Overexpression of SOCS2 Inhibits EMT and M2 Macrophage Polarization in Cervical Cancer via IL-6/JAK2/STAT3 Pathway
- Authors: Li D.1, Huang Y.1, Wei M.2, Chen B.1, Lu Y.1
-
Affiliations:
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital
- Department of Gynecologic, Guangxi Medical University Affiliated National Hospital
- Issue: Vol 27, No 7 (2024)
- Pages: 984-995
- Section: Chemistry
- URL: https://rjraap.com/1386-2073/article/view/644918
- DOI: https://doi.org/10.2174/1386207326666230818092532
- ID: 644918
Cite item
Full Text
Abstract
Objective:SOCS2 is a member of the suppressor of cytokine signaling (SOCS) protein family associated with the occurrence and development of multiple cancers. This study revealed the expression and molecular mechanisms of SOCS2 in cervical cancer.
Methods:In this study, RT-qPCR, Western Blot, and immunohistochemistry were used to detect the expression level of SOCS2 in cervical cancer tissues and tumor cells. We overexpressed SOCS2 in SiHa cells via lentivirus. In-vitro experiments were used to investigate the changes in cervical cancer cell proliferation, migration, and invasion ability before and after SOCS2 overexpression. Western Blot was used to detect the expression of IL-6/JAK2/STAT3 pathway and EMTrelated proteins. M0 macrophages were co-cultured with the tumor-conditioned medium. The effect of SOCS2 on macrophage polarization was examined by RT-qPCR.
Results:SOCS2 expression level was significantly downregulated in cervical cancer tissues. SOCS2 was negatively correlated with CD163+M2 macrophages. Overexpression of SOCS2 inhibited the proliferation, migration, and invasion of cervical cancer cells. The expressions of Twist- 2, N-cadherin, and Vimentin were decreased, while the expression of E-cadherin was increased. Moreover, the expression of IL-6, p-JAK2, and p-STAT3 were decreased. After the addition of RhIL-6, the expression of E-cadherin protein in the LV-SOCS2 group was reversed. CM in the LV-SOCS2 group inhibited the polarization of M2 macrophages.
Conclusion:SOCS2 acts as a novel biological target and suppressor of cervical cancer through IL- 6/JAK2/STAT3 pathway.
Keywords
About the authors
Dan Li
Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital
Email: info@benthamscience.net
Yandan Huang
Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital
Email: info@benthamscience.net
Min Wei
Department of Gynecologic, Guangxi Medical University Affiliated National Hospital
Email: info@benthamscience.net
Bin Chen
Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital
Email: info@benthamscience.net
Yan Lu
Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital
Author for correspondence.
Email: info@benthamscience.net
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Queiroz, A.C.M.; Fabri, V.; Mantoan, H.; Sanches, S.M.; Guimarães, A.P.G.; Ribeiro, A.R.G.; da Nogueira, S.L.J.P.; Chen, M.J.; Baiocchi, G.; da Costa, A.A.B.A. Risk factors for pelvic and distant recurrence in locally advanced cervical cancer. Eur. J. Obstet. Gynecol. Reprod. Biol., 2019, 235, 6-12. doi: 10.1016/j.ejogrb.2019.01.028 PMID: 30771718
- Chopra, S.; Gupta, M.; Mathew, A.; Mahantshetty, U.; Engineer, R.; Lavanya, G.; Gupta, S.; Ghosh, J.; Thakur, M.; Deodhar, K.; Menon, S.; Rekhi, B.; Bajpai, J.; Gulia, S.; Maheshwari, A.; Kerkar, R.; Shylasree, T.S.; Shrivastava, S.K. Locally advanced cervical cancer: A study of 5-year outcomes. Indian J. Cancer, 2018, 55(1), 45-49. doi: 10.4103/ijc.IJC_428_17 PMID: 30147092
- Small, W., Jr; Bacon, M.A.; Bajaj, A.; Chuang, L.T.; Fisher, B.J.; Harkenrider, M.M.; Jhingran, A.; Kitchener, H.C.; Mileshkin, L.R.; Viswanathan, A.N.; Gaffney, D.K. Cervical cancer: A global health crisis. Cancer, 2017, 123(13), 2404-2412. doi: 10.1002/cncr.30667 PMID: 28464289
- Yoshimura, A.; Naka, T.; Kubo, M. SOCS proteins, cytokine signalling and immune regulation. Nat. Rev. Immunol., 2007, 7(6), 454-465. doi: 10.1038/nri2093 PMID: 17525754
- Hilton, D.J.; Richardson, R.T.; Alexander, W.S.; Viney, E.M.; Willson, T.A.; Sprigg, N.S.; Starr, R.; Nicholson, S.E.; Metcalf, D.; Nicola, N.A. Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc. Natl. Acad. Sci., 1998, 95(1), 114-119. doi: 10.1073/pnas.95.1.114 PMID: 9419338
- Piessevaux, J.; Lavens, D.; Peelman, F.; Tavernier, J. The many faces of the SOCS box. Cytokine Growth Factor Rev., 2008, 19(5-6), 371-381. doi: 10.1016/j.cytogfr.2008.08.006 PMID: 18948053
- Keewan, E.; Matlawska-Wasowska, K. The emerging role of suppressors of cytokine signaling (SOCS) in the development and progression of leukemia. Cancers., 2021, 13(16), 4000. doi: 10.3390/cancers13164000 PMID: 34439155
- Letellier, E.; Haan, S. SOCS2: Physiological and pathological functions. Front. Biosci., 2016, 8(1), 189-204. PMID: 26709655
- Lebrun, P.; Cognard, E.; Gontard, P.; Bellon-Paul, R.; Filloux, C.; Berthault, M.F.; Magnan, C.; Ruberte, J.; Luppo, M.; Pujol, A.; Pachera, N.; Herchuelz, A.; Bosch, F.; Van Obberghen, E. The suppressor of cytokine signalling 2 (SOCS2) is a key repressor of insulin secretion. Diabetologia., 2010, 53(9), 1935-1946. doi: 10.1007/s00125-010-1786-9 PMID: 20499047
- Sobah, M.L.; Liongue, C.; Ward, A.C. SOCS proteins in immunity, inflammatory diseases, and immune-related cancer. Front. Med., 2021, 8, 727987. doi: 10.3389/fmed.2021.727987 PMID: 34604264
- Liu, J.; Liu, Z.; Li, W.; Zhang, S. SOCS2 is a potential prognostic marker that suppresses the viability of hepatocellular carcinoma cells. Oncol. Lett., 2021, 21(5), 399. doi: 10.3892/ol.2021.12660 PMID: 33777222
- Letellier, E.; Schmitz, M.; Baig, K.; Beaume, N.; Schwartz, C.; Frasquilho, S.; Antunes, L.; Marcon, N.; Nazarov, P.V.; Vallar, L.; Even, J.; Haan, S. Identification of SOCS2 and SOCS6 as biomarkers in human colorectal cancer. Br. J. Cancer., 2014, 111(4), 726-735. doi: 10.1038/bjc.2014.377 PMID: 25025962
- Wang, F.; Wang, X.; Li, J.; Lv, P.; Han, M.; Li, L.; Chen, Z.; Dong, L.; Wang, N.; Gu, Y. CircNOL10 suppresses breast cancer progression by sponging miR-767-5p to regulate SOCS2/JAK/STAT signaling. J. Biomed. Sci., 2021, 28(1), 4. doi: 10.1186/s12929-020-00697-0 PMID: 33397365
- Zhou, Y.; Zhang, Z.; Wang, N.; Chen, J.; Zhang, X.; Guo, M.; John Zhong, L.; Wang, Q. Suppressor of cytokine signalling-2 limits IGF1R-mediated regulation of epithelialmesenchymal transition in lung adenocarcinoma. Cell. Death. Dis., 2018, 9(4), 429. doi: 10.1038/s41419-018-0457-5 PMID: 29559623
- Zhang, Q.; Guan, F.; Fan, T.; Li, S.; Ma, S.; Zhang, Y.; Guo, W.; Liu, H. LncRNA WDFY3-AS2 suppresses proliferation and invasion in oesophageal squamous cell carcinoma by regulating miR-2355-5p/SOCS2 axis. J. Cell. Mol. Med., 2020, 24(14), 8206-8220. doi: 10.1111/jcmm.15488 PMID: 32536038
- Dai, B.; Zhang, X. SOCS2 affects the proliferation, migration, and invasion of nasopharyngeal carcinoma cells via regulating EphA1. Neoplasma., 2020, 67(4), 794-801. doi: 10.4149/neo_2020_190807N724 PMID: 32266818
- Hoefer, J.; Kern, J.; Ofer, P.; Eder, I.E.; Schäfer, G.; Dietrich, D.; Kristiansen, G.; Geley, S.; Rainer, J.; Gunsilius, E.; Klocker, H.; Culig, Z.; Puhr, M. SOCS2 correlates with malignancy and exerts growth-promoting effects in prostate cancer. Endocr. Relat. Cancer, 2014, 21(2), 175-187. doi: 10.1530/ERC-13-0446 PMID: 24280133
- Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic. Acids. Res., 2020, 48(W1), W509-W514. doi: 10.1093/nar/gkaa407 PMID: 32442275
- Das, R.; Gregory, P.A.; Fernandes, R.C.; Denis, I.; Wang, Q.; Townley, S.L.; Zhao, S.G.; Hanson, A.R.; Pickering, M.A.; Armstrong, H.K.; Lokman, N.A.; Ebrahimie, E.; Davicioni, E.; Jenkins, R.B.; Karnes, R.J.; Ross, A.E.; Den, R.B.; Klein, E.A.; Chi, K.N.; Ramshaw, H.S.; Williams, E.D.; Zoubeidi, A.; Goodall, G.J.; Feng, F.Y.; Butler, L.M.; Tilley, W.D.; Selth, L.A. MicroRNA-194 promotes prostate cancer metastasis by inhibiting SOCS2. Cancer. Res., 2017, 77(4), 1021-1034. doi: 10.1158/0008-5472.CAN-16-2529 PMID: 28011622
- Aiello, N.M.; Kang, Y. Context-dependent EMT programs in cancer metastasis. J. Exp. Med., 2019, 216(5), 1016-1026. doi: 10.1084/jem.20181827 PMID: 30975895
- Yilmaz, M.; Christofori, G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev., 2009, 28(1-2), 15-33. doi: 10.1007/s10555-008-9169-0 PMID: 19169796
- Loh, C.Y.; Chai, J.; Tang, T.; Wong, W.; Sethi, G.; Shanmugam, M.; Chong, P.; Looi, C. The E-Cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges. Cells., 2019, 8(10), 1118. doi: 10.3390/cells8101118 PMID: 31547193
- Qureshi, R.; Arora, H.; Rizvi, M.A. EMT in cervical cancer: Its role in tumour progression and response to therapy. Cancer Lett., 2015, 356(2), 321-331. doi: 10.1016/j.canlet.2014.09.021 PMID: 25281477
- Yu, H.; Pardoll, D.; Jove, R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat. Rev. Cancer, 2009, 9(11), 798-809. doi: 10.1038/nrc2734 PMID: 19851315
- Jin, W. Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelialmesenchymal transition. Cells., 2020, 9(1), 217. doi: 10.3390/cells9010217 PMID: 31952344
- Brabletz, S.; Schuhwerk, H.; Brabletz, T.; Stemmler, M.P.; Dynamic, E.M.T. Dynamic EMT: A multi-tool for tumor progression. EMBO J., 2021, 40(18), e108647. doi: 10.15252/embj.2021108647 PMID: 34459003
- Cheng, M.; Liu, P.; Xu, L.X. Iron promotes breast cancer cell migration via IL-6/JAK2/STAT3 signaling pathways in a paracrine or autocrine IL-6-rich inflammatory environment. J. Inorg. Biochem., 2020, 210, 111159. doi: 10.1016/j.jinorgbio.2020.111159 PMID: 32652260
- Xu, J.; Lin, H.; Wu, G.; Zhu, M.; Li, M. IL-6/STAT3 is a promising therapeutic target for hepatocellular carcinoma. Front. Oncol., 2021, 11, 760971. doi: 10.3389/fonc.2021.760971 PMID: 34976809
- Lin, Y.; He, Z.; Ye, J.; Liu, Z.; She, X.; Gao, X.; Liang, R. Progress in understanding the IL-6/STAT3 pathway in colorectal cancer. OncoTargets Ther., 2020, 13, 13023-13032. doi: 10.2147/OTT.S278013 PMID: 33376351
- Johnson, D.E.; OKeefe, R.A.; Grandis, J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol., 2018, 15(4), 234-248. doi: 10.1038/nrclinonc.2018.8 PMID: 29405201
- Browning, L.; Patel, M.; Bring Horvath, E.; Tawara, K.; Jorcyk, C.L. IL-6 and ovarian cancer: Inflammatory cytokines in promotion of metastasis. Cancer Manag. Res., 2018, 10, 6685-6693. doi: 10.2147/CMAR.S179189 PMID: 30584363
- Sullivan, N.J.; Sasser, A.K.; Axel, A.E.; Vesuna, F.; Raman, V.; Ramirez, N.; Oberyszyn, T.M.; Hall, B.M. Interleukin-6 induces an epithelialmesenchymal transition phenotype in human breast cancer cells. Oncogene., 2009, 28(33), 2940-2947. doi: 10.1038/onc.2009.180 PMID: 19581928
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 19(11), 1423-1437. doi: 10.1038/nm.3394 PMID: 24202395
- Liu, Y.; Li, L.; Li, Y.; Zhao, X. Research progress on tumor-associated macrophages and inflammation in cervical cancer. Bio-Med Res. Int., 2020, 2020, 1-6. doi: 10.1155/2020/6842963 PMID: 32083131
- Wang, Q.; Steger, A.; Mahner, S.; Jeschke, U.; Heidegger, H. The formation and therapeutic update of tumor-associated macrophages in cervical cancer. Int. J. Mol. Sci., 2019, 20(13), 3310. doi: 10.3390/ijms20133310 PMID: 31284453
- Guo, F.; Kong, W.; Zhao, G.; Cheng, Z.; Ai, L.; Lv, J.; Feng, Y.; Ma, X. The correlation between tumor-associated macrophage infiltration and progression in cervical carcinoma. Biosci. Rep., 2021, 41(5), BSR20203145. doi: 10.1042/BSR20203145 PMID: 33928349
- Delprat, V.; Michiels, C. A bi-directional dialog between vascular cells and monocytes/macrophages regulates tumor progression. Cancer Metastasis Rev., 2021, 40(2), 477-500. doi: 10.1007/s10555-021-09958-2 PMID: 33783686
- Ding, H.; Cai, J.; Mao, M.; Fang, Y.; Huang, Z.; Jia, J.; Li, T.; Xu, L.; Wang, J.; Zhou, J.; Yang, Q.; Wang, Z. Tumor-associated macrophages induce lymphangiogenesis in cervical cancer via interaction with tumor cells. Acta. Pathol. Microbiol. Scand. Suppl., 2014, 122(11), 1059-1069. doi: 10.1111/apm.12257 PMID: 24698523
- Wang, Q.; Schmoeckel, E.; Kost, B.P.; Kuhn, C.; Vattai, A.; Vilsmaier, T.; Mahner, S.; Mayr, D.; Jeschke, U.; Heidegger, H.H. Higher CCL22+ cell infiltration is associated with poor prognosis in cervical cancer patients. Cancers., 2019, 11(12), 2004. doi: 10.3390/cancers11122004 PMID: 31842422
- Lepique, A.P.; Daghastanli, K.R.P.; Cuccovia, I.M.; Villa, L.L. HPV16 tumor associated macrophages suppress antitumor T cell responses. Clin. Cancer Res., 2009, 15(13), 4391-4400. doi: 10.1158/1078-0432.CCR-09-0489 PMID: 19549768
- Bolpetti, A.; Silva, J.S.; Villa, L.L.; Lepique, A.P. Interleukin-10 production by tumor infiltrating macrophages plays a role in Human Papillomavirus 16 tumor growth. BMC Immunol., 2010, 11(1), 27. doi: 10.1186/1471-2172-11-27 PMID: 20525400
- He, Y.; de Araújo Júnior, R.F.; Cruz, L.J.; Eich, C. Functionalized nanoparticles targeting tumor-associated macrophages as cancer therapy. Pharmaceutics., 2021, 13(10), 1670. doi: 10.3390/pharmaceutics13101670 PMID: 34683963
- Chamseddine, A.N.; Assi, T.; Mir, O.; Chouaib, S. Modulating tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors: A TAM-pting approach. Pharmacol. Ther., 2022, 231, 107986. doi: 10.1016/j.pharmthera.2021.107986 PMID: 34481812
- Tan, Y.; Wang, M.; Zhang, Y.; Ge, S.; Zhong, F.; Xia, G.; Sun, C. Tumor-associated macrophages: A potential target for cancer therapy. Front. Oncol., 2021, 11, 693517. doi: 10.3389/fonc.2021.693517 PMID: 34178692
- Xu, T.; Yu, S.; Zhang, J.; Wu, S. Dysregulated tumor-associated macrophages in carcinogenesis, progression and targeted therapy of gynecological and breast cancers. J. Hematol. Oncol., 2021, 14(1), 181. doi: 10.1186/s13045-021-01198-9 PMID: 34717710
- Heusinkveld, M.; de Vos van Steenwijk, P.J.; Goedemans, R.; Ramwadhdoebe, T.H.; Gorter, A.; Welters, M.J.P.; van Hall, T.; van der Burg, S.H. M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells. J. Immunol., 2011, 187(3), 1157-1165. doi: 10.4049/jimmunol.1100889 PMID: 21709158
- Cho, H.; Seo, Y.; Loke, K.M.; Kim, S.W.; Oh, S.M.; Kim, J.H.; Soh, J.; Kim, H.S.; Lee, H.; Kim, J.; Min, J.J.; Jung, D.W.; Williams, D.R. Cancer-stimulated CAFs enhance monocyte differentiation and protumoral TAM activation via IL6 and GM-CSF secretion. Clin. Cancer Res., 2018, 24(21), 5407-5421. doi: 10.1158/1078-0432.CCR-18-0125 PMID: 29959142
- Zhou, T.; Zhou, Y.; Qian, M.; Fang, Y.; Ye, S.; Xin, W.; Yang, X.; Wu, H. Interleukin-6 induced by YAP in hepatocellular carcinoma cells recruits tumor-associated macrophages. J. Pharmacol. Sci., 2018, 138(2), 89-95. doi: 10.1016/j.jphs.2018.07.013 PMID: 30340922
Supplementary files
