Optogenetics: Illuminating the Future of Hearing Restoration and Understanding Auditory Perception


Citar

Texto integral

Resumo

Hearing loss is a prevalent sensory impairment significantly affecting communication and quality of life. Traditional approaches for hearing restoration, such as cochlear implants, have limitations in frequency resolution and spatial selectivity. Optogenetics, an emerging field utilizing light-sensitive proteins, offers a promising avenue for addressing these limitations and revolutionizing hearing rehabilitation. This review explores the methods of introducing Channelrhodopsin- 2 (ChR2), a key light-sensitive protein, into cochlear cells to enable optogenetic stimulation. Viral- mediated gene delivery is a widely employed technique in optogenetics. Selecting a suitable viral vector, such as adeno-associated viruses (AAV), is crucial in efficient gene delivery to cochlear cells. The ChR2 gene is inserted into the viral vector through molecular cloning techniques, and the resulting viral vector is introduced into cochlear cells via direct injection or round window membrane delivery. This allows for the expression of ChR2 and subsequent light sensitivity in targeted cells. Alternatively, direct cell transfection offers a non-viral approach for ChR2 delivery. The ChR2 gene is cloned into a plasmid vector, which is then combined with transfection agents like liposomes or nanoparticles. This mixture is applied to cochlear cells, facilitating the entry of the plasmid DNA into the target cells and enabling ChR2 expression. Optogenetic stimulation using ChR2 allows for precise and selective activation of specific neurons in response to light, potentially overcoming the limitations of current auditory prostheses. Moreover, optogenetics has broader implications in understanding the neural circuits involved in auditory processing and behavior. The combination of optogenetics and gene delivery techniques provides a promising avenue for improving hearing restoration strategies, offering the potential for enhanced frequency resolution, spatial selectivity, and improved auditory perception.

Sobre autores

Namit Singh

Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences (AIIMS)

Autor responsável pela correspondência
Email: info@benthamscience.net

Balaji Ramamourthy

Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences (AIIMS)

Email: info@benthamscience.net

Neemu Hage

Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences (AIIMS)

Email: info@benthamscience.net

Krishna Kappagantu

Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences (AIIMS)

Email: info@benthamscience.net

Bibliografia

  1. Casale J, Kandle PF, Murray IV, Murr N. Physiology, cochlear function. StatPearls. Treasure Island, FL: StatPearls Publishing 2023.
  2. Krogmann RJ, Al Khalili Y. Cochlear implants. StatPearls. Treasure Island, FL: StatPearls Publishing 2023.
  3. Kitcher SR, Weisz CJC. Shedding light on optical cochlear implant progress. EMBO Mol Med 2020; 12(8): e12620. doi: 10.15252/emmm.202012620 PMID: 32715629
  4. Dieter A, Keppeler D, Moser T. Towards the optical cochlear implant: Optogenetic approaches for hearing restoration. EMBO Mol Med 2020; 12(4): e11618. doi: 10.15252/emmm.201911618 PMID: 32227585
  5. Hernandez VH, Gehrt A, Reuter K, et al. Optogenetic stimulation of the auditory pathway. J Clin Invest 2014; 124(3): 1114-29. doi: 10.1172/JCI69050 PMID: 24509078
  6. Keppeler D, Merino RM, Morena D, et al. Ultrafast optogenetic stimulation of the auditory pathway by targeting-optimized Chronos. EMBO J 2018; 37(24): e99649. doi: 10.15252/embj.201899649 PMID: 30396994
  7. Dieter A, Duque-Afonso CJ, Rankovic V, Jeschke M, Moser T. Near physiological spectral selectivity of cochlear optogenetics. Nat Commun 2019; 10(1): 1962. doi: 10.1038/s41467-019-09980-7 PMID: 31036812
  8. Liu CT. Auditory responses evoked by optical stimulation on the optogenetic-infected cochlear neurons in the guinea pigs. bioRxiv 2020.
  9. Kim WB, Cho JH. Encoding of discriminative fear memory by input-specific LTP in the amygdala. Neuron 2017; 95(5): 1129-1146.e5. doi: 10.1016/j.neuron.2017.08.004 PMID: 28823727
  10. Kozin ED, Darrow KN, Hight AE, et al. Direct visualization of the murine dorsal cochlear nucleus for optogenetic stimulation of the auditory pathway. J Vis Exp 2015; (95): 52426. PMID: 25650555
  11. Ritter E, Stehfest K, Berndt A, Hegemann P, Bartl FJ. Monitoring light-induced structural changes of channelrhodopsin-2 by uv-visible and fourier transform infrared spectroscopy. J Biol Chem 2008; 283(50): 35033-41. doi: 10.1074/jbc.M806353200 PMID: 18927082
  12. Lórenz-Fonfría VA, Heberle J. Channelrhodopsin unchained: Structure and mechanism of a light-gated cation channel. Biochim Biophys Acta Bioenerg 2014; 1837(5): 626-42. doi: 10.1016/j.bbabio.2013.10.014
  13. Wang H, Sugiyama Y, Hikima T, et al. Molecular determinants differentiating photocurrent properties of two channelrhodopsins from chlamydomonas. J Biol Chem 2009; 284(9): 5685-96. doi: 10.1074/jbc.M807632200 PMID: 19103605
  14. Lin JY, Lin MZ, Steinbach P, Tsien RY. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 2009; 96(5): 1803-14. doi: 10.1016/j.bpj.2008.11.034 PMID: 19254539
  15. Lin JY. A user’s guide to channelrhodopsin variants: Features, limitations and future developments. Exp Physiol 2011; 96(1): 19-25. doi: 10.1113/expphysiol.2009.051961 PMID: 20621963
  16. Kleinlogel S, Feldbauer K, Dempski RE, et al. Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat Neurosci 2011; 14(4): 513-8. doi: 10.1038/nn.2776 PMID: 21399632
  17. Grubb MS, Burrone J. Channelrhodopsin-2 localised to the axon initial segment. PLoS One 2010; 5(10): e13761. doi: 10.1371/journal.pone.0013761 PMID: 21048938
  18. Diester I, Kaufman MT, Mogri M, et al. An optogenetic toolbox designed for primates. Nat Neurosci 2011; 14(3): 387-97. doi: 10.1038/nn.2749 PMID: 21278729
  19. Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 2005; 15(24): 2279-84. doi: 10.1016/j.cub.2005.11.032 PMID: 16360690
  20. Sineshchekov OA, Govorunova EG, Wang J, Li H, Spudich JL. Intramolecular proton transfer in channelrhodopsins. Biophys J 2013; 104(4): 807-17. doi: 10.1016/j.bpj.2013.01.002 PMID: 23442959
  21. Prigge M, Schneider F, Tsunoda SP, et al. Color-tuned channelrhodopsins for multiwavelength optogenetics. J Biol Chem 2012; 287(38): 31804-12. doi: 10.1074/jbc.M112.391185 PMID: 22843694
  22. Sineshchekov OA, Li H, Govorunova EG, Spudich JL. Photochemical reaction cycle transitions during anion channelrhodopsin gating. Proceedings of the National Academy of Sciences 2016; 113(14): E1993-2000. doi: 10.1073/pnas.1525269113
  23. Landegger LD, Pan B, Askew C, et al. A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. Nat Biotechnol 2017; 35(3): 280-4. doi: 10.1038/nbt.3781 PMID: 28165475
  24. Mei Y, Zhang F. Molecular tools and approaches for optogenetics. Biol Psychiatry 2012; 71(12): 1033-8. doi: 10.1016/j.biopsych.2012.02.019 PMID: 22480664
  25. Poletti V, Mavilio F. Designing lentiviral vectors for gene therapy of genetic Diseases. Viruses 2021; 13(8): 1526. doi: 10.3390/v13081526 PMID: 34452394
  26. Isgrig K, McDougald DS, Zhu J, Wang HJ, Bennett J, Chien WW. AAV2.7m8 is a powerful viral vector for inner ear gene therapy. Nat Commun 2019; 10(1): 427. doi: 10.1038/s41467-018-08243-1 PMID: 30683875
  27. Shu Y, Tao Y, Wang Z, et al. Identification of adeno-associated viral vectors that target neonatal and adult mammalian inner ear cell subtypes. Hum Gene Ther 2016; 27(9): 687-99. doi: 10.1089/hum.2016.053 PMID: 27342665
  28. Tan F, Chu C, Qi J, et al. AAV-ie enables safe and efficient gene transfer to inner ear cells. Nat Commun 2019; 10(1): 3733. doi: 10.1038/s41467-019-11687-8 PMID: 31427575
  29. Kilpatrick LA, Li Q, Yang J, Goddard JC, Fekete DM, Lang H. Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear. Gene Ther 2011; 18(6): 569-78. doi: 10.1038/gt.2010.175 PMID: 21209625
  30. Casey G, Askew C, Brimble MA, et al. Self-complementarity in adeno-associated virus enhances transduction and gene expression in mouse cochlear tissues. PLoS One 2020; 15(11): e0242599. doi: 10.1371/journal.pone.0242599 PMID: 33227033
  31. Chien WW, McDougald DS, Roy S, Fitzgerald TS, Cunningham LL. Cochlear gene transfer mediated by adeno-associated virus: Comparison of two surgical approaches. Laryngoscope 2015; 125(11): 2557-64.
  32. Chong ZX, Yeap SK, Ho WY. Transfection types, methods and strategies: A technical review. PeerJ 2021; 9: e11165. doi: 10.7717/peerj.11165 PMID: 33976969
  33. Pichon C, Billiet L, Midoux P. Chemical vectors for gene delivery: Uptake and intracellular trafficking. Curr Opin Biotechnol 2010; 21(5): 640-5. doi: 10.1016/j.copbio.2010.07.003 PMID: 20674331
  34. Zhou R, Geiger RC, Dean DA. Intracellular trafficking of nucleic acids. Expert Opin Drug Deliv 2004; 1(1): 127-40. doi: 10.1517/17425247.1.1.127 PMID: 16296725
  35. Delalande A, Kotopoulis S, Postema M, Midoux P, Pichon C. Sonoporation: Mechanistic insights and ongoing challenges for gene transfer. Gene 2013; 525(2): 191-9. doi: 10.1016/j.gene.2013.03.095 PMID: 23566843
  36. Boehringer S, Ruzgys P, Tamò L, et al. A new electrospray method for targeted gene delivery. Sci Rep 2018; 8(1): 4031. doi: 10.1038/s41598-018-22280-2 PMID: 29507307
  37. Znamenskiy P, Zador AM. Corticostriatal neurons in auditory cortex drive decisions during auditory discrimination. Nature 2013; 497(7450): 482-5. doi: 10.1038/nature12077 PMID: 23636333
  38. Hight AE, Kozin ED, Darrow K, et al. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant. Hear Res 2015; 322: 235-41. doi: 10.1016/j.heares.2015.01.004 PMID: 25598479
  39. Erofeev A, Gerasimov E, Lavrova A, et al. Light stimulation parameters determine neuron dynamic characteristics. Appl Sci 2019; 9(18): 3673. doi: 10.3390/app9183673
  40. Garrido-Charles A, Cabré G, Gascón-Moya M, Busqué F, Alibés R, Hernando J. Nanoengineered light-harvested proteins for optogenetics and photopharmacology. ChemRxiv 2019. doi: 10.26434/chemrxiv.11424000.v1
  41. Sizova I, Greiner A, Awasthi M, Kateriya S, Hegemann P. Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases. Plant J 2013; 73(5): 873-82. doi: 10.1111/tpj.12066 PMID: 23137232
  42. Broggini AC. Optogenetic stimulation reveals frequency-dependent resonance and encoding in V1 excitatory and inhibitory neurons. bioRxiv 2023. doi: 10.1101/2023.04.10.536138
  43. Fitch JL, Holbrook A. Modal vocal fundamental frequency of young adults. Arch Otolaryngol Head Neck Surg 1970; 92(4): 379-82. doi: 10.1001/archotol.1970.04310040067012 PMID: 5455579
  44. Kalmbach A, Waters J. Modulation of high- and low-frequency components of the cortical local field potential via nicotinic and muscarinic acetylcholine receptors in anesthetized mice. J Neurophysiol 2014; 111(2): 258-72. doi: 10.1152/jn.00244.2013 PMID: 24155009
  45. Hu W, Tu H, Wadman M, Li Y, Zhang D. Optogenetic therapy on cardiac vagal dysfunction-related ventricular arrhythmia in type 2 diabetes. Physiology 2023; 38(S1): 5727980. doi: 10.1152/physiol.2023.38.S1.5727980
  46. Adam S, Wiebeler C, Schapiro I. Structural factors determining the absorption spectrum of channelrhodopsins: A case study of the chimera C1C2. J Chem Theory Comput 2021; 17(10): 6302-13. doi: 10.1021/acs.jctc.1c00160 PMID: 34255519
  47. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci 2003; 100(24): 13940-5. doi: 10.1073/pnas.1936192100
  48. Berthold P, Tsunoda SP, Ernst OP, Mages W, Gradmann D, Hegemann P. Channelrhodopsin-1 initiates phototaxis and photophobic responses in chlamydomonas by immediate light-induced depolarization. Plant Cell 2008; 20(6): 1665-77. doi: 10.1105/tpc.108.057919 PMID: 18552201
  49. Han X, Boyden ES. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2007; 2(3): e299. doi: 10.1371/journal.pone.0000299 PMID: 17375185
  50. Liang R, Yu JK, Meisner J, Liu F, Martínez TJ. Electrostatic control of photoisomerization in channelrhodopsin 2. J Am Chem Soc 2021; 143(14): 5425-37. doi: 10.1021/jacs.1c00058 PMID: 33794085
  51. Seth K, Kumawat G, Vyas P. The structure and functional mechanism of eyespot in Chlamydomonas. J Basic Microbiol 2022; 62(10): 1169-78.
  52. Yang T, Zhang W, Cheng J, et al. Formation mechanism of ion channel in channelrhodopsin-2: Molecular dynamics simulation and steering molecular dynamics simulations. Int J Mol Sci 2019; 20(15): 3780. doi: 10.3390/ijms20153780 PMID: 31382458
  53. Losi A, Gardner KH, Möglich A. Blue-light receptors for optogenetics. Chem Rev 2018; 118(21): 10659-709. doi: 10.1021/acs.chemrev.8b00163 PMID: 29984995
  54. Natwick DE, Collins SR. Optimized iLID membrane anchors for local optogenetic protein recruitment. ACS Synth Biol 2021; 10(5): 1009-23. doi: 10.1021/acssynbio.0c00511 PMID: 33843200
  55. Guntas G, Hallett RA, Zimmerman SP, et al. Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc Natl Acad Sci USA 2015; 112(1): 112-7. doi: 10.1073/pnas.1417910112 PMID: 25535392
  56. Levskaya A, Weiner OD, Lim WA, Voigt CA. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 2009; 461(7266): 997-1001. doi: 10.1038/nature08446 PMID: 19749742
  57. Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL. Rapid blue-light–mediated induction of protein interactions in living cells. Nat Methods 2010; 7(12): 973-5. doi: 10.1038/nmeth.1524 PMID: 21037589
  58. Pal AA, Benman W, Mumford TR, Chow BY, Bugaj LJ. Optogenetic clustering and membrane translocation of the BcLOV4 photoreceptor. bioRxiv 2022. doi: 10.1101/2022.12.12.520131
  59. Baumschlager A, Weber Y, Cánovas D, Dionisi S, Khammash M. Enhancing the performance of Magnets photosensors through directed evolution. bioRxiv 2022. doi: 10.1101/2022.11.14.516313
  60. Baumschlager A. Engineering light-control in biology. Front Bioeng Biotechnol 2022; 10: 901300. doi: 10.3389/fbioe.2022.901300 PMID: 35573251
  61. Kawano F, Suzuki H, Furuya A, Sato M. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat Commun 2015; 6(1): 6256. doi: 10.1038/ncomms7256 PMID: 25708714
  62. Benedetti L, Marvin JS, Falahati H, Guillén-Samander A, Looger LL, De Camilli P. Optimized vivid-derived magnets photodimerizers for subcellular optogenetics in mammalian cells. eLife 2020; 9: e63230. doi: 10.7554/eLife.63230 PMID: 33174843
  63. Neghab HK, Soheilifar MH, Grusch M, Ortega MM, Djavid GE, Saboury AA. The state of the art of biomedical applications of optogenetics. Lasers Surg Med 2022; 54(2): 202-16. PMID: 34363230
  64. Bali B, Morena D, Mittring A, et al. Utility of red- light ultrafast optogenetic stimulation of the auditory pathway. EMBO Mol Med 2021; 13(6): e13391. doi: 10.15252/emmm.202013391 PMID: 33960685
  65. Mittring A, Moser T, Huet A. Graded optogenetic activation of the auditory pathway for hearing restoration. bioRxiv 2022. doi: 10.1101/2022.09.05.506618
  66. Hunniford V, Kühler R, Wolf B, Keppeler D, Strenzke N, Moser T. Patient perspectives on the need for improved hearing rehabilitation: A qualitative survey study of German cochlear implant users. Front Neurosci 2023; 17: 1105562. doi: 10.3389/fnins.2023.1105562 PMID: 36755736
  67. Botto C, Dalkara D, El-Amraoui A. Progress in gene editing tools and their potential for correcting mutations underlying hearing and vision loss. Front Genome Ed 2021; 3: 737632. doi: 10.3389/fgeed.2021.737632
  68. Ronzitti E, Zampini V, Emiliani V. Optimized Chronos sets the clock for optogenetic hearing restoration. EMBO J 2018; 37(24): e101103. doi: 10.15252/embj.2018101103 PMID: 30509969
  69. Kleinlogel S, Vogl C, Jeschke M, Neef J, Moser T. Emerging approaches for restoration of hearing and vision. Physiol Rev 2020; 100(4): physrev.00035.2019. doi: 10.1152/physrev.00035.2019 PMID: 32191560
  70. Murawski C, Gather MC. Emerging biomedical applications of organic light-emitting diodes. Adv Opt Mater 2021; 9(14): 2100269. doi: 10.1002/adom.202100269

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024