. Giap, T.H.; Duc, P.M. Chemical constituents and biological activities of the fruits of Knema pachycarpa de wilde. Nat. Prod. Res., 2021, 35, 455-464.
  95. Yu, M.Y.; Liu, S.N.; Liu, H.; Meng, Q.H.; Qin, X.J.; Liu, H.Y. Acylphloroglucinol trimers from Callistemon salignus seeds: Isolation, configurational assignment, hAChE inhibitory effects, and molecular docking studies. Bioorg. Chem., 2021, 117, 105404. doi: 10.1016/j.bioorg.2021.105404
  96. Liu, H.; He, X.Z.; Feng, M.Y. Acylphloroglucinols with acetylcholinesterase inhibitory effects from the fruits of Eucalyptus robusta. Bioorg. Chem., 2020, 103, 104127. doi: 10.1016/j.bioorg.2020.104127
  97. Qin, X.J.; Liu, H.; Li, P.P.; Ni, W.; He, L.; Khan, A.; Hao, X.J.; Liu, H.Y. Polymethylated acylphloroglucinols from Rhodomyrtus tomentosa exert acetylcholinesterase inhibitory effects. Bioorg. Chem., 2021, 107, 104519. doi: 10.1016/j.bioorg.2020.104519 PMID: 33293058
  98. Jamila, N.; Khairuddean, M.; Yeong, K.K.; Osman, H.; Murugaiyah, V. Cholinesterase inhibitory triterpenoids from the bark of Garcinia hombroniana. J. Enzyme Inhib. Med. Chem., 2015, 30, 133-139.
  99. Jamila, N.; Yeong, K.K.; Murugaiyah, V.; Atlas, A.; Khan, I.; Khan, N. Molecular docking studies and in vitro cholinesterase enzyme inhibitory activities of chemical constituents of Garcinia hombroniana. Nat. Prod. Res., 2015, 29, 86-90.
  100. Jamila, N.; Khan, N.; Khan, I.; Khan, A.A.; Khan, S.N. A bioactive cycloartane triterpene from Garcinia hombroniana. Nat. Prod. Res., 2016, 30, 1388-1397. doi: 10.1080/14786419.2015.1060594
  101. Zhang, J.J.; Yang, X.W.; Liu, X.; Ma, J.Z.; Liao, Y.; Xu, G. 1,9-seco-bicyclic polyprenylated acylphloroglucinols from hypericum uralum. J. Nat. Prod., 2015, 78, 3075-3079. doi: 10.1021/acs.jnatprod.5b00830
  102. Ali, F.; Khan, H.U.; Afzal, M.; Samad, A.; Khan, S.U.; Ali, I. Two new cholinesterase inhibitors asiatoates A and B from Buddleja asiatica. J. Asian Nat. Prod. Res., 2013, 15, 631-637.
  103. Zhang, X.; Oh, M.; Kim, S.; Kim, J.; Kim, H.; Kim, S. Epimediphine, a novel alkaloid from Epimedium koreanum inhibits acetylcholinesterase. Nat. Prod. Res., 2013, 27, 1067-1074.
  104. Wang, M.; Wang, S.; Li, Y.; Wu, P.; Yi, P.; Huang, L. A rare sesquiterpenoid-alkaloid hydrid with selective BuChE inhibitory activity from Valeriana officinalis var. latifolia Miq. Tetrahedron Lett., 2022, 92, 153679. doi: 10.1016/j.tetlet.2022.153679
  105. Queiroz, M.M.F.; Queiroz, E.F.; Zeraik, M.L.; Marti, G.; Favre-Godal, Q.; Simões-Pires, C.; Marcourt, L.; Carrupt, P.A.; Cuendet, M.; Paulo, M.Q.; Bolzani, V.S.; Wolfender, J.L. Antifungals and acetylcholinesterase inhibitors from the stem bark of Croton heliotropiifolius. Phytochem. Lett., 2014, 10, lxxxviii-xciii. doi: 10.1016/j.phytol.2014.08.013
  106. Huang, Q.Q.; Bi, J.L.; Sun, Q.Y.; Yang, F.M.; Wang, Y.H.; Tang, G.H.; Zhao, F.W.; Wang, H.; Xu, J.J.; Kennelly, E.; Long, C.L.; Yin, G.F. Bioactive isoquinoline alkaloids from Corydalis saxicola. Planta Med., 2012, 78(1), 65-70. doi: 10.1055/s-0031-1280126 PMID: 21858757
  107. Wan Othman, W.N.N.; Liew, S.Y.; Khaw, K.Y.; Murugaiyah, V.; Litaudon, M.; Awang, K. Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae). Bioorg. Med. Chem., 2016, 24(18), 4464-4469. doi: 10.1016/j.bmc.2016.07.043 PMID: 27492195
  108. Cao, Y.; Li, H.; Zhang, Y.; Wang, J.; Ren, Y.; Liu, Y.; Wang, M.; He, C.; Chen, X.; Zheng, X.; Feng, W. Alkaloids and lignans with acetylcholinesterase inhibitory activity from the flower buds of Magnolia biondii Pamp. New J. Chem., 2020, 44(25), 10309-10316. doi: 10.1039/D0NJ01537G
  109. Queiroz, M.M.F.; Queiroz, E.F.; Zeraik, M.L.; Ebrahimi, S.N.; Marcourt, L.; Cuendet, M. Chemical composition of the bark of Tetrapterys mucronata and identification of acetylcholinesterase inhibitory constituents. J. Nat. Prod., 2014, 77, 650-656. doi: 10.1021/np401003p
  110. Islam, R.; Adib, M.; Ahsan, M.; Rahman, M.M.; Mazid, M.A. Cholinesterase and glycation inhibition assay of several metabolites obtained from plant and fungi. Dhaka University Journal of Pharmaceutical Sciences, 2019, 18(1) doi: 10.3329/dujps.v18i1.41424
  111. Ramli, R.A.; Lie, W.; Pyne, S.G. Alkaloids from the roots of stichoneuron caudatum and their acetylcholinesterase inhibitory activities. J. Nat. Prod., 2014, 77, 894-901. doi: 10.1021/np400978x
  112. Yang, Y.; Cheng, X.; Liu, W.; Chou, G.; Wang, Z.; Wang, C. Potent AChE and BChE inhibitors isolated from seeds of Peganum harmala Linn by a bioassay-guided fractionation. J. Ethnopharmacol., 2015, 168, 279-286.
  113. Sevindik, H.G.; Güvenalp, Z.; Yerdelen, K.Ö.; Yuca, H.; Demirezer, L.Ö. Research on drug candidate anticholinesterase molecules from Achillea biebersteinii Afan. using by molecular docking and in vitro methods. Med. Chem. Res., 2015, 24(11), 3794-3802. doi: 10.1007/s00044-015-1423-8
  114. Bhakta, H.K.; Park, C.H.; Yokozawa, T.; Tanaka, T.; Jung, H.A.; Choi, J.S. Potential anti-cholinesterase and β-site amyloid precursor protein cleaving enzyme 1 inhibitory activities of cornuside and gallotannins from Cornus officinalis fruits. Arch. Pharm. Res., 2017, 40(7), 836-853. doi: 10.1007/s12272-017-0924-z PMID: 28589255
  115. Chen, L.; Chen, S.; Sun, P.; Liu, X.; Zhan, Z.; Wang, J. Psoralea corylifolia L.: A comprehensive review of its botany, traditional uses, phytochemistry, pharmacology, toxicology, quality control and pharmacokinetics. Chin. Med., 2023, 18(1), 4. doi: 10.1186/s13020-022-00704-6 PMID: 36627680
  116. Jeong, G.S.; Kang, M.G.; Lee, J.Y.; Lee, S.R.; Park, D.; Cho, M.; Kim, H. Inhibition of butyrylcholinesterase and human monoamine oxidase-b by the coumarin glycyrol and liquiritigenin isolated from Glycyrrhiza uralensis. Molecules, 2020, 25(17), 3896. doi: 10.3390/molecules25173896 PMID: 32859055
  117. Ji, S.; Li, Z.; Song, W.; Wang, Y.; Liang, W.; Li, K. Bioactive constituents of Glycyrrhiza uralensis (Licorice): Discovery of the effective components of a traditional herbal medicine. J. Nat. Prod., 2016, 79, 281-292.
  118. Radulović, N.S.; Genčić, M.S.; Stojanović, N.M.; Randjelović, P.J.; Baldovini, N.; Kurteva, V. Prenylated β-diketones, two new additions to the family of biologically active Hypericum perforatum L. (Hypericaceae) secondary metabolites. Food Chem. Toxicol., 2018, 118, 505-513. doi: 10.1016/j.fct.2018.05.009 PMID: 29751080
  119. Devidas, S.B.; Rahmatkar, S.N.; Singh, R.; Sendri, N.; Purohit, R.; Singh, D.; Bhandari, P. Amelioration of cognitive deficit in zebrafish by an undescribed anthraquinone from Juglans regia L.: An in silico, in vitro and in vivo approach. Eur. J. Pharmacol., 2021, 906, 174234. doi: 10.1016/j.ejphar.2021.174234 PMID: 34090895
  120. Murata, T.; Selenge, E.; Oikawa, S.; Ageishi, K.; Batkhuu, J.; Sasaki, K. Cholinesterase-inhibitory diterpenoids and chemical constituents from aerial parts of Caryopteris mongolica. J. Nat. Med., 2015, 69, 471-478.
  121. Ślusarczyk, S.; Senol Deniz, F.S.; Abel, R.; Pecio, Ł.; Pérez-Sánchez, H.; Cerón-Carrasco, J.P.; den-Haan, H.; Banerjee, P.; Preissner, R.; Krzyżak, E.; Oleszek, W.; E Orhan, I.; Matkowski, A. Norditerpenoids with selective anti-cholinesterase activity from the roots of Perovskia atriplicifolia benth. Int. J. Mol. Sci., 2020, 21(12), 1-18. doi: 10.3390/ijms21124475 PMID: 32586060
  122. Seong, S.H.; Ha, M.T.; Min, B.S.; Jung, H.A.; Choi, J.S. Moracin derivatives from Morus radix as dual BACE1 and cholinesterase inhibitors with antioxidant and anti-glycation capacities. Life Sci., 2018, 210, 20-28. doi: 10.1016/j.lfs.2018.08.060 PMID: 30170070
  123. Dai, L.Y.; Yin, Q.M.; Qiu, J.K.; Zhang, Z.Y.; Li, G.; Huang, M.N. Goodyschle A, a new butenolide with significant BchE inhibitory activity from Goodyera schlechtendaliana. Nat. Prod. Res., 2021, 85, 4916-4921. doi: 10.1080/14786419.2020.1744142
  124. Koay, Y.H.; Basiri, A.; Murugaiyah, V.; Chan, K.L. Isocorilagin, a cholinesterase inhibitor from Phyllanthus niruri. Nat. Prod. Commun., 2014, 9, 515-517. doi: 10.1177/1934578X1400900423
  125. Liu, Q.; Shen, J.; Li, P.; Li, Y.; He, C.; Xiao, P. Stilbenoids isolated from the roots of Rheum lhasaense under the guidance of the acetylcholinesterase inhibition activity. J. Nat. Med., 2021, 75(2), 372-380. doi: 10.1007/s11418-020-01478-7 PMID: 33411157
  126. Augustin, N.; Nuthakki, V.K.; Abdullaha, M.; Hassan, Q.P.; Gandhi, S.G.; Bharate, S.B. Discovery of helminthosporin, an anthraquinone isolated from Rumex abyssinicus Jacq as a dual cholinesterase inhibitor. ACS Omega, 2020, 5(3), 1616-1624. doi: 10.1021/acsomega.9b03693 PMID: 32010836
  127. Khan, S.; Wang, Z.; Wang, R.; Zhang, L. Horizontoates A-C: New cholinesterase inhibitors from Cotoneaster horizontalis. Phytochem. Lett., 2014, 10, 204-208. doi: 10.1016/j.phytol.2014.09.007
  128. Zhang, F.; Li, S.; Liu, C.; Fang, K.; Jiang, Y.; Zhang, J.; Lan, J.; Zhu, L.; Pang, H.; Wang, G. Rapid screening for acetylcholinesterase inhibitors in Selaginella doederleinii Hieron by using functionalized magnetic Fe3O4 nanoparticles. Talanta, 2022, 243, 123284. doi: 10.1016/j.talanta.2022.123284 PMID: 35255433
  129. Zhou, Z.Q.; Xiao, J.; Fan, H.X.; Yu, Y.; He, R.R.; Feng, X.L.; Kurihara, H.; So, K.F.; Yao, X.S.; Gao, H. Polyphenols from wolfberry and their bioactivities. Food Chem., 2017, 214, 644-654. doi: 10.1016/j.foodchem.2016.07.105 PMID: 27507521
  130. Lee, J.S.; Kim, J.H.; Han, Y.K.; Ma, J.Y.; Kim, Y.H.; Li, W.; Yang, S.Y. Cholinesterases inhibition studies of biological active compounds from the rhizomes of Alpinia officinarum Hance and in silico molecular dynamics. Int. J. Biol. Macromol., 2018, 120(PtB), 2442-2447. doi: 10.1016/j.ijbiomac.2018.09.014 PMID: 30193916
  131. Kalaycıoğlu, Z.; Gazioğlu, I.; Erim, F.B. Comparison of antioxidant, anticholinesterase, and antidiabetic activities of three curcuminoids isolated from Curcuma longa L. Nat. Prod. Res., 2017, 31, 219-7.
  132. Lin, S.; Yan, S.; Liu, Y.; Zhang, X.; Cao, F.; He, Y. New secondary metabolites with immunosuppressive and BChE inhibitory activities from an endophytic fungus Daldinia sp. TJ403-LS1. Bioorg. Chem., 2021, 114, 105091. doi: 10.1016/j.bioorg.2021.105091
  133. Xiao, Y.; Liang, W.; Zhang, Z.; Wang, Y.; Zhang, S.; Liu, J. Polyketide derivatives from the endophytic fungus Phaeosphaeria sp. LF5 isolated from Huperzia serrata and their acetylcholinesterase inhibitory activities. J. Fungi, 2022, 8(3), 232.
  134. Sallam, A.; Sabry, M.A.; Galala, A.A. Westalsan: A new acetylcholine esterase inhibitor from the endophytic fungus Westerdykella nigra. Chem. Biodivers., 2021, 18(4), e2000957. doi: 10.1002/cbdv.202000957 PMID: 33555630
  135. Xiao, Z.; Huang, H.; Shao, C.; Xia, X.; Ma, L.; Huang, X.; Lu, Y.; Lin, Y.; Long, Y.; She, Z. Asperterpenols A and B, new sesterterpenoids isolated from a mangrove endophytic fungus Aspergillus sp. 085242. Org. Lett., 2013, 15(10), 2522-2525. doi: 10.1021/ol401005j PMID: 23642191
  136. Long, Y.; Cui, H.; Liu, X.; Xiao, Z.; Wen, S.; She, Z. Acetylcholinesterase inhibitory meroterpenoid from a mangrove endophytic fungus Aspergillus sp. 16-5c. Molecules, 2017, 22(5), 727.
  137. Wang, M.; Sun, M.; Hao, H.; Lu, C. Avertoxins A-D, Prenyl Asteltoxin Derivatives from Aspergillus versicolor Y10, an endophytic fungus of Huperzia serrata. J. Nat. Prod., 2015, 78, 3067-3070. doi: 10.1021/acs.jnatprod.5b00600
  138. Ding, B.; Wang, Z.; Huang, X.; Liu, Y.; Chen, W.; She, Z. Bioactive α-pyrone meroterpenoids from mangrove endophytic fungus Penicillium sp. Nat. Prod. Res., 2016, 30, 2805-2812. doi: 10.1080/14786419.2016.1164702
  139. Choi, B.W.; Lee, H.S.; Shin, H.C.; Lee, B.H. Multifunctional activity of polyphenolic compounds associated with a potential for Alzheimer’s disease therapy from Ecklonia cava. Phytother. Res., 2015, 29(4), 549-553. doi: 10.1002/ptr.5282 PMID: 25640212
  140. Choi, J.S.; Haulader, S.; Karki, S.; Jung, H.J.; Kim, H.R.; Jung, H.A. Acetyl- and butyryl-cholinesterase inhibitory activities of the edible brown alga Eisenia bicyclis. Arch. Pharm. Res., 2015, 38(8), 1477-1487. doi: 10.1007/s12272-014-0515-1 PMID: 25370610
  141. Seong, S.H.; Ali, M.Y.; Kim, H.R.; Jung, H.A.; Choi, J.S. BACE1 inhibitory activity and molecular docking analysis of meroterpenoids from Sargassum serratifolium. Bioorg. Med. Chem., 2017, 25(15), 3964-3970. doi: 10.1016/j.bmc.2017.05.033 PMID: 28576634
  142. Liu, Y-M.; Fan, J-J.; Wang, L-N. Discovery of guanidine derivatives from Buthus martensii Karsch with metal-binding and cholinesterase inhibition properties. Molecules, 2021, 26(21), 6737.
  143. Vitale, R.M.; Rispoli, V.; Desiderio, D.; Sgammato, R.; Thellung, S.; Canale, C.; Vassalli, M.; Carbone, M.; Ciavatta, M.L.; Mollo, E.; Felicità, V.; Arcone, R.; Gavagnin Capoggiani, M.; Masullo, M.; Florio, T.; Amodeo, P. In silico identification and experimental validation of novel anti-Alzheimer’s multitargeted ligands from a marine source featuring a "2-aminoimidazole plus aromatic group" scaffold. ACS Chem. Neurosci., 2018, 9(6), 1290-1303. doi: 10.1021/acschemneuro.7b00416 PMID: 29473731
  144. Sirimangkalakitti, N.; Olatunji, O.J.; Changwichit, K.; Saesong, T.; Chamni, S.; Chanvorachote, P. Bromotyrosine alkaloids with acetylcholinesterase inhibitory activity from the thai sponge Acanthodendrilla sp. Nat. Prod. Commun., 2015, 10, 1945-1949. doi: 10.1177/1934578X1501001135
  145. Ómarsdóttir, S.; Wang, X.; Liu, H.; Duggan, B.M.; Molinski, T.F.; Lepadins, I.K. 3-O-(3′-Methylthio)acryloyloxy-decahydroquinoline esters from a bahamian Ascidian didemnum sp. assignment of absolute stereostructures. J. Org. Chem., 2018, 83, 13670-13677. doi: 10.1021/acs.joc.8b01609
  146. Olsen, E.K.; Hansen, E.; W K Moodie, L.; Isaksson, J.; Sepčić, K.; Cergolj, M.; Svenson, J.; Andersen, J.H. Marine AChE inhibitors isolated from Geodia barretti: Natural compounds and their synthetic analogs. Org. Biomol. Chem., 2016, 14(5), 1629-1640. doi: 10.1039/C5OB02416A PMID: 26695619

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024