Future Directions for Developing Non-dopaminergic Strategies for the Treatment of Parkinsons Disease
- Autores: Wamelen D.1, Leta V.2, Chaudhuri K.R.3, Jenner P.4
-
Afiliações:
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience,, Kings College London
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience,, Kings College London
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, Kings College London
- School of Cancer & Pharmaceutical Sciences, Institute of Pharmaceutical Science, Kings College London
- Edição: Volume 22, Nº 10 (2024)
- Páginas: 1606-1620
- Seção: Neurology
- URL: https://rjraap.com/1570-159X/article/view/644297
- DOI: https://doi.org/10.2174/1570159X21666230731110709
- ID: 644297
Citar
Texto integral
Resumo
The symptomatic treatment of Parkinsons disease (PD) has been dominated by the use of dopaminergic medication, but significant unmet need remains, much of which is related to non-motor symptoms and the involvement of non-dopaminergic transmitter systems. As such, little has changed in the past decades that has led to milestone advances in therapy and significantly improved treatment paradigms and patient outcomes, particularly in relation to symptoms unresponsive to levodopa. This review has looked at how pharmacological approaches to treatment are likely to develop in the near and distant future and will focus on two areas: 1) novel non-dopaminergic pharmacological strategies to control motor symptoms; and 2) novel non-dopaminergic approaches for the treatment of non-motor symptoms. The overall objective of this review is to use a crystal ball approach to the future of drug discovery in PD and move away from the more traditional dopamine-based treatments. Here, we discuss promising non-dopaminergic and dirty drugs that have the potential to become new key players in the field of Parkinsons disease treatment.
Palavras-chave
Sobre autores
Daniel Wamelen
Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience,, Kings College London
Autor responsável pela correspondência
Email: info@benthamscience.net
Valentina Leta
Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience,, Kings College London
Email: info@benthamscience.net
K. Chaudhuri
Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, Kings College London
Email: info@benthamscience.net
Peter Jenner
School of Cancer & Pharmaceutical Sciences, Institute of Pharmaceutical Science, Kings College London
Email: info@benthamscience.net
Bibliografia
- Parkinson, J. An essay on the shaking palsy. J. Neuropsychiatry Clin. Neurosci., 2002, 14(2), 223-236. doi: 10.1176/jnp.14.2.223 PMID: 11983801
- Yahr, M.D.; Duvoisin, R.C.; Schear, M.J.; Barrett, R.E.; Hoehn, M.M. Treatment of parkinsonism with levodopa. Arch. Neurol., 1969, 21(4), 343-354. doi: 10.1001/archneur.1969.00480160015001 PMID: 5820999
- Schwab, R.S.; England, A.C., Jr; Amantadine, H.C.L. Amantadine HCL (Symmetrel) and its relation to Levo-Dopa in the treatment of Parkinsons disease. Trans. Am. Neurol. Assoc., 1969, 94, 85-90. PMID: 4907453
- Birchfield, R.I. Levodopa: Problems, promise, patience and persistence. Northwest Med., 1970, 69(8), 561-563. PMID: 5459300
- LeWitt, P.A.; Chaudhuri, K.R. Unmet needs in Parkinson disease: Motor and non-motor. Parkinsonism Relat. Disord., 2020, 80(Suppl. 1), S7-S12. doi: 10.1016/j.parkreldis.2020.09.024 PMID: 33349582
- Politis, M.; Wu, K.; Molloy, S.; G Bain, P.; Chaudhuri, K.R.; Piccini, P. Parkinsons disease symptoms: The patients perspective. Mov. Disord., 2010, 25(11), 1646-1651. doi: 10.1002/mds.23135 PMID: 20629164
- Lane, E.L. L-DOPA for Parkinsons disease-a bittersweet pill. Eur. J. Neurosci., 2019, 49(3), 384-398. doi: 10.1111/ejn.14119 PMID: 30118169
- Chaudhuri, K.R.; Jenner, P.; Antonini, A. Dyskinesia Matters: But not as much as it used to. Mov. Disord., 2020, 35(5), 900-901. doi: 10.1002/mds.28047 PMID: 32415717
- Leta, V.; Jenner, P.; Chaudhuri, K.R.; Antonini, A. Can therapeutic strategies prevent and manage dyskinesia in Parkinsons disease? An update. Expert Opin. Drug Saf., 2019, 18(12), 1203-1218. doi: 10.1080/14740338.2019.1681966 PMID: 31619083
- Goetz, C.G. The history of Parkinsons disease: Early clinical descriptions and neurological therapies. Cold Spring Harb. Perspect. Med., 2011, 1(1), a008862. doi: 10.1101/cshperspect.a008862 PMID: 22229124
- van Wamelen, D.J.; Sauerbier, A.; Leta, V.; Rodriguez-Blazquez, C.; Falup-Pecurariu, C.; Rodriguez-Violante, M.; Rizos, A.; Tsuboi, Y.; Metta, V.; Bhidayasiri, R.; Bhattacharya, K.; Borgohain, R.; Prashanth, L.K.; Rosales, R.; Lewis, S.; Fung, V.; Behari, M.; Goyal, V.; Kishore, A.; Lloret, S.P.; Martinez-Martin, P.; Chaudhuri, K.R. Cross-sectional analysis of the Parkinsons disease non-motor international longitudinal Study baseline non-motor characteristics, geographical distribution and impact on quality of life. Sci. Rep., 2021, 11(1), 9611. doi: 10.1038/s41598-021-88651-4 PMID: 33953218
- Martinez-Martin, P.; Schrag, A.; Weintraub, D.; Rizos, A.; Rodriguez-Blazquez, C.; Chaudhuri, K.R. Pilot study of the international parkinson and movement disorder society-sponsored Non-motor Rating Scale (MDS-NMS). Mov. Disord. Clin. Pract., 2019, 6(3), 227-234. doi: 10.1002/mdc3.12728 PMID: 30949554
- Rosqvist, K.; Odin, P.; Hagell, P.; Iwarsson, S.; Nilsson, M.H.; Storch, A. Dopaminergic effect on non-motor symptoms in late stage Parkinsons Disease. J. Parkinsons Dis., 2018, 8(3), 409-420. doi: 10.3233/JPD-181380 PMID: 30056433
- Wamelen, D.J.V.; Rukavina, K.; Podlewska, A.M.; Chaudhuri, K.R. Advances in the pharmacological and non-pharmacological management of non-motor symptoms in Parkinsons disease: An update since 2017. Curr. Neuropharmacol., 2023, 21(8), 1786-1805. doi: 10.2174/1570159X20666220315163856 PMID: 35293295
- Rota, S.; Urso, D.; van Wamelen, D.J.; Leta, V.; Boura, I.; Odin, P.; Espay, A.J.; Jenner, P.; Chaudhuri, K.R. Why do OFF periods still occur during continuous drug delivery in Parkinsons disease? Transl. Neurodegener., 2022, 11(1), 43. doi: 10.1186/s40035-022-00317-x PMID: 36229860
- Brotchie, J.M. Nondopaminergic mechanisms in levodopa-induced dyskinesia. Mov. Disord., 2005, 20(8), 919-931. doi: 10.1002/mds.20612 PMID: 16007614
- Jenner, P. Pathophysiology and biochemistry of dyskinesia: Clues for the development of non-dopaminergic treatments. J. Neurol., 2000, 247(S2), II43-II50. doi: 10.1007/PL00007760 PMID: 10991665
- Stayte, S.; Vissel, B. Advances in non-dopaminergic treatments for Parkinsons disease. Front. Neurosci., 2014, 8, 113. doi: 10.3389/fnins.2014.00113 PMID: 24904259
- Schapira, A.H.V.; Chaudhuri, K.R.; Jenner, P. Erratum: Non-motor features of Parkinson disease. Nat. Rev. Neurosci., 2017, 18(8), 509. doi: 10.1038/nrn.2017.91 PMID: 28720825
- Seppi, K.; Ray Chaudhuri, K.; Coelho, M.; Fox, S.H.; Katzenschlager, R.; Perez Lloret, S.; Weintraub, D.; Sampaio, C.; Chahine, L.; Hametner, E-M.; Heim, B.; Lim, S-Y.; Poewe, W.; Djamshidian-Tehrani, A. Update on treatments for nonmotor symptoms of Parkinsons disease-an evidence-based medicine review. Mov. Disord., 2019, 34(2), 180-198. doi: 10.1002/mds.27602 PMID: 30653247
- Dafsari, H.S.; Martinez-Martin, P.; Rizos, A.; Trost, M.; Santos Ghilardi, M.G.; Reddy, P.; Sauerbier, A.; Petry-Schmelzer, J.N.; Kramberger, M.; Borgemeester, R.W.K.; Barbe, M.T.; Ashkan, K.; Silverdale, M.; Evans, J.; Odin, P.; Fonoff, E.T.; Fink, G.R.; Henriksen, T.; Ebersbach, G.; Pirtoek, Z.; Visser-Vandewalle, V.; Antonini, A.; Timmermann, L.; Ray Chaudhuri, K. EuroInf 2: Subthalamic stimulation, apomorphine, and levodopa infusion in Parkinsons disease. Mov. Disord., 2019, 34(3), 353-365. doi: 10.1002/mds.27626 PMID: 30719763
- Martinez-Martin, P.; Reddy, P.; Katzenschlager, R.; Antonini, A.; Todorova, A.; Odin, P.; Henriksen, T.; Martin, A.; Calandrella, D.; Rizos, A.; Bryndum, N.; Glad, A.; Dafsari, H.S.; Timmermann, L.; Ebersbach, G.; Kramberger, M.G.; Samuel, M.; Wenzel, K.; Tomantschger, V.; Storch, A.; Reichmann, H.; Pirtosek, Z.; Trost, M.; Svenningsson, P.; Palhagen, S.; Volkmann, J.; Chaudhuri, K.R. EuroInf: A multicenter comparative observational study of apomorphine and levodopa infusion in Parkinsons disease. Mov. Disord., 2015, 30(4), 510-516. doi: 10.1002/mds.26067 PMID: 25382161
- Leta, V.; Dafsari, H.S.; Sauerbier, A.; Metta, V.; Titova, N.; Timmermann, L.; Ashkan, K.; Samuel, M.; Pekkonen, E.; Odin, P.; Antonini, A.; Martinez-Martin, P.; Parry, M.; van Wamelen, D.J.; Ray Chaudhuri, K. Personalised advanced therapies in parkinsons disease: The role of non-motor symptoms profile. J. Pers. Med., 2021, 11(8), 773. doi: 10.3390/jpm11080773 PMID: 34442417
- Mantovani, E.; Zucchella, C.; Argyriou, A.A.; Tamburin, S. Treatment for cognitive and neuropsychiatric non-motor symptoms in Parkinsons disease: current evidence and future perspectives. Expert Rev. Neurother., 2023, 23(1), 25-43. doi: 10.1080/14737175.2023.2173576 PMID: 36701529
- Titova, N.; Chaudhuri, K.R. Non-motor Parkinson disease: New concepts and personalised management. Med. J. Aust., 2018, 208(9), 404-409. doi: 10.5694/mja17.00993 PMID: 29764353
- Sauerbier, A.; Violante, M.R.; Arriaga, A.C.; Rizos, A.; Trivedi, D.; Martinez-Martin, P.; Parry, M.; Rosa-Grilo, M.; Brown, R.; Chaudhuri, K. Parkinsons disease phenotype across different ethnic groups: comparison of non-motor symptoms in patients living in the United Kingdom and Mexico. Mov. Disord., 2017, 32.
- Jenner, P. The treatment of levodopa-induced dyskinesias: Surfing the serotoninergic wave. Mov. Disord., 2018, 33(11), 1670-1672. doi: 10.1002/mds.27525 PMID: 30485909
- Sun, C.; Armstrong, M.J. Treatment of Parkinsons Disease with cognitive impairment: Current approaches and future directions. Behav. Sci., 2021, 11(4), 54. doi: 10.3390/bs11040054 PMID: 33920698
- Cenci, M.A.; Skovgård, K.; Odin, P. Non-dopaminergic approaches to the treatment of motor complications in Parkinsons disease. Neuropharmacology, 2022, 210, 109027. doi: 10.1016/j.neuropharm.2022.109027 PMID: 35292330
- Takashima, H.; Terada, T.; Bunai, T.; Matsudaira, T.; Obi, T.; Ouchi, Y. In vivo illustration of altered dopaminergic and GABAergic systems in early Parkinsons Disease. Front. Neurol., 2022, 13, 880407. doi: 10.3389/fneur.2022.880407 PMID: 35655619
- Qamar, M.A.; Sauerbier, A.; Politis, M.; Carr, H.; Loehrer, P.A.; Chaudhuri, K.R. Presynaptic dopaminergic terminal imaging and non-motor symptoms assessment of Parkinsons disease: Evidence for dopaminergic basis? NPJ Parkinsons Dis., 2017, 3(1), 5. doi: 10.1038/s41531-016-0006-9 PMID: 28649605
- Altwal, F.; Moon, C.; West, A.R.; Steiner, H. The multimodal serotonergic agent vilazodone inhibits L-DOPA-induced gene regulation in striatal projection neurons and associated dyskinesia in an animal model of Parkinsons disease. Cells, 2020, 9(10), 2265. doi: 10.3390/cells9102265 PMID: 33050305
- Mestre, T.A.; Fereshtehnejad, S.M.; Berg, D.; Bohnen, N.I.; Dujardin, K.; Erro, R.; Espay, A.J.; Halliday, G.; van Hilten, J.J.; Hu, M.T.; Jeon, B.; Klein, C.; Leentjens, A.F.G.; Marinus, J.; Mollenhauer, B.; Postuma, R.; Rajalingam, R.; Rodríguez-Violante, M.; Simuni, T.; Surmeier, D.J.; Weintraub, D.; McDermott, M.P.; Lawton, M.; Marras, C. Parkinsons Disease subtypes: Critical appraisal and recommendations. J. Parkinsons Dis., 2021, 11(2), 395-404. doi: 10.3233/JPD-202472 PMID: 33682731
- Mu, J.; Chaudhuri, K.R.; Bielza, C.; de Pedro-Cuesta, J.; Larrañaga, P.; Martinez-Martin, P. Parkinsons Disease subtypes identified from cluster analysis of motor and non-motor symptoms. Front. Aging Neurosci., 2017, 9, 301. doi: 10.3389/fnagi.2017.00301 PMID: 28979203
- Fereshtehnejad, S.M.; Zeighami, Y.; Dagher, A.; Postuma, R.B. Clinical criteria for subtyping Parkinsons disease: Biomarkers and longitudinal progression. Brain, 2017, 140(7), 1959-1976. doi: 10.1093/brain/awx118 PMID: 28549077
- Sauerbier, A.; Jenner, P.; Todorova, A.; Chaudhuri, K.R. Non motor subtypes and Parkinsons disease. Parkinsonism Relat. Disord., 2016, 22(Suppl. 1), S41-S46. doi: 10.1016/j.parkreldis.2015.09.027 PMID: 26459660
- Classen, J.; Koschel, J.; Oehlwein, C.; Seppi, K.; Urban, P.; Winkler, C.; Wüllner, U.; Storch, A. Nonmotor fluctuations: Phenotypes, pathophysiology, management, and open issues. J. Neural Transm., 2017, 124(8), 1029-1036. doi: 10.1007/s00702-017-1757-0 PMID: 28702850
- Nemade, D.; Subramanian, T.; Shivkumar, V. An update on medical and surgical treatments of Parkinsons Disease. Aging Dis., 2021, 12(4), 1021-1035. doi: 10.14336/AD.2020.1225 PMID: 34221546
- Latif, S.; Jahangeer, M.; Maknoon Razia, D.; Ashiq, M.; Ghaffar, A.; Akram, M.; El Allam, A.; Bouyahya, A.; Garipova, L.; Ali Shariati, M.; Thiruvengadam, M.; Azam Ansari, M. Dopamine in Parkinsons disease. Clin. Chim. Acta, 2021, 522, 114-126. doi: 10.1016/j.cca.2021.08.009 PMID: 34389279
- Svensson, K.A.; Hao, J.; Bruns, R.F. Positive allosteric modulators of the dopamine D1 receptor: A new mechanism for the treatment of neuropsychiatric disorders. Adv. Pharmacol., 2019, 86, 273-305. doi: 10.1016/bs.apha.2019.06.001 PMID: 31378255
- Marino, R.A.; Levy, R. Differential effects of D1 and D2 dopamine agonists on memory, motivation, learning and response time in non-human primates. Eur. J. Neurosci., 2019, 49(2), 199-214. doi: 10.1111/ejn.14208 PMID: 30326151
- Lanza, K.; Meadows, S.M.; Chambers, N.E.; Nuss, E.; Deak, M.M.; Ferré, S.; Bishop, C. Behavioral and cellular dopamine D1 and D3 receptor-mediated synergy: Implications for L-DOPA-induced dyskinesia. Neuropharmacology, 2018, 138, 304-314. doi: 10.1016/j.neuropharm.2018.06.024 PMID: 29936243
- Sugiyama, K.; Kuroiwa, M.; Shuto, T.; Ohnishi, Y.N.; Kawahara, Y.; Miyamoto, Y.; Fukuda, T.; Nishi, A. Subregion-specific regulation of dopamine D1 receptor signaling in the striatum: Implication for L-DOPA-induced dyskinesia. J. Neurosci., 2021, 41(30), 6388-6414. doi: 10.1523/JNEUROSCI.0373-21.2021 PMID: 34131032
- Cerri, S.; Blandini, F. An update on the use of non-ergot dopamine agonists for the treatment of Parkinsons disease. Expert Opin. Pharmacother., 2020, 21(18), 2279-2291. doi: 10.1080/14656566.2020.1805432 PMID: 32804544
- Garcia-Ruiz, P.J. Impulse control disorders and dopamine-related creativity: Pathogenesis and mechanism, short review, and hypothesis. Front. Neurol., 2018, 9, 1041. doi: 10.3389/fneur.2018.01041 PMID: 30574117
- Barbosa, P.; Hapuarachchi, B.; Djamshidian, A.; Strand, K.; Lees, A.J.; de Silva, R.; Holton, J.L.; Warner, T.T. Lower nucleus accumbens α-synuclein load and D3 receptor levels in Parkinsons disease with impulsive compulsive behaviours. Brain, 2019, 142(11), 3580-3591. doi: 10.1093/brain/awz298 PMID: 31603207
- Paudel, P.; Seong, S.H.; Jung, H.A.; Choi, J.S. Characterizing fucoxanthin as a selective dopamine D3/D4 receptor agonist: Relevance to Parkinsons disease. Chem. Biol. Interact., 2019, 310, 108757. doi: 10.1016/j.cbi.2019.108757 PMID: 31323226
- Paudel, P.; Seong, S.H.; Wu, S.; Park, S.; Jung, H.A.; Choi, J.S. Eckol as a potential therapeutic against neurodegenerative diseases targeting dopamine D3/D4 receptors. Mar. Drugs, 2019, 17(2), 108. doi: 10.3390/md17020108 PMID: 30744179
- Hui, Y.; Du, C.; Xu, T.; Zhang, Q.; Tan, H.; Liu, J. Dopamine D4 receptors in the lateral habenula regulate depression-related behaviors via a pre-synaptic mechanism in experimental Parkinsons disease. Neurochem. Int., 2020, 140, 104844. doi: 10.1016/j.neuint.2020.104844 PMID: 32891683
- Allen, N.E.; Canning, C.G.; Almeida, L.R.S.; Bloem, B.R.; Keus, S.H.; Löfgren, N.; Nieuwboer, A.; Verheyden, G.S.; Yamato, T.P.; Sherrington, C. Interventions for preventing falls in Parkinsons disease. Cochrane Database Syst. Rev., 2022, 6(6), CD011574. PMID: 35665915
- Titova, N.; Qamar, M.A.; Chaudhuri, K.R. The nonmotor features of Parkinsons Disease. Int. Rev. Neurobiol., 2017, 132, 33-54. doi: 10.1016/bs.irn.2017.02.016 PMID: 28554413
- Lange, K.W.; Wells, F.R.; Jenner, P.; Marsden, C.D. Altered muscarinic and nicotinic receptor densities in cortical and subcortical brain regions in Parkinsons disease. J. Neurochem., 1993, 60(1), 197-203. doi: 10.1111/j.1471-4159.1993.tb05838.x PMID: 8417140
- Bohnen, N.I.; Albin, R.L. The cholinergic system and Parkinson disease. Behav. Brain Res., 2011, 221(2), 564-573. doi: 10.1016/j.bbr.2009.12.048 PMID: 20060022
- Calabresi, P.; Picconi, B.; Parnetti, L.; Di Filippo, M. A convergent model for cognitive dysfunctions in Parkinsons disease: The critical dopamineacetylcholine synaptic balance. Lancet Neurol., 2006, 5(11), 974-983. doi: 10.1016/S1474-4422(06)70600-7 PMID: 17052664
- Quik, M.; OLeary, K.; Tanner, C.M. Nicotine and Parkinsons disease: Implications for therapy. Mov. Disord., 2008, 23(12), 1641-1652. doi: 10.1002/mds.21900 PMID: 18683238
- Moran, S.P.; Maksymetz, J.; Conn, P.J. Targeting muscarinic acetylcholine receptors for the treatment of psychiatric and neurological disorders. Trends Pharmacol. Sci., 2019, 40(12), 1006-1020. doi: 10.1016/j.tips.2019.10.007 PMID: 31711626
- Melani, R.; Tritsch, N.X. Inhibitory co-transmission from midbrain dopamine neurons relies on presynaptic GABA uptake. Cell Rep., 2022, 39(3), 110716. doi: 10.1016/j.celrep.2022.110716 PMID: 35443174
- Shetty, A.K.; Bates, A. Potential of GABA-ergic cell therapy for schizophrenia, neuropathic pain, and Alzheimer's and Parkinson's diseases. Brain Res., 2016, 1638(Pt A), 74-87. doi: 10.1016/j.brainres.2015.09.019 PMID: 26423935
- Ziegler, M.; Fournier, V.; Bathien, N.; Morselli, P.L.; Rondot, P. Therapeutic response to progabide in neuroleptic- and L-dopa-induced dyskinesias. Clin. Neuropharmacol., 1987, 10(3), 238-246. doi: 10.1097/00002826-198706000-00005 PMID: 2900682
- Tyagi, R.K.; Bisht, R.; Pant, J.; kumar, P.; Majeed, A.B.A.; Prakash, A. Possible role of GABA-B receptor modulation in MPTP induced Parkinsons disease in rats. Exp. Toxicol. Pathol., 2015, 67(2), 211-217. doi: 10.1016/j.etp.2014.12.001 PMID: 25547370
- Sgambato-Faure, V.; Cenci, M.A. Glutamatergic mechanisms in the dyskinesias induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinsons disease. Prog. Neurobiol., 2012, 96(1), 69-86. doi: 10.1016/j.pneurobio.2011.10.005 PMID: 22075179
- OGorman Tuura, R.L.; Baumann, C.R.; Baumann-Vogel, H. Beyond dopamine: GABA, glutamate, and the axial symptoms of Parkinson disease. Front. Neurol., 2018, 9, 806. doi: 10.3389/fneur.2018.00806 PMID: 30319535
- Duty, S. Targeting glutamate receptors to tackle the pathogenesis, clinical symptoms and levodopa-induced dyskinesia associated with Parkinsons disease. CNS Drugs, 2012, 26(12), 1017-1032. doi: 10.1007/s40263-012-0016-z PMID: 23114872
- Ahmed, I.; Bose, S.K.; Pavese, N.; Ramlackhansingh, A.; Turkheimer, F.; Hotton, G.; Hammers, A.; Brooks, D.J. Glutamate NMDA receptor dysregulation in Parkinsons disease with dyskinesias. Brain, 2011, 134(4), 979-986. doi: 10.1093/brain/awr028 PMID: 21371994
- Dimatteo, V.; Pierucci, M.; Esposito, E.; Crescimanno, G.; Benigno, A.; Digiovanni, G. Serotonin modulation of the basal ganglia circuitry: Therapeutic implication for Parkinsons disease and other motor disorders. Prog. Brain Res., 2008, 172, 423-463. doi: 10.1016/S0079-6123(08)00921-7 PMID: 18772045
- Daubert, E.A.; Condron, B.G. Serotonin: A regulator of neuronal morphology and circuitry. Trends Neurosci., 2010, 33(9), 424-434. doi: 10.1016/j.tins.2010.05.005 PMID: 20561690
- Carta, M.; Tronci, E. Serotonin system implication in L-DOPA-induced dyskinesia: From animal models to clinical investigations. Front. Neurol., 2014, 5, 78. doi: 10.3389/fneur.2014.00078 PMID: 24904522
- Carta, M.; Carlsson, T.; Muñoz, A.; Kirik, D.; Björklund, A. Involvement of the serotonin system in l-dopa-induced dyskinesias. Parkinsonism Relat. Disord., 2008, 14(Suppl. 2), S154-S158. doi: 10.1016/j.parkreldis.2008.04.021 PMID: 18579429
- Politis, M.; Niccolini, F. Serotonin in Parkinsons disease. Behav. Brain Res., 2015, 277, 136-145. doi: 10.1016/j.bbr.2014.07.037 PMID: 25086269
- Politis, M.; Wu, K.; Loane, C.; Brooks, D.J.; Kiferle, L.; Turkheimer, F.E.; Bain, P.; Molloy, S.; Piccini, P. Serotonergic mechanisms responsible for levodopa-induced dyskinesias in Parkinsons disease patients. J. Clin. Invest., 2014, 124(3), 1340-1349. doi: 10.1172/JCI71640 PMID: 24531549
- Conti, M.M.; Ostock, C.Y.; Lindenbach, D.; Goldenberg, A.A.; Kampton, E.; Dellisola, R.; Katzman, A.C.; Bishop, C. Effects of prolonged selective serotonin reuptake inhibition on the development and expression of l-DOPA-induced dyskinesia in hemi-parkinsonian rats. Neuropharmacology, 2014, 77, 1-8. doi: 10.1016/j.neuropharm.2013.09.017 PMID: 24067924
- Bezard, E.; Carta, M. Could the serotonin theory give rise to a treatment for levodopa-induced dyskinesia in Parkinsons disease? Brain, 2015, 138(4), 829-830. doi: 10.1093/brain/awu407 PMID: 25669729
- Isaacson, S.H.; Ballard, C.G.; Kreitzman, D.L.; Coate, B.; Norton, J.C.; Fernandez, H.H.; Ilic, T.V.; Azulay, J.P.; Ferreira, J.J.; Abler, V.; Stankovic, S. Efficacy results of pimavanserin from a multi-center, open-label extension study in Parkinsons disease psychosis patients. Parkinsonism Relat. Disord., 2021, 87, 25-31. doi: 10.1016/j.parkreldis.2021.04.012 PMID: 33933853
- Isaacson, S.H.; Coate, B.; Norton, J.; Stankovic, S. Blinded SAPS-PD assessment after 10 weeks of pimavanserin treatment for Parkinsons disease psychosis. J. Parkinsons Dis., 2020, 10(4), 1389-1396. doi: 10.3233/JPD-202047 PMID: 32716320
- DeKarske, D.; Alva, G.; Aldred, J.L.; Coate, B.; Cantillon, M.; Jacobi, L.; Nunez, R.; Norton, J.C.; Abler, V. An Open-Label, 8-week study of safety and efficacy of pimavanserin treatment in adults with Parkinsons Disease and depression. J. Parkinsons Dis., 2020, 10(4), 1751-1761. doi: 10.3233/JPD-202058 PMID: 32804101
- Espay, A.J.; Guskey, M.T.; Norton, J.C.; Coate, B.; Vizcarra, J.A.; Ballard, C.; Factor, S.A.; Friedman, J.H.; Lang, A.E.; Larsen, N.J.; Andersson, C.; Fredericks, D.; Weintraub, D. Pimavanserin for Parkinsons Disease psychosis: Effects stratified by baseline cognition and use of cognitive-enhancing medications. Mov. Disord., 2018, 33(11), 1769-1776. doi: 10.1002/mds.27488 PMID: 30387904
- Haskó, G.; Pacher, P.; Sylvester Vizi, E.; Illes, P. Adenosine receptor signaling in the brain immune system. Trends Pharmacol. Sci., 2005, 26(10), 511-516. doi: 10.1016/j.tips.2005.08.004 PMID: 16125796
- Jenner, P.; Mori, A.; Kanda, T. Can adenosine A2A receptor antagonists be used to treat cognitive impairment, depression or excessive sleepiness in Parkinsons disease? Parkinsonism Relat. Disord., 2020, 80(Suppl. 1), S28-S36. doi: 10.1016/j.parkreldis.2020.09.022 PMID: 33349577
- Kanda, T.; Jenner, P. Can adenosine A2A receptor antagonists modify motor behavior and dyskinesia in experimental models of Parkinsons disease? Parkinsonism Relat. Disord., 2020, 80(Suppl. 1), S21-S27. doi: 10.1016/j.parkreldis.2020.09.026 PMID: 33349576
- Pinna, A. Adenosine A2A receptor antagonists in Parkinsons disease: Progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs, 2014, 28(5), 455-474. doi: 10.1007/s40263-014-0161-7 PMID: 24687255
- Hodgson, R.A.; Bertorelli, R.; Varty, G.B.; Lachowicz, J.E.; Forlani, A.; Fredduzzi, S.; Cohen-Williams, M.E.; Higgins, G.A.; Impagnatiello, F.; Nicolussi, E.; Parra, L.E.; Foster, C.; Zhai, Y.; Neustadt, B.R.; Stamford, A.W.; Parker, E.M.; Reggiani, A.; Hunter, J.C. Characterization of the potent and highly selective A2A receptor antagonists preladenant and SCH 412348 7-2-4-2,4-difluorophenyl-1-piperazinylethyl-2-(2-furanyl)-7H-pyrazolo4, 3-e1,2,4triazolo1,5-cpyrimidin-5-amine in rodent models of movement disorders and depression. J. Pharmacol. Exp. Ther., 2009, 330(1), 294-303. doi: 10.1124/jpet.108.149617 PMID: 19332567
- Hattori, N.; Kikuchi, M.; Adachi, N.; Hewitt, D.; Huyck, S.; Saito, T. Adjunctive preladenant: A placebo-controlled, dose-finding study in Japanese patients with Parkinsons disease. Parkinsonism Relat. Disord., 2016, 32, 73-79. doi: 10.1016/j.parkreldis.2016.08.020 PMID: 27632893
- Stocchi, F.; Rascol, O.; Hauser, R.A.; Huyck, S.; Tzontcheva, A.; Capece, R.; Ho, T.W.; Sklar, P.; Lines, C.; Michelson, D.; Hewitt, D.J. Randomized trial of preladenant, given as monotherapy, in patients with early Parkinson disease. Neurology, 2017, 88(23), 2198-2206. doi: 10.1212/WNL.0000000000004003 PMID: 28490648
- Hauser, R.A.; Stocchi, F.; Rascol, O.; Huyck, S.B.; Capece, R.; Ho, T.W.; Sklar, P.; Lines, C.; Michelson, D.; Hewitt, D. Preladenant as an adjunctive therapy with levodopa in Parkinson disease: Two randomized clinical trials and lessons learned. JAMA Neurol., 2015, 72(12), 1491-1500. doi: 10.1001/jamaneurol.2015.2268 PMID: 26523919
- LeWitt, P.A.; Aradi, S.D.; Hauser, R.A.; Rascol, O. The challenge of developing adenosine A2A antagonists for Parkinson disease: Istradefylline, preladenant, and tozadenant. Parkinsonism Relat. Disord., 2020, 80(Suppl. 1), S54-S63. doi: 10.1016/j.parkreldis.2020.10.027 PMID: 33349581
- Fabbri, M.; Perez-Lloret, S.; Rascol, O. Therapeutic strategies for Parkinsons disease: Promising agents in early clinical development. Expert Opin. Investig. Drugs, 2020, 29(11), 1249-1267. doi: 10.1080/13543784.2020.1814252 PMID: 32853086
- Charvin, D.; Medori, R.; Hauser, R.A.; Rascol, O. Therapeutic strategies for Parkinson disease: Beyond dopaminergic drugs. Nat. Rev. Drug Discov., 2018, 17(11), 804-822. doi: 10.1038/nrd.2018.136 PMID: 30262889
- Frantz, S. Playing dirty. Nature, 2005, 437(7061), 942-943. doi: 10.1038/437942a PMID: 16222266
- Van der Schyf, C.J.; Geldenhuys, W.J. Multimodal drugs and their future for Alzheimers and Parkinsons disease. Int. Rev. Neurobiol., 2011, 100, 107-125. doi: 10.1016/B978-0-12-386467-3.00006-6 PMID: 21971005
- Paul, J.; Nandhu, M.S.; Kuruvilla, K.P.; Paulose, C.S.; Dopamine, D. Dopamine D1 and D2 receptor subtypes functional regulation in corpus striatum of unilateral rotenone lesioned Parkinsons rat model: Effect of serotonin, dopamine and norepinephrine. Neurol. Res., 2010, 32(9), 918-924. doi: 10.1179/016164110X12700393823417 PMID: 20887679
- Factor, S.A. Dopamine agonists. Med. Clin. North Am., 1999, 83(2), 415-443, vi-vii. doi: 10.1016/S0025-7125(05)70112-7 PMID: 10093586
- Yan, R.; Cai, H.; Cui, Y.; Su, D.; Cai, G.; Lin, F.; Feng, T. Comparative efficacy and safety of monoamine oxidase type B inhibitors plus channel blockers and monoamine oxidase type B inhibitors as adjuvant therapy to levodopa in the treatment of Parkinsons disease: A network meta-analysis of randomized controlled trials. Eur. J. Neurol., 2023, 30(4), 1118-1134. PMID: 36437702
- Stocchi, F.; Antonini, A.; Berg, D.; Bergmans, B.; Jost, W.; Katzenschlager, R.; Kulisevsky, J.; Odin, P.; Valldeoriola, F.; Ray Chaudhuri, K. Safinamide in the treatment pathway of Parkinsons Disease: A European Delphi Consensus. NPJ Parkinsons Dis., 2022, 8(1), 17. doi: 10.1038/s41531-022-00277-z PMID: 35190544
- Abbruzzese, G.; Barone, P.; Lopiano, L.; Stocchi, F. The current evidence for the use of safinamide for the treatment of Parkinsons disease. Drug Des. Devel. Ther., 2021, 15, 2507-2517. doi: 10.2147/DDDT.S302673 PMID: 34140766
- Gardoni, F.; Morari, M.; Kulisevsky, J.; Brugnoli, A.; Novello, S.; Pisanò, C.A.; Caccia, C.; Mellone, M.; Melloni, E.; Padoani, G.; Sosti, V.; Vailati, S.; Keywood, C. Safinamide modulates striatal glutamatergic signaling in a rat model of levodopa-induced dyskinesia. J. Pharmacol. Exp. Ther., 2018, 367(3), 442-451. doi: 10.1124/jpet.118.251645 PMID: 30291173
- Pisanò, C.A.; Brugnoli, A.; Novello, S.; Caccia, C.; Keywood, C.; Melloni, E.; Vailati, S.; Padoani, G.; Morari, M. Safinamide inhibits in vivo glutamate release in a rat model of Parkinsons disease. Neuropharmacology, 2020, 167, 108006. doi: 10.1016/j.neuropharm.2020.108006 PMID: 32086070
- Sciaccaluga, M.; Mazzocchetti, P.; Bastioli, G.; Ghiglieri, V.; Cardinale, A.; Mosci, P.; Caccia, C.; Keywood, C.; Melloni, E.; Padoani, G.; Vailati, S.; Picconi, B.; Calabresi, P.; Tozzi, A. Effects of safinamide on the glutamatergic striatal network in experimental Parkinsons disease. Neuropharmacology, 2020, 170, 108024. doi: 10.1016/j.neuropharm.2020.108024 PMID: 32142791
- Grégoire, L.; Jourdain, V.A.; Townsend, M.; Roach, A.; Di Paolo, T. Safinamide reduces dyskinesias and prolongs l-DOPA antiparkinsonian effect in parkinsonian monkeys. Parkinsonism Relat. Disord., 2013, 19(5), 508-514. doi: 10.1016/j.parkreldis.2013.01.009 PMID: 23402994
- Grigoriou, S.; Martínez-Martín, P.; Ray Chaudhuri, K.; Rukavina, K.; Leta, V.; Hausbrand, D.; Falkenburger, B.; Odin, P.; Reichmann, H. Effects of safinamide on pain in patients with fluctuating Parkinsons disease. Brain Behav., 2021, 11(10), e2336. doi: 10.1002/brb3.2336 PMID: 34478245
- Li, C.; Xue, L.; Liu, Y.; Yang, Z.; Chi, S.; Xie, A. Zonisamide for the treatment of Parkinson disease: A current update. Front. Neurosci., 2020, 14, 574652. doi: 10.3389/fnins.2020.574652 PMID: 33408605
- Oki, M.; Kaneko, S.; Morise, S.; Takenouchi, N.; Hashizume, T.; Tsuge, A.; Nakamura, M.; Wate, R.; Kusaka, H. Zonisamide ameliorates levodopa-induced dyskinesia and reduces expression of striatal genes in Parkinson model rats. Neurosci. Res., 2017, 122, 45-50. doi: 10.1016/j.neures.2017.04.003 PMID: 28577977
- Murata, M.; Hasegawa, K.; Kanazawa, I.; Fukasaka, J.; Kochi, K.; Shimazu, R. Zonisamide improves wearing-off in Parkinsons disease: A randomized, double-blind study. Mov. Disord., 2015, 30(10), 1343-1350. doi: 10.1002/mds.26286 PMID: 26094993
- Chang, C.; Ramphul, K. Amantadine. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2023.
- Hauser, R.A.; Lytle, J.; Formella, A.E.; Tanner, C.M. Amantadine delayed release/extended release capsules significantly reduce OFF time in Parkinsons disease. NPJ Parkinsons Dis., 2022, 8(1), 29. doi: 10.1038/s41531-022-00291-1 PMID: 35304480
- Araújo, R.; Aranda-Martínez, J.D.; Aranda-Abreu, G.E. Amantadine treatment for people with COVID-19. Arch. Med. Res., 2020, 51(7), 739-740. doi: 10.1016/j.arcmed.2020.06.009 PMID: 32571606
- Wesnes, K.A.; Aarsland, D.; Ballard, C.; Londos, E. Memantine improves attention and episodic memory in Parkinsons disease dementia and dementia with Lewy bodies. Int. J. Geriatr. Psychiatry, 2015, 30(1), 46-54. doi: 10.1002/gps.4109 PMID: 24737460
- Wang, H.F.; Yu, J.T.; Tang, S.W.; Jiang, T.; Tan, C.C.; Meng, X.F.; Wang, C.; Tan, M.S.; Tan, L. Efficacy and safety of cholinesterase inhibitors and memantine in cognitive impairment in Parkinsons disease, Parkinsons disease dementia, and dementia with Lewy bodies: Systematic review with meta-analysis and trial sequential analysis. J. Neurol. Neurosurg. Psychiatry, 2015, 86(2), 135-143. doi: 10.1136/jnnp-2014-307659 PMID: 24828899
- Seppi, K.; Weintraub, D.; Coelho, M.; Perez-Lloret, S.; Fox, S.H.; Katzenschlager, R.; Hametner, E.M.; Poewe, W.; Rascol, O.; Goetz, C.G.; Sampaio, C. The movement disorder society evidence-based medicine review update: Treatments for the non-motor symptoms of Parkinsons disease. Mov. Disord., 2011, 26(S3), S42-S80. doi: 10.1002/mds.23884 PMID: 22021174
- Trifonova, O.P.; Maslov, D.L.; Balashova, E.E.; Urazgildeeva, G.R.; Abaimov, D.A.; Fedotova, E.Y.; Poleschuk, V.V.; Illarioshkin, S.N.; Lokhov, P.G. Parkinsons Disease: Available clinical and promising omics tests for diagnostics, disease risk assessment, and pharmacotherapy personalization. Diagnostics, 2020, 10(5), 339. doi: 10.3390/diagnostics10050339 PMID: 32466249
- Teshuva, I.; Hillel, I.; Gazit, E.; Giladi, N.; Mirelman, A.; Hausdorff, J.M. Using wearables to assess bradykinesia and rigidity in patients with Parkinsons disease: A focused, narrative review of the literature. J. Neural Transm., 2019, 126(6), 699-710. doi: 10.1007/s00702-019-02017-9 PMID: 31115669
- van Wamelen, D.J.; Sringean, J.; Trivedi, D.; Carroll, C.B.; Schrag, A.E.; Odin, P.; Antonini, A.; Bloem, B.R.; Bhidayasiri, R.; Chaudhuri, K.R. Digital health technology for non-motor symptoms in people with Parkinsons disease: Futile or future? Parkinsonism Relat. Disord., 2021, 89, 186-194. doi: 10.1016/j.parkreldis.2021.07.032 PMID: 34362670
- van Wamelen, D.J.; Martinez-Martin, P.; Weintraub, D.; Schrag, A.; Antonini, A.; Falup-Pecurariu, C.; Odin, P.; Ray Chaudhuri, K. The Non‐Motor Symptoms Scale in Parkinsons disease: Validation and use. Acta Neurol. Scand., 2021, 143(1), 3-12. doi: 10.1111/ane.13336 PMID: 32813911
- Qureshi, A.R.; Rana, A.Q.; Malik, S.H.; Rizvi, S.F.H.; Akhter, S.; Vannabouathong, C.; Sarfraz, Z.; Rana, R. Comprehensive examination of therapies for pain in Parkinsons disease: A systematic review and meta-analysis. Neuroepidemiology, 2018, 51(3-4), 190-206. doi: 10.1159/000492221 PMID: 30153669
- Sharaf, J.; Williams, K.A.D.; Tariq, M.; Acharekar, M.V.; Guerrero Saldivia, S.E.; Unnikrishnan, S.; Chavarria, Y.Y.; Akindele, A.O.; Jalkh, A.P.; Eastmond, A.K.; Shetty, C.; Rizvi, S.M.H.A.; Mohammed, L. The efficacy of safinamide in the management of Parkinsons disease: A systematic review. Cureus, 2022, 14(9), e29118. doi: 10.7759/cureus.29118 PMID: 36259026
- Dulski, J.; Uitti, R.J.; Ross, O.A.; Wszolek, Z.K. Genetic architecture of Parkinsons disease subtypes-review of the literature. Front. Aging Neurosci., 2022, 14, 1023574. doi: 10.3389/fnagi.2022.1023574 PMID: 36337703
- Rodriguez-Sanchez, F.; Rodriguez-Blazquez, C.; Bielza, C.; Larrañaga, P.; Weintraub, D.; Martinez-Martin, P.; Rizos, A.; Schrag, A.; Chaudhuri, K.R. Identifying Parkinsons disease subtypes with motor and non-motor symptoms via model-based multi-partition clustering. Sci. Rep., 2021, 11(1), 23645. doi: 10.1038/s41598-021-03118-w PMID: 34880345
- Huang, X.; Ng, S.Y.E.; Chia, N.S.Y.; Setiawan, F.; Tay, K.Y.; Au, W.L.; Tan, E.K.; Tan, L.C.S. Non-motor symptoms in early Parkinsons disease with different motor subtypes and their associations with quality of life. Eur. J. Neurol., 2019, 26(3), 400-406. doi: 10.1111/ene.13803 PMID: 30175887
- Zhang, X.; Chou, J.; Liang, J.; Xiao, C.; Zhao, Y.; Sarva, H.; Henchcliffe, C.; Wang, F. Data-driven subtyping of parkinsons disease using longitudinal clinical records: A cohort study. Sci. Rep., 2019, 9(1), 797. doi: 10.1038/s41598-018-37545-z PMID: 30692568
- Marras, C.; Chaudhuri, K.R.; Titova, N.; Mestre, T.A. Therapy of Parkinsons disease subtypes. Neurotherapeutics, 2020, 17(4), 1366-1377. doi: 10.1007/s13311-020-00894-7 PMID: 32749651
- Langston, J.W. The parkinsons complex: Parkinsonism is just the tip of the iceberg. Ann. Neurol., 2006, 59(4), 591-596. doi: 10.1002/ana.20834 PMID: 16566021
- Titova, N.; Padmakumar, C.; Lewis, S.J.G.; Chaudhuri, K.R. Parkinsons: A syndrome rather than a disease? J. Neural Transm., 2017, 124(8), 907-914. doi: 10.1007/s00702-016-1667-6 PMID: 28028643
- Hirsch, E.C.; Graybiel, A.M.; Duyckaerts, C.; Javoy-Agid, F. Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc. Natl. Acad. Sci. USA, 1987, 84(16), 5976-5980. doi: 10.1073/pnas.84.16.5976 PMID: 3475716
- Jellinger, K. Overview of morphological changes in Parkinsons disease. Adv. Neurol., 1987, 45, 1-18. PMID: 3825687
- Halliday, G.M.; Blumbergs, P.C.; Cotton, R.G.H.; Blessing, W.W.; Geffen, L.B. Loss of brainstem serotonin- and substance P-containing neurons in Parkinsons disease. Brain Res., 1990, 510(1), 104-107. doi: 10.1016/0006-8993(90)90733-R PMID: 1691042
- Weintraub, D.; Simuni, T.; Caspell-Garcia, C.; Coffey, C.; Lasch, S.; Siderowf, A.; Aarsland, D.; Barone, P.; Burn, D.; Chahine, L.M.; Eberling, J.; Espay, A.J.; Foster, E.D.; Leverenz, J.B.; Litvan, I.; Richard, I.; Troyer, M.D.; Hawkins, K.A. Cognitive performance and neuropsychiatric symptoms in early, untreated Parkinsons disease. Mov. Disord., 2015, 30(7), 919-927. doi: 10.1002/mds.26170 PMID: 25737166
- Gjerløff, T.; Fedorova, T.; Knudsen, K.; Munk, O.L.; Nahimi, A.; Jacobsen, S.; Danielsen, E.H.; Terkelsen, A.J.; Hansen, J.; Pavese, N.; Brooks, D.J.; Borghammer, P. Imaging acetylcholinesterase density in peripheral organs in Parkinsons disease with 11C-donepezil PET. Brain, 2015, 138(3), 653-663. doi: 10.1093/brain/awu369 PMID: 25539902
- OCallaghan, C.; Lewis, S.J.G. Cognition in Parkinsons disease. Int. Rev. Neurobiol., 2017, 133, 557-583. doi: 10.1016/bs.irn.2017.05.002 PMID: 28802933
- Pavese, N.; Metta, V.; Bose, S.K.; Chaudhuri, K.R.; Brooks, D.J. Fatigue in Parkinsons disease is linked to striatal and limbic serotonergic dysfunction. Brain, 2010, 133(11), 3434-3443. doi: 10.1093/brain/awq268 PMID: 20884645
- Svenningsson, P.; Odin, P.; Dizdar, N.; Johansson, A.; Grigoriou, S.; Tsitsi, P.; Wictorin, K.; Bergquist, F.; Nyholm, D.; Rinne, J.; Hansson, F.; Sonesson, C.; Tedroff, J.; Andersson, K.; Sundgren, M.; Duzynski, W.; Carlström, C. A phase 2a trial investigating the safety and tolerability of the novel cortical enhancer IRL752 in Parkinsons disease dementia. Mov. Disord., 2020, 35(6), 1046-1054. doi: 10.1002/mds.28020 PMID: 32198802
- Horsager, J.; Okkels, N.; Hansen, A.K.; Damholdt, M.F.; Andersen, K.H.; Fedorova, T.D.; Munk, O.L.; Danielsen, E.H.; Pavese, N.; Brooks, D.J.; Borghammer, P. Mapping cholinergic synaptic loss in Parkinsons Disease: An 18FFEOBV PET case-control study. J. Parkinsons Dis., 2022, 12(8), 2493-2506. doi: 10.3233/JPD-223489 PMID: 36336941
- Wang, X.L.; Feng, S.T.; Wang, Y.T.; Chen, B.; Wang, Z.Z.; Chen, N.H.; Zhang, Y. Comparative efficacy and acceptability of drug treatments for Parkinsons disease with depression: A systematic review with network meta-analysis. Eur. J. Pharmacol., 2022, 927, 175070. doi: 10.1016/j.ejphar.2022.175070 PMID: 35659968
- Bara-Jimenez, W.; Bibbiani, F.; Morris, M.J.; Dimitrova, T.; Sherzai, A.; Mouradian, M.M.; Chase, T.N. Effects of serotonin 5-HT1A agonist in advanced Parkinsons disease. Mov. Disord., 2005, 20(8), 932-936. doi: 10.1002/mds.20370 PMID: 15791634
- Bibbiani, F.; Oh, J.D.; Chase, T.N. Serotonin 5-HT1A agonist improves motor complications in rodent and primate parkinsonian models. Neurology, 2001, 57(10), 1829-1834. doi: 10.1212/WNL.57.10.1829 PMID: 11723272
- Bonifati, V.; Fabrizio, E.; Cipriani, R.; Vanacore, N.; Meco, G. Buspirone in levodopa-induced dyskinesias. Clin. Neuropharmacol., 1994, 17(1), 73-82. doi: 10.1097/00002826-199402000-00008 PMID: 8149361
- Hsam, O.; Kohl, Z. Serotonin in synucleinopathies. Behav. Brain Res., 2023, 445, 114367. doi: 10.1016/j.bbr.2023.114367 PMID: 36863462
- Shan, L.; Hofman, M.A.; van Wamelen, D.J.; Van Someren, E.J.W.; Bao, A.M.; Swaab, D.F. Diurnal fluctuation in histidine decarboxylase expression, the rate limiting enzyme for histamine production, and its disorder in neurodegenerative diseases. Sleep, 2012, 35(5), 713-715. doi: 10.5665/sleep.1838 PMID: 22547898
- van Wamelen, D.J.; Shan, L.; Aziz, N.A.; Anink, J.J.; Bao, A.M.; Roos, R.A.C.; Swaab, D.F. Functional increase of brain histaminergic signaling in Huntingtons disease. Brain Pathol., 2011, 21(4), 419-427. doi: 10.1111/j.1750-3639.2010.00465.x PMID: 21106039
- Alhusaini, M.; Eissa, N.; Saad, A.K.; Beiram, R.; Sadek, B. Revisiting preclinical observations of several Histamine H3 Receptor antagonists/inverse agonists in cognitive impairment, anxiety, depression, and sleep-wake cycle disorder. Front. Pharmacol., 2022, 13, 861094. doi: 10.3389/fphar.2022.861094 PMID: 35721194
- Nowak, P.; Noras, Ł.; Jochem, J.; Szkilnik, R.; Brus, H.; Körőssy, E.; Drab, J.; Kostrzewa, R.M.; Brus, R. Histaminergic activity in a rodent model of Parkinsons disease. Neurotox. Res., 2009, 15(3), 246-251. doi: 10.1007/s12640-009-9025-1 PMID: 19384597
- Masini, D.; Lopes-Aguiar, C.; Bonito-Oliva, A.; Papadia, D.; Andersson, R.; Fisahn, A.; Fisone, G. The histamine H3 receptor antagonist thioperamide rescues circadian rhythm and memory function in experimental parkinsonism. Transl. Psychiatry, 2017, 7(4), e1088. doi: 10.1038/tp.2017.58 PMID: 28398338
- Rekha, K.R.; Selvakumar, G.P.; Santha, K.; Inmozhi Sivakamasundari, R. Geraniol attenuates α-synuclein expression and neuromuscular impairment through increase dopamine content in MPTP intoxicated mice by dose dependent manner. Biochem. Biophys. Res. Commun., 2013, 440(4), 664-670. doi: 10.1016/j.bbrc.2013.09.122 PMID: 24103762
- Rekha, K.R.; Selvakumar, G.P.; Sethupathy, S.; Santha, K.; Sivakamasundari, R.I. Geraniol ameliorates the motor behavior and neurotrophic factors inadequacy in MPTP-induced mice model of Parkinsons disease. J. Mol. Neurosci., 2013, 51(3), 851-862. doi: 10.1007/s12031-013-0074-9 PMID: 23943375
- Titova, N.; Chaudhuri, K.R. Nonmotor parkinsons and future directions. Int. Rev. Neurobiol., 2017, 134, 1493-1505. doi: 10.1016/bs.irn.2017.05.017 PMID: 28805581
- Zetusky, W.J.; Jankovic, J.; Pirozzolo, F.J. The heterogeneity of Parkinsons disease: Clinical and prognostic implications. Neurology, 1985, 35(4), 522-526. doi: 10.1212/WNL.35.4.522 PMID: 3982637
- Jankovic, J.; McDermott, M.; Carter, J.; Gauthier, S.; Goetz, C.; Golbe, L.; Huber, S.; Koller, W.; Olanow, C.; Shoulson, I.; Stern, M.; Tanner, C.; Weiner, W. Variable expression of Parkinsons disease: A base-line analysis of the DAT ATOP cohort. Neurology, 1990, 40(10), 1529-1534. doi: 10.1212/WNL.40.10.1529 PMID: 2215943
- Schiess, M.C.; Zheng, H.; Soukup, V.M.; Bonnen, J.G.; Nauta, H.J.W. Parkinsons disease subtypes: Clinical classification and ventricular cerebrospinal fluid analysis. Parkinsonism Relat. Disord., 2000, 6(2), 69-76. doi: 10.1016/S1353-8020(99)00051-6 PMID: 10699387
- Korchounov, A.; Schipper, H.I.; Preobrazhenskaya, I.S.; Kessler, K.R.; Yakhno, N.N. Differences in age at onset and familial aggregation between clinical types of idiopathic Parkinsons disease. Mov. Disord., 2004, 19(9), 1059-1064. doi: 10.1002/mds.20061 PMID: 15372596
- Kang, G.A.; Bronstein, J.M.; Masterman, D.L.; Redelings, M.; Crum, J.A.; Ritz, B. Clinical characteristics in early Parkinsons disease in a central California population-based study. Mov. Disord., 2005, 20(9), 1133-1142. doi: 10.1002/mds.20513 PMID: 15954133
- Konno, T.; Deutschländer, A.; Heckman, M.G.; Ossi, M.; Vargas, E.R.; Strongosky, A.J.; van Gerpen, J.A.; Uitti, R.J.; Ross, O.A.; Wszolek, Z.K. Comparison of clinical features among Parkinsons disease subtypes: A large retrospective study in a single center. J. Neurol. Sci., 2018, 386, 39-45. doi: 10.1016/j.jns.2018.01.013 PMID: 29406964
- Lawton, M.; Ben-Shlomo, Y.; May, M.T.; Baig, F.; Barber, T.R.; Klein, J.C.; Swallow, D.M.A.; Malek, N.; Grosset, K.A.; Bajaj, N.; Barker, R.A.; Williams, N.; Burn, D.J.; Foltynie, T.; Morris, H.R.; Wood, N.W.; Grosset, D.G.; Hu, M.T.M. Developing and validating Parkinsons disease subtypes and their motor and cognitive progression. J. Neurol. Neurosurg. Psychiatry, 2018, 89(12), 1279-1287. doi: 10.1136/jnnp-2018-318337 PMID: 30464029
Arquivos suplementares
