Peripheral Nervous System Pain Modulation


Citar

Texto integral

Resumo

The percutaneous technique of electrode insertion in the vicinity of the greater occipital nerves to treat occipital neuralgia was first described in the 1990s by Weiner and Reed. This subsequently stimulated awareness of peripheral nerve stimulation (PNS). The more recent advent emergence of a minimally invasive percutaneous approach by way of using ultrasound has further increased the interest in PNS as a viable alternative to more invasive techniques. PNS has become more popular recently and is increasingly used to treat various pain conditions. Its foundation is fundamentally based on the gate control theory, although the precise mechanism underlying its analgesic effect is still indefinite. Studies have demonstrated the peripheral and central analgesic mechanisms of PNS by modulating the inflammatory pathways, the autonomic nervous system, the endogenous pain inhibition pathways, and the involvement of the cortical and subcortical areas. Peripheral nerve stimulation exhibits its neuromodulatory effect both peripherally and centrally. Further understanding of the modulation of PNS mechanisms can help guide stimulation approaches and parameters to optimize the use of PNS. his chapter aims to review the background and mechanisms of PNS modulation. PNS is becoming one of the most diverse therapies in neuromodulation due to rapid evolution and expansion. It is an attractive option for clinicians due to the simplicity and versatility of procedures that can be combined with other neuromodulation treatments or used alone. It has a distinct role in the modulation of functional conditions.

Sobre autores

Marcin Karcz

Division of Pain Medicine, Department of Anesthesia, New York University Grossman School of Medicine

Autor responsável pela correspondência
Email: info@benthamscience.net

Christopher Gharibo

Division of Pain Medicine, Department of Anesthesia, New York University Grossman School of Medicine

Email: info@benthamscience.net

Bibliografia

  1. Heinricher, M.M.; Tavares, I.; Leith, J.L.; Lumb, B.M. Descending control of nociception: Specificity, recruitment and plasticity. Brain Res. Brain Res. Rev., 2009, 60(1), 214-225. doi: 10.1016/j.brainresrev.2008.12.009 PMID: 19146877
  2. Woolf, C.J.; Salter, M.W. Neuronal plasticity: increasing the gain in pain. Science, 2000, 288(5472), 1765-1768. doi: 10.1126/science.288.5472.1765 PMID: 10846153
  3. Pierce, P.A.; Xie, G.X.; Levine, J.D.; Peroutka, S.J. 5-hydroxy-tryptamine receptor subtype messenger RNAs in rat peripheral sensory and sympathetic ganglia: A polymerase chain reaction study. Neuroscience, 1996, 70(2), 553-559. doi: 10.1016/0306-4522(95)00329-0 PMID: 8848158
  4. Odem, M.A.; Bavencoffe, A.G.; Cassidy, R.M.; Lopez, E.R.; Tian, J.; Dessauer, C.W.; Walters, E.T. Isolated nociceptors reveal multiple specializations for generating irregular ongoing activity associated with ongoing pain. Pain, 2018, 159(11), 2347-2362. doi: 10.1097/j.pain.0000000000001341 PMID: 30015712
  5. Qin, H.; Luo, J.; Qi, S.; Xu, H.; Sung, J.J.Y.; Bian, Z. Visceral hypersensitivity induced by activation of transient receptor potential vanilloid type 1 is mediated through the serotonin pathway in rat colon. Eur. J. Pharmacol., 2010, 647(1-3), 75-83. doi: 10.1016/j.ejphar.2010.08.019 PMID: 20826151
  6. Nakajima, K.; Obata, H.; Ito, N.; Goto, F.; Saito, S. The nociceptive mechanism of 5-hydroxytryptamine released into the peripheral tissue in acute inflammatory pain in rats. Eur. J. Pain, 2009, 13(5), 441-447. doi: 10.1016/j.ejpain.2008.06.007 PMID: 18656400
  7. Hansen, N.; Üçeyler, N.; Palm, F.; Zelenka, M.; Biko, L.; Lesch, K.P.; Gerlach, M.; Sommer, C. Serotonin transporter deficiency protects mice from mechanical allodynia and heat hyperalgesia in vincristine neuropathy. Neurosci. Lett., 2011, 495(2), 93-97. doi: 10.1016/j.neulet.2011.03.035 PMID: 21419830
  8. Ernberg, M.; Hedenberg-Magnusson, B.; Kurita, H.; Kopp, S. Effects of local serotonin administration on pain and microcirculation in the human masseter muscle. J. Orofac. Pain, 2006, 20(3), 241-248. PMID: 16913434
  9. Ernberg, M.; Lundeberg, T.; Kopp, S. Effect of propranolol and granisetron on experimentally induced pain and allodynia/hyperalgesia by intramuscular injection of serotonin into the human masseter muscle. Pain, 2000, 84(2), 339-346. doi: 10.1016/S0304-3959(99)00221-3 PMID: 10666539
  10. Carlton, S.M.; Hargett, G.L.; Coggeshall, R.E. Localization and activation of glutamate receptors in unmyelinated axons of rat glabrous skin. Neurosci. Lett., 1995, 197(1), 25-28. doi: 10.1016/0304-3940(95)11889-5 PMID: 8545047
  11. McNearney, T.; Speegle, D.; Lawand, N.; Lisse, J.; Westlund, K.N. Excitatory amino acid profiles of synovial fluid from patients with arthritis. J. Rheumatol., 2000, 27(3), 739-745. PMID: 10743819
  12. Stein, C.; Clark, J.D.; Oh, U.; Vasko, M.R.; Wilcox, G.L.; Overland, A.C.; Vanderah, T.W.; Spencer, R.H. Peripheral mechanisms of pain and analgesia. Brain Res. Brain Res. Rev., 2009, 60(1), 90-113. doi: 10.1016/j.brainresrev.2008.12.017 PMID: 19150465
  13. Stein, C. Targeting pain and inflammation by peripherally acting opioids. Front. Pharmacol., 2013, 4, 123. doi: 10.3389/fphar.2013.00123 PMID: 24068999
  14. Stein, C.; Millan, M.J.; Shippenberg, T.S.; Peter, K.; Herz, A. Peripheral opioid receptors mediating antinociception in inflammation. Evidence for involvement of mu, delta and kappa receptors. J. Pharmacol. Exp. Ther., 1989, 248(3), 1269-1275. PMID: 2539460
  15. Zöllner, C.; Stein, C. Opioids. Handb. Exp. Pharmacol., 2007, (177), 31-63. PMID: 17087119
  16. Sánchez-Fernández, C.; Montilla-García, Á.; González-Cano, R.; Nieto, F.R.; Romero, L.; Artacho-Cordón, A.; Montes, R.; Fernández-Pastor, B.; Merlos, M.; Baeyens, J.M.; Entrena, J.M.; Cobos, E.J. Modulation of peripheral µ-opioid analgesia by σ1 receptors. J. Pharmacol. Exp. Ther., 2014, 348(1), 32-45. doi: 10.1124/jpet.113.208272 PMID: 24155346
  17. Guan, Y.; Johanek, L.M.; Hartke, T.V.; Shim, B.; Tao, Y.X.; Ringkamp, M.; Meyer, R.A.; Raja, S.N. Peripherally acting mu-opioid receptor agonist attenuates neuropathic pain in rats after L5 spinal nerve injury. Pain, 2008, 138(2), 318-329. doi: 10.1016/j.pain.2008.01.004 PMID: 18276075
  18. Eisenach, J.C.; Carpenter, R.; Curry, R. Analgesia from a peripherally active κ-opioid receptor agonist in patients with chronic pancreatitis. Pain, 2003, 101(1), 89-95. doi: 10.1016/S0304-3959(02)00259-2 PMID: 12507703
  19. Mangel, A.W.; Bornstein, J.D.; Hamm, L.R.; Buda, J.; Wang, J.; Irish, W.; Urso, D. Clinical trial: asimadoline in the treatment of patients with irritable bowel syndrome. Aliment. Pharmacol. Ther., 2008, 28(2), 239-249. doi: 10.1111/j.1365-2036.2008.03730.x PMID: 18466359
  20. Wallace, M.S.; Moulin, D.; Clark, A.J.; Wasserman, R.; Neale, A.; Morley-Forster, P.; Castaigne, J.P.; Teichman, S. A Phase II, multicenter, randomized, double-blind, placebo-controlled crossover study of CJC-1008-a long-acting, parenteral opioid analgesic-in the treatment of postherpetic neuralgia. J. Opioid. Manag., 2006, 2(3), 167-173. doi: 10.5055/jom.2006.0026 PMID: 17319450
  21. Tegeder, I.; Meier, S.; Burian, M.; Schmidt, H.; Geisslinger, G.; Lötsch, J. Peripheral opioid analgesia in experimental human pain models. Brain, 2003, 126(5), 1092-1102. doi: 10.1093/brain/awg115 PMID: 12690049
  22. Hanna, M.H.; Elliott, K.M.; Fung, M. Randomized, double-blind study of the analgesic efficacy of morphine-6-glucuronide versus morphine sulfate for postoperative pain in major surgery. Anesthesiology, 2005, 102(4), 815-821. doi: 10.1097/00000542-200504000-00018 PMID: 15791112
  23. Torebjörk, H.E.; Hallin, R.G. Responses in human A and C fibres to repeated electrical intradermal stimulation. J. Neurol. Neurosurg. Psychiatry, 1974, 37(6), 653-664. doi: 10.1136/jnnp.37.6.653 PMID: 4844133
  24. Deer, T.; Jain, S.; Hunter, C.; Chakravarthy, K. Neurostimulation for intractable chronic pain. Brain Sci., 2019, 9(2), 23. doi: 10.3390/brainsci9020023 PMID: 30682776
  25. Deogaonkar, M. Peripheral neuromodulation for chronic pain. Neurol. India, 2020, 68(8), 224. doi: 10.4103/0028-3886.302451 PMID: 33318355
  26. Ilfeld, B.M.; Finneran, J.J., IV Cryoneurolysis and percutaneous peripheral nerve stimulation to treat acute pain. Anesthesiology, 2020, 133(5), 1127-1149. doi: 10.1097/ALN.0000000000003532 PMID: 32898231
  27. Ilfeld, B.M.; Plunkett, A.; Vijjeswarapu, A.M.; Hackworth, R.; Dhanjal, S.; Turan, A.; Cohen, S.P.; Eisenach, J.C.; Griffith, S.; Hanling, S.; Sessler, D.I.; Mascha, E.J.; Yang, D.; Boggs, J.W.; Wongsarnpigoon, A.; Gelfand, H. Percutaneous peripheral nerve stimulation (neuromodulation) for postoperative pain: A randomized, sham-controlled pilot study. Anesthesiology, 2021, 135(1), 95-110. doi: 10.1097/ALN.0000000000003776 PMID: 33856424
  28. Ilfeld, B.M.; Gilmore, C.A.; Chae, J. Percutaneous peripheral nerve stimulation for the treatment of postoperative pain following total knee arthroplasty. Neuromodulation, 2016, 19, 10562. PMID: 30024078
  29. Ilfeld, B.M.; Gabriel, R.A.; Said, E.T.; Monahan, A.M.; Sztain, J.F.; Abramson, W.B.; Khatibi, B.; Finneran, J.J., IV; Jaeger, P.T.; Schwartz, A.K.; Ahmed, S.S. Ultrasound-guided percutaneous peripheral nerve stimulation: neuromodulation of the sciatic nerve for postoperative analgesia following ambulatory foot surgery, a proof-of-concept study. Reg. Anesth. Pain Med., 2018, 43(6), 580-589. doi: 10.1097/AAP.0000000000000819 PMID: 29905630
  30. Ilfeld, B.M.; Gilmore, C.A.; Grant, S.A.; Bolognesi, M.P.; Del Gaizo, D.J.; Wongsarnpigoon, A.; Boggs, J.W. Ultrasound-guided percutaneous peripheral nerve stimulation for analgesia following total knee arthroplasty: A prospective feasibility study. J. Orthop. Surg. Res., 2017, 12(1), 4. doi: 10.1186/s13018-016-0506-7 PMID: 28086940
  31. Ilfeld, B.M.; Grant, S.A.; Gilmore, C.A.; Chae, J.; Wilson, R.D.; Wongsarnpigoon, A.; Boggs, J.W. Neurostimulation for postsurgical analgesia: A novel system enabling ultrasound-guided percutaneous peripheral nerve stimulation. Pain Pract., 2017, 17(7), 892-901. doi: 10.1111/papr.12539 PMID: 27910257
  32. Weiner, R.L.; Reed, K.L. Peripheral neurostimulation for control of intractable occipital neuralgia. Neuromodulation, 1999, 2(3), 217-221. doi: 10.1046/j.1525-1403.1999.00217.x PMID: 22151211
  33. Dodick, D.W.; Silberstein, S.D.; Reed, K.L.; Deer, T.R.; Slavin, K.V.; Huh, B.; Sharan, A.D.; Narouze, S.; Mogilner, A.Y.; Trentman, T.L.; Ordia, J.; Vaisman, J.; Goldstein, J.; Mekhail, N. Safety and efficacy of peripheral nerve stimulation of the occipital nerves for the management of chronic migraine: Long-term results from a randomized, multicenter, double-blinded, controlled study. Cephalalgia, 2015, 35(4), 344-358. doi: 10.1177/0333102414543331 PMID: 25078718
  34. Deer, T.R.; Gilmore, C.A.; Desai, M.J.; Li, S.; DePalma, M.J.; Hopkins, T.J.; Burgher, A.H.; Spinner, D.A.; Cohen, S.P.; McGee, M.J.; Boggs, J.W. Corrigendum to: Percutaneous PNS of the medial branch nerves for the treatment of chronic axial back pain in patients following radiofrequency ablation. Pain Med., 2021, 22(8), 1890. doi: 10.1093/pm/pnab139 PMID: 33956970
  35. Plazier, M.; Vanneste, S.; Dekelver, I.; Thimineur, M.; De Ridder, D. Peripheral nerve stimulation for fibromyalgia. Prog. Neurol. Surg., 2011, 24, 133-146. doi: 10.1159/000323046 PMID: 21422784
  36. Yang, F.; Zhang, T.; Tiwari, V.; Shu, B.; Zhang, C.; Wang, Y.; Vera-Portocarrero, L.P.; Raja, S.N.; Guan, Y. Effects of combined electrical stimulation of the dorsal column and dorsal roots on wide-dynamic-range neuronal activity in nerve-injured rats. Neuromodulation, 2015, 18(7), 592-598. doi: 10.1111/ner.12341 PMID: 26307526
  37. Jeong, Y.; Baik, E.J.; Nam, T.S.; Paik, K.S. Effects of iontophoretically applied naloxone, picrotoxin and strychnine on dorsal horn neuron activities treated with high frequency conditioning stimulation in cats. Yonsei Med. J., 1995, 36(4), 336-347. doi: 10.3349/ymj.1995.36.4.336 PMID: 7483677
  38. Fritz, A.V.; Ferreira-Dos-Santos, G.; Hurdle, M.F.; Clendenen, S. Ultrasound-guided percutaneous peripheral nerve stimulation for the treatment of complex regional pain syndrome type 1 following a crush injury to the fifth digit: A rare case report. Cureus, 2019, 11(12), e6506. doi: 10.7759/cureus.6506 PMID: 32025427
  39. Gilmore, C.; Ilfeld, B.; Rosenow, J.; Li, S.; Desai, M.; Hunter, C.; Rauck, R.; Kapural, L.; Nader, A.; Mak, J.; Cohen, S.; Crosby, N.; Boggs, J. Percutaneous peripheral nerve stimulation for the treatment of chronic neuropathic postamputation pain: a multicenter, randomized, placebo-controlled trial. Reg. Anesth. Pain Med., 2019, 44(6), 637-645. doi: 10.1136/rapm-2018-100109 PMID: 30954936
  40. Frederico, T.N.; da Silva Freitas, T. Peripheral nerve stimulation of the brachial plexus for chronic refractory CRPS pain of the upper limb: description of a new technique and case series. Pain Med., 2020, 21(1), S18-S26. doi: 10.1093/pm/pnaa201 PMID: 32804227
  41. Chakravarthy, K.V.; Xing, F.; Bruno, K.; Kent, A.R.; Raza, A.; Hurlemann, R.; Kinfe, T.M. A review of spinal and peripheral neuromodulation and neuroinflammation: Lessons learned thus far and future prospects of biotype development. Neuromodulation, 2019, 22(3), 235-243. doi: 10.1111/ner.12859 PMID: 30311715

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024