Applications of Scaffolds in Tissue Engineering: Current Utilization and Future Prospective


Cite item

Full Text

Abstract

Current regenerative medicine tactics focus on regenerating tissue structures pathologically modified by cell transplantation in combination with supporting scaffolds and biomolecules. Natural and synthetic polymers, bioresorbable inorganic and hybrid materials, and tissue decellularized were deemed biomaterials scaffolding because of their improved structural, mechanical, and biological abilities.Various biomaterials, existing treatment methodologies and emerging technologies in the field of Three-dimensional (3D) and hydrogel processing, and the unique fabric concerns for tissue engineering. A scaffold that acts as a transient matrix for cell proliferation and extracellular matrix deposition, with subsequent expansion, is needed to restore or regenerate the tissue. Diverse technologies are combined to produce porous tissue regenerative and tailored release of bioactive substances in applications of tissue engineering. Tissue engineering scaffolds are crucial ingredients. This paper discusses an overview of the various scaffold kinds and their material features and applications. Tabulation of the manufacturing technologies for fabric engineering and equipment, encompassing the latest fundamental and standard procedures.

About the authors

Shikha Yadav

Department of Pharmacy, School of Medical and Allied Sciences,, Galgotias University

Author for correspondence.
Email: info@benthamscience.net

Javed Khan

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Email: info@benthamscience.net

Agrima Yadav

Department of Pharmacy, School of Medical and Allied Sciences,, Galgotias University

Email: info@benthamscience.net

References

  1. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126(4): 677-89. doi: 10.1016/j.cell.2006.06.044 PMID: 16923388
  2. Shruti S, Salinas AJ, Lusvardi G, Malavasi G, Menabue L, Vallet-Regi M. Mesoporous bioactive scaffolds prepared with cerium-, gallium- and zinc-containing glasses. Acta Biomater 2013; 9(1): 4836-44. doi: 10.1016/j.actbio.2012.09.024 PMID: 23026489
  3. Nikolova MP, Chavali MS. Recent advances in biomaterials for 3D scaffolds: A review. Bioact Mater 2019; 4: 271-92. doi: 10.1016/j.bioactmat.2019.10.005 PMID: 31709311
  4. Yilmaz F, Celep G, Tetik G. Nanofibers in Cosmetics. Nanofiber Research - Reaching New Heights intechopen. 2016. doi: 10.5772/64172
  5. Collins MN, Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydr Polym 2013; 92(2): 1262-79. doi: 10.1016/j.carbpol.2012.10.028 PMID: 23399155
  6. LeGeros RZ. Properties of osteoconductive biomaterials: Calcium phosphates. Clin Orthop Relat Res 2002; 395(395): 81-98. doi: 10.1097/00003086-200202000-00009 PMID: 11937868
  7. Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 2003; 5: 29-40. doi: 10.22203/eCM.v005a03 PMID: 14562270
  8. Griffith LG. Polymeric biomaterials. Acta Mater 2000; 48(1): 263-77. doi: 10.1016/S1359-6454(99)00299-2
  9. Hayashi T. Biodegradable polymers for biomedical uses. Prog Polym Sci 1994; 19(4): 663-702. doi: 10.1016/0079-6700(94)90030-2
  10. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci 2007; 32(8-9): 762-98. doi: 10.1016/j.progpolymsci.2007.05.017
  11. Prasadh S, Wong RCW. Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects. Oral Sci Int 2018; 15(2): 48-55. doi: 10.1016/S1348-8643(18)30005-3
  12. Nanofibers and their applications in tissue engineering. - Abstract - Europe PMC, (n.d.). Avaialable from: https://europepmc.org/article/PMC/2426767 (accessed August 18, 2021).
  13. Dormer NH, Singh M, Zhao L, Mohan N, Berkland CJ, Detamore MS. Osteochondral interface regeneration of the rabbit knee with macroscopic gradients of bioactive signals. J Biomed Mater Res A 2012; 100A(1): 162-70. doi: 10.1002/jbm.a.33225 PMID: 22009693
  14. Laurencin CT, Attawia MA, Elgendy HE, Herbert KM. Tissue engineered bone-regeneration using degradable polymers: The formation of mineralized matrices. Bone 1996; 19(1): S93-9. doi: 10.1016/S8756-3282(96)00132-9 PMID: 8831000
  15. Singh M, Sandhu B, Scurto A, Berkland C, Detamore MS. Microsphere-based scaffolds for cartilage tissue engineering: Using subcritical CO2 as a sintering agent. Acta Biomater 2010; 6(1): 137-43. doi: 10.1016/j.actbio.2009.07.042 PMID: 19660579
  16. Stephens D, Li L, Robinson D, et al. Investigation of the in vitro release of gentamicin from a polyanhydride matrix. J Control Release 2000; 63(3): 305-17. doi: 10.1016/S0168-3659(99)00205-9 PMID: 10601726
  17. Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 2018; 3(3): 278-314. doi: 10.1016/j.bioactmat.2017.10.001 PMID: 29744467
  18. Gorth D, Webster TJ. Matrices for tissue engineering and regenerative medicine. In: Biomaterials for Artificial Organs 2011; pp. 270-86. doi: 10.1533/9780857090843.2.270
  19. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev 2012; 64: 18-23. doi: 10.1016/j.addr.2012.09.010 PMID: 11755703
  20. Aizman I, Tate CC, McGrogan M, Case CC. Extracellular matrix produced by bone marrow stromal cells and by their derivative, SB623 cells, supports neural cell growth. J Neurosci Res 2009; 87(14): 3198-206. doi: 10.1002/jnr.22146 PMID: 19530164
  21. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: A review. Int J Polym Sci 2011; 2011: 1-19. doi: 10.1155/2011/290602
  22. Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomedicine 2006; 1(1): 15-30. doi: 10.2147/nano.2006.1.1.15 PMID: 17722259
  23. Sokolsky-Papkov M, Agashi K, Olaye A, Shakesheff K, Domb AJ. Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 2007; 59(4-5): 187-206. doi: 10.1016/j.addr.2007.04.001 PMID: 17540473
  24. Matthews JA, Boland ED, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen type II: A feasibility study. Sage J 2016; 18: 125-34. doi: 10.1177/0883911503018002003
  25. Anseth KS, Bowman CN, Brannon-Peppas L. Mechanical properties of hydrogels and their experimental determination. Biomaterials 1996; 17(17): 1647-57. doi: 10.1016/0142-9612(96)87644-7 PMID: 8866026
  26. Ingber DE. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology, circulation research. Circ Res 2002; 91(10): 877-87. doi: 10.1161/01.RES.0000039537.73816.E5
  27. Ryan PL, Foty RA, Kohn J, Steinberg MS. Tissue spreading on implantable substrates is a competitive outcome of cell–cell vs. cell– substratum adhesivity. Proc Natl Acad Sci 2001; 98(8): 4323-7. doi: 10.1073/pnas.071615398 PMID: 11274361
  28. Moghe PV, Berthiaume F, Ezzell RM, Toner M, Tompkins RG, Yarmush ML. Culture matrix configuration and composition in the maintenance of hepatocyte polarity and function. Biomaterials 1996; 17(3): 373-85. doi: 10.1016/0142-9612(96)85576-1 PMID: 8745335
  29. Baker RW. Membrane technology and applications.Wiley Online Library 2012. doi: 10.1002/9781118359686
  30. Wang TW, Spector M. Development of hyaluronic acid-based scaffolds for brain tissue engineering. Acta Biomater 2009; 5(7): 2371-84. doi: 10.1016/j.actbio.2009.03.033 PMID: 19403351
  31. Venugopal J, Low S, Choon AT, Ramakrishna S. Interaction of cells and nanofiber scaffolds in tissue engineering. J Biomed Mater Res B Appl Biomater 2008; 84B(1): 34-48. doi: 10.1002/jbm.b.30841 PMID: 17477388
  32. Barbetta A, Carrino A, Costantini M, Dentini M. Polysaccharide based scaffolds obtained by freezing the external phase of gas-in-liquid foams. Soft Matter 2010; 6(20): 5213-24. doi: 10.1039/c0sm00616e
  33. Hollister SJ, Levy RA, Chu TM, Halloran JW, Feinberg SE. An image-based approach for designing and manufacturing craniofacial scaffolds. Int J Oral Maxillofac Surg 2000; 29(1): 67-71. doi: 10.1034/j.1399-0020.2000.290115.x PMID: 10691148
  34. Dehghani F, Annabi N, Bornscheuer UT, Khademhosseini A. Engineering porous scaffolds using gas-based techniques. Curr Opin Biotechnol 2011; 22(5): 661-6. doi: 10.1016/j.copbio.2011.04.005
  35. Quirk RA, France RM, Shakesheff KM, Howdle SM. Supercritical fluid technologies and tissue engineering scaffolds. Curr Opin Solid State Mater Sci 2004; 8(3-4): 313-21. doi: 10.1016/j.cossms.2003.12.004
  36. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 2014; 185: 12-21. doi: 10.1016/j.jconrel.2014.04.018 PMID: 24768792
  37. Skardal A, Sarker SF, Crabbé A, Nickerson CA, Prestwich GD. The generation of 3-D tissue models based on hyaluronan hydrogel-coated microcarriers within a rotating wall vessel bioreactor. Biomaterials 2010; 31(32): 8426-35. doi: 10.1016/j.biomaterials.2010.07.047 PMID: 20692703
  38. Hasan A, Memic A, Annabi N, et al. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater 2014; 10(1): 11-25. doi: 10.1016/j.actbio.2013.08.022 PMID: 23973391
  39. Pant B, Park M, Park SJ. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: A review. Pharmaceutics 2019; 11(7): 305. doi: 10.3390/pharmaceutics11070305 PMID: 31266186
  40. O’Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 2005; 26(4): 433-41. doi: 10.1016/j.biomaterials.2004.02.052 PMID: 15275817
  41. Li F, Truong VX, Fisch P, et al. Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells. Acta Biomater 2018; 77: 48-62. doi: 10.1016/j.actbio.2018.07.015 PMID: 30006317
  42. Del Bakhshayesh RA, Mostafavi E, Alizadeh E, Asadi N, Akbarzadeh A, Davaran S. Fabrication of three-dimensional scaffolds based on nano-biomimetic collagen hybrid constructs for skin tissue engineering. ACS Omega 2018; 3(8): 8605-11. doi: 10.1021/acsomega.8b01219 PMID: 31458990
  43. Tanase CE, Sartoris A, Popa MI, Verestiuc L, Unger RE, Kirkpatrick CJ. In vitro evaluation of biomimetic chitosan–calcium phosphate scaffolds with potential application in bone tissue engineering. Biomed Mater 2013; 8(2): 025002. doi: 10.1088/1748-6041/8/2/025002 PMID: 23343569
  44. Da H, Jia SJ, Meng GL, et al. The impact of compact layer in biphasic scaffold on osteochondral tissue engineering. PLoS One 2013; 8(1): e54838. doi: 10.1371/journal.pone.0054838 PMID: 23382984
  45. Klimek K, Ginalska G. Proteins and peptides as important modifiers of the polymer scaffolds for tissue engineering applications : A review. Polymers 2020; 12: 844. doi: 10.3390/polym12040844
  46. Choi SH, Chun SY, Chae SY, et al. Development of a porcine renal extracellular matrix scaffold as a platform for kidney regeneration. J Biomed Mater Res A 2015; 103(4): 1391-403. doi: 10.1002/jbm.a.35274 PMID: 25044751
  47. Chan BP, Leong KW. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Eur Spine J 2008; 17(4): 467-79. doi: 10.1007/s00586-008-0745-3 PMID: 19005702
  48. Yazdanian M, Arefi AH, Alam M, et al. Decellularized and biological scaffolds in dental and craniofacial tissue engineering: A comprehensive overview. J mat res technol 2021; 15: 1217-51.
  49. del Bakhshayesh AR, Annabi N, Khalilov R, et al. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif Cells Nanomed Biotechnol 2017; 46(4): 691-705. doi: 10.1080/21691401.2017.1349778
  50. Pouliot R, Larouche D, Auger FA, et al. Reconstructed human skin produced in vitro and grafted on athymic mice1,2. Transplantation 2002; 73(11): 1751-7. doi: 10.1097/00007890-200206150-00010 PMID: 12084997
  51. Singh MR, Saraf S, Vyas A, Jain V, Singh D. Innovative approaches in wound healing: Trajectory and advances. Artif Cells Nanomed Biotechnol 2013; 41: 202-12. doi: 10.3109/21691401.2012.716065
  52. el Ghalbzouri A, Hensbergen P, Gibbs S, Kempenaar J, van der Schors R, Ponec M. Fibroblasts facilitate re-epithelialization in wounded human skin equivalents. Lab Invest 2004; 84(2003): 102-12. doi: 10.1038/labinvest.3700014
  53. Falanga V, Margolis D, Alvarez O, et al. Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Arch Dermatol 1998; 134(3): 293-300. doi: 10.1001/archderm.134.3.293 PMID: 9521027
  54. Brem H, Balledux J, Bloom T, Kerstein MD, Hollier L. Healing of diabetic foot ulcers and pressure ulcers with human skin equivalent: A new paradigm in wound healing. Arch Surg 2000; 135(6): 627-34. doi: 10.1001/archsurg.135.6.627 PMID: 10843357
  55. Velnar T, Gradisnik L. Tissue augmentation in wound healing: The role of endothelial and epithelial cells. Med Arch 2018; 72: 444-8. doi: 10.5455/medarh.2018.72.444-448
  56. Strecker-McGraw MK, Jones TR, Baer DG. Soft tissue wounds and principles of healing. Emerg Med Clin North Am 2007; 25(1): 1-22. doi: 10.1016/j.emc.2006.12.002 PMID: 17400070
  57. Dias AMA, Braga MEM, Seabra IJ, Ferreira P, Gil MH, de Sousa HC. Development of natural-based wound dressings impregnated with bioactive compounds and using supercritical carbon dioxide. Int J Pharm 2011; 408(1-2): 9-19. doi: 10.1016/j.ijpharm.2011.01.063 PMID: 21316432
  58. Ramshaw JAM, Peng YY, Glattauer V, Werkmeister JA. Collagens as biomaterials. J Mat Sci Mat Med 2008; 20(1.20): 3-8. doi: 10.1007/s10856-008-3415-4
  59. Doillon CJ, Silver FH. Collagen-based wound dressing: Effects of hyaluronic acid and firponectin on wound healing. Biomaterials 1986; 7(1): 3-8. doi: 10.1016/0142-9612(86)90080-3 PMID: 3955155
  60. Prus-Walendziak W, Kozlowska J. Lyophilized emulsions in the form of 3d porous matrices as a novel material for topical application. Materials 2021; 14(4): 950. doi: 10.3390/ma14040950 PMID: 33671458
  61. Ishihara M, Nakanishi K, Ono K, et al. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 2002; 23(3): 833-40. doi: 10.1016/S0142-9612(01)00189-2 PMID: 11771703
  62. Sill TJ, von Recum HA. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 2008; 29(13): 1989-2006. doi: 10.1016/j.biomaterials.2008.01.011 PMID: 18281090
  63. Ranganath SH, Wang CH. Biodegradable microfiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma. Biomaterials 2008; 29(20): 2996-3003. doi: 10.1016/j.biomaterials.2008.04.002 PMID: 18423584
  64. Ali MA, Mondal K, Singh C, Malhotra DB, Sharma A. Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics. Nanoscale 2015; 7(16): 7234-45. doi: 10.1039/C5NR00194C PMID: 25811908
  65. Wang Z, Qian Y, Li L, et al. Evaluation of emulsion electrospun polycaprolactone/hyaluronan/epidermal growth factor nanofibrous scaffolds for wound healing. J Biomater Appl 2015; 30(6): 686-98. doi: 10.1177/0885328215586907
  66. Fiume L, Baglioni M, Bolondi L, Farina C, Di Stefano G. Doxorubicin coupled to lactosaminated human albumin: A hepatocellular carcinoma targeted drug. Drug Discov Today 2008; 13(21-22): 1002-9. doi: 10.1016/j.drudis.2008.07.009 PMID: 18755287
  67. Sampath M, Lakra R, Korrapati P, Sengottuvelan B. Curcumin loaded poly (lactic-co-glycolic) acid nanofiber for the treatment of carcinoma. Colloids Surf B Biointerfaces 2014; 117: 128-34. doi: 10.1016/j.colsurfb.2014.02.020 PMID: 24646452
  68. Hinderer S, Schesny M, Bayrak A, et al. Engineering of fibrillar decorin matrices for a tissue-engineered trachea. Biomaterials 2012; 33(21): 5259-66. doi: 10.1016/j.biomaterials.2012.03.075 PMID: 22521489
  69. Schaefer L, Schaefer RM. Proteoglycans: From structural compounds to signaling molecules. Cell Tissue Res 2010; 339(1): 237-46. doi: 10.1007/s00441-009-0821-y PMID: 19513755
  70. Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer 2008; 49(26): 5603-21. doi: 10.1016/j.polymer.2008.09.014
  71. Tong HW, Mutlu BR, Wackett LP, Aksan A. Manufacturing of bioreactive nanofibers for bioremediation. Biotechnol Bioeng 2014; 111(8): 1483-93. doi: 10.1002/bit.25208 PMID: 24615064
  72. Mangır N, Bullock AJ, Roman S, Osman N, Chapple C, MacNeil S. Production of ascorbic acid releasing biomaterials for pelvic floor repair. Acta Biomater 2016; 29: 188-97. doi: 10.1016/j.actbio.2015.10.019 PMID: 26478470
  73. Hinderer S, Layland SL, Schenke-Layland K. ECM and ECM-like materials: Biomaterials for applications in regenerative medicine and cancer therapy. Adv Drug Deliv Rev 2016; 97: 260-9. doi: 10.1016/j.addr.2015.11.019 PMID: 26658243
  74. Yang G, Wang J, Wang Y, Li L, Guo X, Zhou S. An implantable active-targeting micelle-in-nanofiber device for efficient and safe cancer therapy. ACS Nano 2015; 9(2): 1161-74. doi: 10.1021/nn504573u PMID: 25602381
  75. Langer R, Vacanti JP. Tissue engineering. Science 1993; 260(5110): 920-6. doi: 10.1126/science.8493529 PMID: 8493529
  76. Niklason LE, Langer R. Prospects for organ and tissue replacement. JAMA 2001; 285(5): 573-6. doi: 10.1001/jama.285.5.573 PMID: 11176861
  77. Chevalier E, Chulia D, Pouget C, Viana M. Fabrication of porous substrates: A review of processes using pore forming agents in the biomaterial field. J Pharm Sci 2008; 97(3): 1135-54. doi: 10.1002/jps.21059 PMID: 17688274
  78. Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 2002; 8(1): 1-11. doi: 10.1089/107632702753503009 PMID: 11886649
  79. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005; 4(7): 518-24. doi: 10.1038/nmat1421 PMID: 16003400
  80. Hutmacher DW, Sittinger M, Risbud MV. Scaffold-based tissue engineering: Rationale for computer-aided design and solid free- form fabrication systems. Trends Biotechnol 2004; 22(7): 354-62. doi: 10.1016/j.tibtech.2004.05.005 PMID: 15245908
  81. Dhariwala B, Hunt E, Boland T. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng 2004; 10(9-10): 1316-22. doi: 10.1089/ten.2004.10.1316 PMID: 15588392
  82. Perry TE, Roth SJ. Cardiovascular tissue engineering: Constructing living tissue cardiac valves and blood vessels using bone marrow, umbilical cord blood, and peripheral blood cells. J Cardiovasc Nurs 2003; 18(1): 30-7. doi: 10.1097/00005082-200301000-00005 PMID: 12537087
  83. Twal WO, Klatt SC, Harikrishnan K, et al. Cellularized microcarriers as adhesive building blocks for fabrication of tubular tissue constructs. Ann Biomed Eng 2014; 42(7): 1470-81. doi: 10.1007/s10439-013-0883-6 PMID: 23943070
  84. Hall S. Axonal regeneration through acellular muscle grafts. J Anat 1997; 190(1): 57-71. doi: 10.1046/j.1469-7580.1997.19010057.x PMID: 9034882
  85. Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 2004; 12(3-4): 367-77. doi: 10.1016/j.trim.2003.12.016 PMID: 15157928
  86. Gilbert T, Sellaro T, Badylak S. Decellularization of tissues and organs. Biomaterials 2006; 27(19): 3675-83. doi: 10.1016/j.biomaterials.2006.02.014 PMID: 16519932
  87. Schmidt CE, Baier JM. Acellular vascular tissues: Natural biomaterials for tissue repair and tissue engineering. Biomaterials 2000; 21(22): 2215-31. doi: 10.1016/S0142-9612(00)00148-4 PMID: 11026628
  88. Takezawa T, Mori Y, Yoshizato K. Cell culture on a thermo-responsive polymer surface. Biotechnology 1990; 8(9): 854-6. doi: 10.1038/nbt0990-854
  89. Okano T, Yamada N, Sakai H, Sakurai Y. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res 1993; 27(10): 1243-51. doi: 10.1002/jbm.820271005 PMID: 8245039
  90. Okano T, Yamada N, Okuhara M, Sakai H, Sakurai Y. Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials 1995; 16(4): 297-303. doi: 10.1016/0142-9612(95)93257-E PMID: 7772669
  91. Nishida K, Yamato M, Hayashida Y, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 2004; 351(12): 1187-96. doi: 10.1056/NEJMoa040455 PMID: 15371576
  92. Shimizu T, Sekine H, Yamato M, Okano T. Cell sheet-based myocardial tissue engineering: new hope for damaged heart rescue. Curr Pharm Des 2009; 15(24): 2807-14. doi: 10.2174/138161209788923822 PMID: 19689351
  93. Jiyoung MD, Kam WL. Myogenic induction of aligned mesenchymal stem cell sheets by culture on thermally responsive electrospun nanofibers. Adv Mater 2007; 19: 2775-9. doi: 10.1002/adma.200602159
  94. Isenberg BC, Tsuda Y, Williams C, et al. A thermoresponsive, microtextured substrate for cell sheet engineering with defined structural organization. Biomaterials 2008; 29(17): 2565-72. doi: 10.1016/j.biomaterials.2008.02.023 PMID: 18377979
  95. da Silva RMP, Mano JF, Reis RL. Smart thermoresponsive coatings and surfaces for tissue engineering: Switching cell-material boundaries. Trends Biotechnol 2007; 25(12): 577-83. doi: 10.1016/j.tibtech.2007.08.014 PMID: 17997178
  96. Leucht P, Lee S, Yim N. Wnt signaling and bone regeneration: Can’t have one without the other. Biomaterials 2019; 196: 46-50. doi: 10.1016/j.biomaterials.2018.03.029 PMID: 29573821
  97. Boerckel JD, Kolambkar YM, Stevens HY, Lin ASP, Dupont KM, Guldberg RE. Effects of in vivo mechanical loading on large bone defect regeneration. J Orthop Res 2012; 30(7): 1067-75. doi: 10.1002/jor.22042 PMID: 22170172
  98. Mohammadi M, Alibolandi M, Abnous K, Salmasi Z, Jaafari MR, Ramezani M. Fabrication of hybrid scaffold based on hydroxyapatite-biodegradable nanofibers incorporated with liposomal formulation of BMP-2 peptide for bone tissue engineering. Nanomedicine 2018; 14(7): 1987-97. doi: 10.1016/j.nano.2018.06.001 PMID: 29933024
  99. Sun X, Wu Z, He D, et al. Bioactive injectable polymethylmethacrylate/silicate bioceramic hybrid cements for percutaneous vertebroplasty and kyphoplasty. J Mech Behav Biomed Mater 2019; 96: 125-35. doi: 10.1016/j.jmbbm.2019.04.044 PMID: 31035063
  100. Ustek S, Kismet K, Akkus MA, Ozcan AH, Aydogan A, Renda N. Effect of povidone-iodine liposome hydrogel on colonic anastomosis. Eur Surg Res 2005; 37(4): 242-5. doi: 10.1159/000087870
  101. Contents: (Adv. Healthcare Mater. 19/2017). In: Advanced Healthcare Materials 2017; 6(19). doi: 10.1002/adhm.201770100
  102. Hurler J, Sørensen KK, Fallarero A, Vuorela P, Škalko-Basnet N. Liposomes-in-hydrogel delivery system with mupirocin: in vitro antibiofilm studies and in vivo evaluation in mice burn model. BioMed Res Int 2013; 2013: 1-8. doi: 10.1155/2013/498485 PMID: 24369533
  103. Ziegler G, Grabher P, Thompson A, et al. Progressive neurodegeneration following spinal cord injury. Neurology 2018; 90(14): e1257-66. doi: 10.1212/WNL.0000000000005258 PMID: 29514946
  104. Li X, Dai J. Bridging the gap with functional collagen scaffolds: Tuning endogenous neural stem cells for severe spinal cord injury repair. Biomater Sci 2018; 6(2): 265-71. doi: 10.1039/C7BM00974G PMID: 29265131
  105. Zhao Y, Xiao Z, Chen B, Dai J. The neuronal differentiation microenvironment is essential for spinal cord injury repair. Organogenesis 2017; 13(3): 63-70. doi: 10.1080/15476278.2017.1329789 PMID: 28598297
  106. Melling GE, Colombo JS, Avery SJ, et al. Liposomal delivery of demineralized dentin matrix for dental tissue regeneration. Tissue Eng Part A 2018; 24(13-14): 1057-65. doi: 10.1089/ten.tea.2017.0419 PMID: 29316874
  107. Zajda J, Farag F. Urolastic-a new bulking agent for the treatment of women with stress urinary incontinence: Outcome of 12 months follow up. Adv Urol 2013; 2013: 1-5. doi: 10.1155/2013/724082 PMID: 24454351
  108. Jung S, Oh H-K, Kim M-S, Lee K-Y, Park H, Kook M-S. Effect of gellan gum/tuna skin film in guided bone regeneration in artificial bone defect in rabbit calvaria. Materials 2020; 13(6): 1318. doi: 10.3390/ma13061318
  109. Kovačević J, Prucková Z, Pospíšil T, Kašpárková V, Rouchal M, Vícha R. A new hyaluronan modified with β-cyclodextrin on hydroxymethyl groups forms a dynamic supramolecular network. Molecules 2019; 24(21): 3849. doi: 10.3390/molecules24213849
  110. Seidlits SK, Drinnan CT, Petersen RR, Shear JB, Suggs LJ, Schmidt CE. Fibronectin–hyaluronic acid composite hydrogels for three-dimensional endothelial cell culture. Acta Biomater 2011; 7(6): 2401-9. doi: 10.1016/j.actbio.2011.03.024 PMID: 21439409
  111. Erickson IE, Kestle SR, Zellars KH, et al. High mesenchymal stem cell seeding densities in hyaluronic acid hydrogels produce engineered cartilage with native tissue properties. Acta Biomater 2012; 8(8): 3027-34. doi: 10.1016/j.actbio.2012.04.033 PMID: 22546516
  112. Kim HJ, Kim KK, Park IK, Choi BS, Kim JH, Kim MS. Hybrid scaffolds composed of hyaluronic acid and collagen for cartilage regeneration. Tiss Eng Regen Med 2012; 9: 57-62. doi: 10.1007/s13770-012-0007-7
  113. Guo Y, Yuan T, Xiao Z, et al. Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering. J Mater Sci Mater Med 2012; 23(9): 2267-79. doi: 10.1007/s10856-012-4684-5
  114. Wang X, He J, Wang Y, Cui FZ. Hyaluronic acid-based scaffold for central neural tissue engineering. Interface Focus 2012; 2(3): 278-91. doi: 10.1098/rsfs.2012.0016 PMID: 23741606
  115. Zhong J, Chan A, Morad L, Kornblum HI, Guoping Fan , Carmichael ST. Hydrogel matrix to support stem cell survival after brain transplantation in stroke. Neurorehabil Neural Repair 2010; 24(7): 636-44. doi: 10.1177/1545968310361958 PMID: 20424193
  116. Nesti LJ, Li W-J, Shanti RM, et al. Intervertebral disc tissue engineering using a novel hyaluronic acid–nanofibrous scaffold (hanfs) amalgam. Tiss Eng Part A 2008; 14: 1527-37. Available from: https://www.academia.edu/11443224/Intervertebral_Disc_Tissue_Engineering_Using_a_Novel_Hyaluronic_Acid_Nanofibrous_Scaffold_HANFS_Amalgam
  117. Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater 2011; 23(12): H41-56. doi: 10.1002/adma.201003963
  118. Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW. The three-dimensional vascularization of growth factor-releasing hybrid scaffold of poly (ɛ-caprolactone)/collagen fibers and hyaluronic acid hydrogel. Biomaterials 2011; 32(32): 8108-17. doi: 10.1016/j.biomaterials.2011.07.022 PMID: 21807407
  119. Ma J, Holden K, Zhu J, Pan H, Li Y. The application of three-dimensional collagen-scaffolds seeded with myoblasts to repair skeletal muscle defects. J Biomed Biotechnol 2011; 2011: 812135. doi: 10.1155/2011/812135
  120. Detamore, Decellularized hyaline cartilage powder for tissue scaffolds. US10722614B2, 2014.
  121. Seliktar D, Almany L. Pegylated fibrinogen precursor molecule. US9474830B2, 2015.
  122. Self-assembling biomimetic hydrogels having bioadhesive properties. US9295761B2, Available from: https://patents.google.com/patent/US9295761B2/en (accessed September 1, 2021).
  123. Rockwood DN, Preda RC, Yucel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 2013; 6(10): 1612-31.
  124. Arinzeh, Scaffold for tissue growth and repair. Biochem Soc Trans 2016; 9: 2939-47.
  125. Pina S, Ribeiro VP, Paiva OC, Correlo VM, Oliveira JM, Reis RL. Tissue engineering scaffolds: Future perspectives. Handbook of tissue engineering scaffolds: Volume one. Woodhead Publishing 2019; pp. 165-85. doi: 10.1016/B978-0-08-102563-5.00009-5

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers