High-Throughput Sequencing Technology Assisted Investigation of the Correlation Between Intestinal Flora, Serum Biochemistry, Blood Lipids, and Tumour Markers in Patients with Gastric Cancer and Healthy Plateau Residents


Cite item

Full Text

Abstract

Aim:The goal is to use high-throughput sequencing technology to compare and study the structure and variety of intestinal flora in people with gastric cancer and healthy people in the Qinghai-Tibet Plateau.

Background:Recent research has connected gut flora structure to numerous disorders. Metabolites, endotoxins, and immunomodulatory modulation might cause gastrointestinal or other systemic diseases and affect gastric cancer treatment and prognosis. We used the correlation study to uncover biomarkers associated with good intestinal flora and gastric cancer groups on the plateau to investigate their involvement in gastric cancer development.

Objectives:To investigate the possible links between intestinal flora and gastric cancer in the Qinghai Plateau region using a variety of clinical phenotypic data and to investigate the flora that may be linked to gastric cancer.

Methods:The 22 Qinghai Province tertiary hospital gastric cancer patients and 30 healthy people had their fresh faeces collected. To examine intestinal flora diversity and composition, 52 patients underwent 16S rDNA high-throughput gene sequencing of intestinal bacteria. The correlation between clinical phenotypes and the top 15 dominant intestinal flora at the phylum level was analyzed.

Results:The difference in total protein TP between the healthy group and the gastric cancer group was statistically significant (P(<0.001). Globulin was significantly different (P(<0.05), TC of total cholesterol was significantly different (P(<0.05). High-density lipoprotein showed statistical significance (P(<0.05).The difference in low-density lipoprotein was statistically significant (P(<0.001). Alphafetoprotein was significantly different (P(<0.05). CA72-4 carbohydrate antigen (P(<0.05).

Conclusion:There were significant differences in total protein, globulin, total cholesterol, high density lipoprotein, low-density lipoprotein, alpha-fetoprotein and carbohydrate antigen CA72-4 in patients with gastric cancer in the plateau area compared with the healthy group, and the different clinical variables were correlated with intestinal flora at some phylum and genus levels.

About the authors

Linghong Zhu

Department of Science and Education, Qinghai Provincial People’s Hospital

Email: info@benthamscience.net

Bo Wang

Department of Science and Education, Qinghai Provincial People’s Hospital

Email: info@benthamscience.net

Linxun Liu

Department of General Surgery, Qinghai Provincial People’s Hospital

Email: info@benthamscience.net

Pei Han

Department of Science and Education, Qinghai Provincial People’s Hospital

Email: info@benthamscience.net

Li Ji

Department of Science and Education, Qinghai Provincial People’s Hospital

Email: info@benthamscience.net

Zilong Zhang

Department of Oncosurgery, Qinghai Provincial People’s Hospital

Author for correspondence.
Email: info@benthamscience.net

Jingni Zhang

Department of Science and Education, Qinghai Provincial People’s Hospital

Author for correspondence.
Email: info@benthamscience.net

References

  1. Local Chronicles Compilation Committee of Qinghai Province. 2020.
  2. Fan, Z.; Zhang, Z.; Jianguo, X.; Ji, B.; From, D. 2014 to 2018, the disease composition and influencing factors of malignant tumour inpatients at Qinghai Provincial People’s Hospital were studied. China Cancer, 2021, 30(05), 370-378.
  3. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  4. Rong, G.; Xiong, Y.; Yang, Y.; Liu, Z.; Xiang, Z.; Lu, Y. From 1979 to 2008,6362 cases of gastric cancer were detected by gastroscopy in Qinghai province. World Chin. Digest. J., 2012, 20(36), 3777-3781. doi: 10.11569/wcjd.v20.i36.3777
  5. Singh, R.K. Key heterocyclic cores for smart anticancer drug–design Part II; Bentham Science Publishers, 2022. doi: 10.2174/97898150400741220101
  6. Singh, R.K.; Kumar, S.; Prasad, D.N.; Bhardwaj, T.R. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: Historic to future perspectives. Eur. J. Med. Chem., 2018, 151, 401-433. doi: 10.1016/j.ejmech.2018.04.001 PMID: 29649739
  7. Wilson, I.D.; Nicholson, J.K. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl. Res., 2017, 179(204), 204-222. doi: 10.1016/j.trsl.2016.08.002 PMID: 27591027
  8. Murakami, M.; Iwamoto, J.; Honda, A.; Tsuji, T.; Tamamushi, M.; Ueda, H.; Monma, T.; Konishi, N.; Yara, S.; Hirayama, T.; Miyazaki, T.; Saito, Y.; Ikegami, T.; Matsuzaki, Y. Detection of gut dysbiosis due to reduced clostridium subcluster XIVa using the fecal or serum bile acid profile. Inflamm. Bowel Dis., 2018, 24(5), 1035-1044. doi: 10.1093/ibd/izy022 PMID: 29688473
  9. Simonyte Sjödin, K.; Vidman, L.; Rydén, P.; West, C.E. Emerging evidence of the role of gut microbiota in the development of allergic diseases. Curr. Opin. Allergy Clin. Immunol., 2016, 16(4), 390-395. doi: 10.1097/ACI.0000000000000277 PMID: 27253486
  10. Roy, S.; Trinchieri, G. Microbiota: A key orchestrator of cancer therapy. Nat. Rev. Cancer, 2017, 17(5), 271-285. doi: 10.1038/nrc.2017.13 PMID: 28303904
  11. Zhang, Z.; Zhu, L.; Ma, Y.; Wang, B.; Ci, C.; Zhang, J.; Zhou, Y.; Dou, C.; Gu, Q.; An, Y.; Lan, Y.; Zhao, J. Study on the characteristics of intestinal flora composition in gastric cancer patients and healthy people in the qinghai-tibet plateau. Appl. Biochem. Biotechnol., 2022, 194(4), 1510-1526. doi: 10.1007/s12010-021-03732-4 PMID: 34792749
  12. Carmo Bastos, M.L.; Silva-Silva, J.V.; Neves Cruz, J.; Palheta da Silva, A.R.; Bentaberry-Rosa, A.A.; da Costa Ramos, G.; de Sousa Siqueira, J.E.; Coelho-Ferreira, M.R.; Percário, S.; Santana Barbosa Marinho, P.; Marinho, A.M.R.; de Oliveira Bahia, M.; Dolabela, M.F. Alkaloid from Geissospermum sericeum benth. & hook.f. ex miers (apocynaceae) induce apoptosis by caspase pathway in human gastric cancer cells. Pharmaceuticals, 2023, 16(5), 765. doi: 10.3390/ph16050765 PMID: 37242548
  13. Alves, F.S.; Cruz, J.N.; de Farias Ramos, I.N.; do Nascimento Brandão, D.L.; Queiroz, R.N.; da Silva, G.V.; da Silva, G.V.; Dolabela, M.F.; da Costa, M.L.; Khayat, A.S.; de Arimatéia Rodrigues do Rego, J.; do Socorro Barros Brasil, D. Evaluation of antimicrobial activity and cytotoxicity effects of extracts of Piper nigrum L. and piperine. Separations, 2022, 10(1), 21. doi: 10.3390/separations10010021
  14. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15), 2114-2120. doi: 10.1093/bioinformatics/btu170 PMID: 24695404
  15. Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ, 2016, 4e2584. doi: 10.7717/peerj.2584 PMID: 27781170
  16. Kumar, S.; Sharma, B.; Bhardwaj, T.R.; Singh, R.K. Design, synthesis and studies on novel polymeric prodrugs of erlotinib for colon drug delivery. Anticancer. Agents Med. Chem., 2021, 21(3), 383-392. doi: 10.2174/1871520620666200811124013 PMID: 32781967
  17. Kumar, S.; Sharma, B.; Thakur, K.; Bhardwaj, T.R.; Prasad, D.N.; Singh, R.K. Recent advances in the development of polymeric nanocarrier formulations for the treatment of colon cancer. Drug Deliv. Lett., 2019, 9(1), 2-14. doi: 10.2174/2210303108666181109120710
  18. Gaulke, C.A.; Sharpton, T.J. The influence of ethnicity and geography on human gut microbiome composition. Nat. Med., 2018, 24(10), 1495-1496. doi: 10.1038/s41591-018-0210-8 PMID: 30275567
  19. Malfertheiner, P.; Megraud, F; O'Morain, CA management of helicobacter pylori infection-the maastricht V/florence consensus report. Gut., 2017, 66(1), 6-30.
  20. Chang, S.C.; Goldstein, B.Y.; Mu, L.; Cai, L.; You, N.C.Y.; He, N.; Ding, B.G.; Zhao, J.K.; Yu, S.Z.; Heber, D.; Zhang, Z.F.; Lu, Q.Y. Plasma folate, vitamin B12, and homocysteine and cancers of the esophagus, stomach, and liver in a Chinese population. Nutr. Cancer, 2015, 67(2), 212-223. doi: 10.1080/01635581.2015.989375 PMID: 25607998
  21. Feng, X. Clinical significance of serum CA199, CEA, CRP, and CA72-4 detection in GC patients. China J. Cancer Prev. Treat., 2019, 26(S1), 68-70.
  22. Karimi, P.; Islami, F.; Anandasabapathy, S.; Freedman, N.D.; Kamangar, F. Gastric cancer: Descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol. Biomarkers Prev., 2014, 23(5), 700-713. doi: 10.1158/1055-9965.EPI-13-1057 PMID: 24618998
  23. Hashmi, S.; Wang, Y.; Suman, D.S.; Parhar, R.S.; Collison, K.; Conca, W.; Al-Mohanna, F.; Gaugler, R. Human cancer: Is it linked to dysfunctional lipid metabolism? Biochim. Biophys. Acta, Gen. Subj., 2015, 1850(2), 352-364. doi: 10.1016/j.bbagen.2014.11.004 PMID: 25450488
  24. Asano, K.; Kubo, M.; Yonemoto, K.; Doi, Y.; Ninomiya, T.; Tanizaki, Y.; Arima, H.; Shirota, T.; Matsumoto, T.; Iida, M.; Kiyohara, Y. Impact of serum total cholesterol on the incidence of gastric cancer in a population-based prospective study: The Hisayama study. Int. J. Cancer, 2008, 122(4), 909-914. doi: 10.1002/ijc.23191 PMID: 17957783
  25. Nam, S.Y.; Park, B.J.; Nam, J.H. The impact of helicobacter pylori eradication and high-density lipoprotein on the development of de novo gastric cancer. Gastrointest. Endosc., 2019, 90, 448-456. doi: 10.1016/j.gie.2019.04.232 PMID: 31034810
  26. Ning, W.; Fu, L. Sui, Chengguang Correlation analysis of serum IGF-1 with CEA, CA125, CA199, and CA724 levels in patients with gastric cancer and its significance in the diagnosis of gastric cancer. Chin. J. Lab. Daig., 2021, 25(2), 194-197.
  27. Xiong, S.; Zipeng, Xv.; Nan, Y. combined detection of tumour markers, serum pepsinogen, and gastrin-17 in the diagnosis of gastric cancer. Chin. J. Basic Clin. Surg., 2019, 26(8), 923-928.
  28. Donemei, T.; Cheng, X. A comparison of the utility of biopsy under the gastroscope versus surgical pathology in the diagnosis of gastric cancer. J. Color. Anal Surgery, 2018, 24(S2), 19-20.
  29. Dong, J.; Xiao, S.; Hongwei, F. Comparative study of SOX and XELOX regimens on serum tumor markers, survival and tolerance in patients with recurrent gastric cancer after surgery. J. Practical. Can., 2021, 36(5), 831-835.
  30. Liu, Y.; Cheng, S.; Qing, Q. The role of CEA, AFP, and CA242 in the pathological diagnosis and prognosis evaluation of gastric cancer. Hebei Med. J., 2017, 39(9), 1335-1337.
  31. Colcher, D.; Hand, P.H.; Nuti, M.; Schlom, J. A spectrum of monoclonal antibodies reactive with human mammary tumor cells. Proc. Natl. Acad. Sci. USA, 1981, 78(5), 3199-3203. doi: 10.1073/pnas.78.5.3199 PMID: 6789331
  32. Shi, N.; Na, Z.; Yan, J. The importance of detecting serum carcinoembryonic antigen, CA72-4, and CA19-9 in the early detection of gastric cancer. Guide to Chinese Medicine, 2021, 19(20), 2.
  33. Yan, Z.; Li, Y.; Yuhong, Xv. The utility of serum pepsinogen in conjunction with CA724 in the differential diagnosis of gastric cancer. International Journal of Immunology, 2017, 40(4), 40I-403.
  34. Yongxin, X.; Chunyang, T.; Jie, G. Changes and significance of serum annexin A1, carbohydrate antigen 72-4, pepsinogen I and gastrin-17 levels in patients with gastric cancer. Cancer Prog., 2020, 18(23), 2413-2416.
  35. Dias-Jácome, E.; Libânio, D.; Borges-Canha, M. A systematic review of the role of non-Helicobacter pylori bacteria in gastric microbiota and carcinogenesis. Revista Espaola De Enfermedades Digestivas, 2016, 108(9), 530-540. doi: 10.17235/reed.2016.4261/2016 PMID: 27604361
  36. Ferreira, R.M.; Pereira-Marques, J.; Pinto-Ribeiro, I.; Costa, J.L.; Carneiro, F.; Machado, J.C.; Figueiredo, C. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut, 2018, 67(2), 226-236. doi: 10.1136/gutjnl-2017-314205 PMID: 29102920
  37. Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol., 2021, 19(1), 55-71. doi: 10.1038/s41579-020-0433-9 PMID: 32887946
  38. Boulange, C.L.; Neves, A.L.; Chilloux, J. The gut microbiota’s influence on inflammation, obesity, and metabolic disease. Genome Med., 2016, 8(1), 42. doi: 10.1186/s13073-016-0303-2 PMID: 27098727
  39. Wang, Z.; Koonen, D.; Hofker, M.; Fu, J. Gut microbiome and lipid metabolism. Curr. Opin. Lipidol., 2016, 27(3), 216-224. doi: 10.1097/MOL.0000000000000308 PMID: 27054442
  40. Li, M. Correlation between nonalcoholic fatty liver disease and Helicobacter pylori infection; Kunming Medical University, 2019.
  41. Xiao, M. Effect of the accelerated rehabilitation surgery concept on postoperative clinical indicators and disease-free function of elderly patients with gastric Cancer. J. Clinic Med. Prac., 2015, 19(10), 34-36.
  42. Imhann, F.; Bonder, M.J.; Vich Vila, A.; Fu, J.; Mujagic, Z.; Vork, L.; Tigchelaar, E.F.; Jankipersadsing, S.A.; Cenit, M.C.; Harmsen, H.J.M.; Dijkstra, G.; Franke, L.; Xavier, R.J.; Jonkers, D.; Wijmenga, C.; Weersma, R.K.; Zhernakova, A. Proton pump inhibitors affect the gut microbiome. Gut, 2016, 65(5), 740-748. doi: 10.1136/gutjnl-2015-310376 PMID: 26657899
  43. Gao, F.; Li, M.; Liu, Y.; Gao, C.; Wen, S.; Tang, L. Intestinal dysbacteriosis induces changes of T lymphocyte subpopulations in Peyer’s patches of mice and orients the immune response towards humoral immunity. Gut Pathog., 2012, 4(1), 19. doi: 10.1186/1757-4749-4-19 PMID: 23228177
  44. Johnson, BM; Gaudreau, MC; Gudi, R; Brown, R; Gilkeson, G; Vasu, C Gut microbiota differently contributes to intestinal immune phenotype and systemic autoimmune progression in female and male lupus-prone mice. J. Autoimmun., 2020, 108, 102420. doi: 10.1016/j.jaut.2020.102420
  45. Li, N.; Bai, C.; Lin, Z. Fecal flora differences between patients with digestive tract tumours and healthy people. Acta Academiae Medicinae Sinicae, 2019, 41(5), 636-645. PMID: 31699194

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers