Effect of ω-9MUFAs in Fat Emulsion on Serum Interleukin-6 in Rats with Lipopolysaccharide-induced Lung Injury
- Авторы: Qianqian Z.1, Gui M.1, Min Y.1, Qingfeng Z.1, Xiufen X.1, Zejun F.2, Yahong L.1, Mingwei Y.1
-
Учреждения:
- Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University
- Central Laboratory, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University
- Выпуск: Том 27, № 6 (2024)
- Страницы: 877-884
- Раздел: Chemistry
- URL: https://rjraap.com/1386-2073/article/view/644880
- DOI: https://doi.org/10.2174/1386207326666230718154641
- ID: 644880
Цитировать
Полный текст
Аннотация
Aim:This study aimed to investigate how ω-9 MUFAs in fat emulsion affect serum IL- 6 levels in rats with lipopolysaccharide (LPS)-induced lung injury.
Background:Research suggests that acute lung injury (ALI) develops acute respiratory distress syndrome (ARDS) due to the activation of many inflammatory factors. ALI may be treated by reducing inflammation. Fat emulsion is used in parenteral nutrition for critically ill patients to regulate the body's inflammatory response. It is mostly made up of ω-9 MUFAs (Clinoleic), which can regulate the inflammatory response.
Objective:The effect of ω-9MUFAs on the secretion of IL-6 in ALI rats was studied in order to provide a basis for the rational use of fat emulsion in clinical practice and provide new ideas for the diagnosis and treatment of ALI.
Methods:The control, model, and -9MUFAs groups consisted of 18 female Sprageue-Dawley (SD) young rats (180 ± 20 g). The SD young rats received normal saline and were not operated. LPS-induced ALI animals received tail vein injections of normal saline. SD young rats were first triggered with acute lung injury by LPS (3 mg/kg) and then injected with 3 mg/kg of ω-9MUFAs via the tail vein. The expression levels of IL-6, an activator of signal transduction transcription 3 (STAT3), transforming growth factor-β (TGF-β), and glycoprotein 130 (GP130) in serum and lung tissues were determined by ELISA and Western blot methods.
Results:Compared with the model group, the survival rate of rats in the ω-9 MUFAs group was significantly increased, and the difference was statistically significant (p(<0.05). Compared with the model group, the lung pathology of rats in the ω-9 MUFAs group was significantly improved, and the expression levels of IL-6, TGF-β1, GP130, IL-1 and other proteins were significantly decreased. The difference was statistically significant (p(<0.05).
Conclusion:In LPS-induced lung injury, ω-9MUFAs may alleviate symptoms by inhibiting the IL-6/GP130/STAT3 pathway.
Ключевые слова
Об авторах
Zheng Qianqian
Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University
Email: info@benthamscience.net
Mei Gui
Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University
Email: info@benthamscience.net
Yang Min
Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University
Email: info@benthamscience.net
Zhang Qingfeng
Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University
Email: info@benthamscience.net
Xu Xiufen
Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University
Email: info@benthamscience.net
Fang Zejun
Central Laboratory, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University
Email: info@benthamscience.net
Li Yahong
Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Ye Mingwei
Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Salluh, J.I.F.; Wang, H.; Schneider, E.B.; Nagaraja, N.; Yenokyan, G.; Damluji, A.; Serafim, R.B.; Stevens, R.D. Outcome of delirium in critically ill patients: Systematic review and meta-analysis. BMJ, 2015, 350, h2538. doi: 10.1136/bmj.h2538 PMID: 26041151
- Jones, S.F.; Pisani, M.A. ICU delirium. Curr. Opin. Crit. Care, 2012, 18(2), 146-151. doi: 10.1097/MCC.0b013e32835132b9 PMID: 22322260
- Sparrow, N.A.; Anwar, F.; Covarrubias, A.E.; Rajput, P.S.; Rashid, M.H.; Nisson, P.L.; Gezalian, M.M.; Toossi, S.; Ayodele, M.O.; Karumanchi, S.A.; Ely, E.W.; Lahiri, S. IL-6 inhibition reduces neuronal injury in a murine model of ventilator-induced lung injury. Am. J. Respir. Cell Mol. Biol., 2021, 65(4), 403-412. doi: 10.1165/rcmb.2021-0072OC PMID: 34014798
- Tremblay, L.; Valenza, F.; Ribeiro, S.P.; Li, J.; Slutsky, A.S. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J. Clin. Invest., 1997, 99(5), 944-952. doi: 10.1172/JCI119259 PMID: 9062352
- Brower, R.G.; Matthay, M.A.; Morris, A.; Schoenfeld, D.; Thompson, B.T.; Wheeler, A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med., 2000, 342(18), 1301-1308. doi: 10.1056/NEJM200005043421801 PMID: 10793162
- Capri, M.; Yani, S.L.; Chattat, R.; Fortuna, D.; Bucci, L.; Lanzarini, C.; Morsiani, C.; Catena, F.; Ansaloni, L.; Adversi, M.; Melotti, M.R.; Di Nino, G.; Franceschi, C. Pre- operative, high-IL-6 blood level is a risk factor of post-operative delirium onset in old patients. Front. Endocrinol. (Lausanne), 2014, 5, 173. doi: 10.3389/fendo.2014.00173 PMID: 25368603
- Beitler, J.R.; Majumdar, R.; Hubmayr, R.D.; Malhotra, A.; Thompson, B.T.; Owens, R.L.; Loring, S.H.; Talmor, D. Volume delivered during recruitment maneuver predicts lung stress in acute respiratory distress syndrome. Crit. Care Med., 2016, 44(1), 91-99. doi: 10.1097/CCM.0000000000001355 PMID: 26474111
- Wang, X.; Deng, R.; Dong, J.; Huang, L.; Li, J.; Zhang, B. Eriodictyol ameliorates lipopolysaccharide‐induced acute lung injury by suppressing the inflammatory COX‐2/NLRP3/NF‐κB pathway in mice. J. Biochem. Mol. Toxicol., 2020, 34(3), e22434. doi: 10.1002/jbt.22434 PMID: 31860763
- Ahmed, R.F.; Moussa, R.A.; Eldemerdash, R.S.; Zakaria, M.M.; Abdel-Gaber, S.A. Ameliorative effects of silymarin on HCl-induced acute lung injury in rats; role of the Nrf-2/HO-1 pathway. Iran. J. Basic Med. Sci., 2019, 22(12), 1483-1492. PMID: 32133068
- Ding, Z.; Zhong, R.; Xia, T.; Yang, Y.; Xing, N.; Wang, W.; Wang, Y.; Yang, B.; Sun, X.; Shu, Z. Advances in research into the mechanisms of Chinese Materia Medica against acute lung injury. Biomed. Pharmacother., 2020, 122, 109706. doi: 10.1016/j.biopha.2019.109706 PMID: 31918277
- Zhuo, X.J.; Hao, Y.; Cao, F.; Yan, S.F.; Li, H.; Wang, Q.; Cheng, B.H.; Ying, B.Y.; Smith, F.G.; Jin, S.W. Protectin DX increases alveolar fluid clearance in rats with lipopolysaccharide-induced acute lung injury. Exp. Mol. Med., 2018, 50(4), 1-13. doi: 10.1038/s12276-018-0075-4 PMID: 29700291
- Deng, W.; He, J.; Tang, X.M.; Li, C.Y.; Tong, J.; Qi, D.; Wang, D.X. Alcohol inhibits alveolar fluid clearance through the epithelial sodium channel via the A2 adenosine receptor in acute lung injury. Mol. Med. Rep., 2021, 24(4), 725-737. doi: 10.3892/mmr.2021.12364 PMID: 34396442
- Helenius, I.T.; Dada, L.A.; Sznajder, J.I. Role of ubiquitination in Na,K-ATPase regulation during lung injury. Proc. Am. Thorac. Soc., 2010, 7(1), 65-70. doi: 10.1513/pats.200907-082JS PMID: 20160150
- Kent, L.W.; Rahemtulla, F.; Hockett, R.D., Jr; Gilleland, R.C.; Michalek, S.M. Effect of lipopolysaccharide and inflammatory cytokines on interleukin-6 production by healthy human gingival fibroblasts. Infect. Immun., 1998, 66(2), 608-614. doi: 10.1128/IAI.66.2.608-614.1998 PMID: 9453616
- Fukunaga, K.; Kohli, P.; Bonnans, C.; Fredenburgh, L.E.; Levy, B.D. Cyclooxygenase 2 plays a pivotal role in the resolution of acute lung injury. J. Immunol., 2005, 174(8), 5033-5039. doi: 10.4049/jimmunol.174.8.5033 PMID: 15814734
- Chen, H.; Bai, C.; Wang, X. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Rev. Respir. Med., 2010, 4(6), 773-783. doi: 10.1586/ers.10.71 PMID: 21128752
- Mehta, S.; Sharma, A.K.; Singh, R.K. Advances in ethnobotany, synthetic phytochemistry and pharmacology of endangered herb Picrorhiza kurroa (Kutki): A comprehensive review (2010-2020). Mini Rev. Med. Chem., 2021, 21(19), 2976-2995. doi: 10.2174/1389557521666210401090028 PMID: 33797375
- Mehta, S.; Sharma, A.K.; Singh, R.K. Therapeutic journey of Andrographis paniculata (Burm.f.) nees from natural to synthetic and nanoformulations. Mini Rev. Med. Chem., 2021, 21(12), 1556-1577. doi: 10.2174/1389557521666210315162354 PMID: 33719961
- Mehta, S.; Sharma, A.K.; Singh, R.K. Pharmacological activities and molecular mechanisms of pure and crude extract of andrographis paniculata: An update. Phytomedicine Plus, 2021, 1(4), 100085.
- Singh, R.K.; Mehta, S.; Sharma, A.K. Ethnobotany, Pharmacological Activities and Bioavailability Studies on "King of Bitters" (Kalmegh): A Review (2010-2020). Comb. Chem. High Throughput Screen., 2022, 25(5), 788-807. doi: 10.2174/1386207324666210310140611 PMID: 33745423
- Bhatia, M.; Moochhala, S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J. Pathol., 2004, 202(2), 145-156. doi: 10.1002/path.1491 PMID: 14743496
- Parsons, P.E.; Eisner, M.D.; Thompson, B.T.; Matthay, M.A.; Ancukiewicz, M.; Bernard, G.R.; Wheeler, A.P. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit. Care Med., 2005, 33(1), 1-6. doi: 10.1097/01.CCM.0000149854.61192.DC PMID: 15644641
- Bi, M.H.; Wang, B.E.; Schafer, M.; Mayer, K.; Zhang, S.W.; Li, M.; Wang, H.J. Effect of different fat emulsions on acute lung injury induced by endotoxin. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2006, 18(12), 711-715.
- Peng, L.Y.; Yuan, M.; Shi, H.T.; Li, J.H.; Song, K.; Huang, J.N.; Yi, P.F.; Fu, B.D.; Shen, H.Q. Protective effect of piceatannol against acute lung injury through protecting the integrity of air-blood barrier and modulating the TLR4/NF-κB signaling pathway activation. Front. Pharmacol., 2020, 10, 1613-1622. doi: 10.3389/fphar.2019.01613 PMID: 32038265
- Chen, P.; Xiao, Z.; Wu, H.; Wang, Y.; Fan, W.; Su, W.; Li, P. Beneficial effects of naringenin in cigarette smoke-induced damage to the lung based on bioinformatic prediction and in vitro analysis. Molecules, 2020, 25(20), 4704-4718. doi: 10.3390/molecules25204704 PMID: 33066647
- Zhang, C.; Zeng, W.; Yao, Y.; Xu, B.; Wei, X.; Wang, L.; Yin, X.; Barman, A.K.; Zhang, F.; Zhang, C.; Song, Q.; Liang, W. Naringenin ameliorates radiation-induced lung injury by lowering IL-1 β Level. J. Pharmacol. Exp. Ther., 2018, 366(2), 341-348. doi: 10.1124/jpet.118.248807 PMID: 29866791
- Liang, Y.; Luo, J.; Yang, N.; Wang, S.; Ye, M.; Pan, G. Activation of the IL-1β/KLF2/HSPH1 pathway promotes STAT3 phosphorylation in alveolar macrophages during LPS-induced acute lung injury. Biosci. Rep., 2020, 40(3), BSR20193572. doi: 10.1042/BSR20193572
- Wang, Y.M.; Qi, X.; Gong, F.C.; Chen, Y.; Yang, Z.T.; Mao, E.Q.; Chen, E.Z. Protective and predictive role of Mucin1 in sepsis-induced ALI/ARDS. Int. Immunopharmacol., 2020, 83, 106438. doi: 10.1016/j.intimp.2020.106438 PMID: 32247267
- Garibaldi, B.T.; DAlessio, F.R.; Mock, J.R.; Files, D.C.; Chau, E.; Eto, Y.; Drummond, M.B.; Aggarwal, N.R.; Sidhaye, V.; King, L.S. Regulatory T cells reduce acute lung injury fibroproliferation by decreasing fibrocyte recruitment. Am. J. Respir. Cell Mol. Biol., 2013, 48(1), 35-43. doi: 10.1165/rcmb.2012-0198OC PMID: 23002097
- Singer, B.D.; Mock, J.R.; Aggarwal, N.R.; Garibaldi, B.T.; Sidhaye, V.K.; Florez, M.A.; Chau, E.; Gibbs, K.W.; Mandke, P.; Tripathi, A.; Yegnasubramanian, S.; King, L.S.; DAlessio, F.R. Regulatory T cell DNA methyltransferase inhibition accelerates resolution of lung inflammation. Am. J. Respir. Cell Mol. Biol., 2015, 52(5), 641-652. doi: 10.1165/rcmb.2014-0327OC PMID: 25295995
- OMalley, K.; Moldawer, L.L. Interleukin-6: Still crazy after all these years. Crit. Care Med., 2006, 34(10), 2690-2691. doi: 10.1097/01.CCM.0000239424.59338.2F PMID: 16983274
- Ward, N.S.; Waxman, A.B.; Homer, R.J.; Mantell, L.L.; Einarsson, O.; Du, Y.; Elias, J.A. Interleukin-6-induced protection in hyperoxic acute lung injury. Am. J. Respir. Cell Mol. Biol., 2000, 22(5), 535-542. doi: 10.1165/ajrcmb.22.5.3808 PMID: 10783124
- Xing, Z.; Gauldie, J.; Cox, G.; Baumann, H.; Jordana, M.; Lei, X.F.; Achong, M.K. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J. Clin. Invest., 1998, 101(2), 311-320. doi: 10.1172/JCI1368 PMID: 9435302
- Jones, M.R.; Quinton, L.J.; Simms, B.T.; Lupa, M.M.; Kogan, M.S.; Mizgerd, J.P. Roles of interleukin-6 in activation of STAT proteins and recruitment of neutrophils during Escherichia coli pneumonia. J. Infect. Dis., 2006, 193(3), 360-369. doi: 10.1086/499312 PMID: 16388483
- Starcher, B.; Williams, I. A method for intratracheal instillation of endotoxin into the lungs of mice. Lab. Anim., 1989, 23(3), 234-240. doi: 10.1258/002367789780810536 PMID: 2527323
- Kawalkowska, J.Z.; Hemmerle, T.; Pretto, F.; Matasci, M.; Neri, D.; Williams, R.O. Targeted IL-4 therapy synergizes with dexamethasone to induce a state of tolerance by promoting Treg cells and macrophages in mice with arthritis. Eur. J. Immunol., 2016, 46(5), 1246-1257. doi: 10.1002/eji.201546221 PMID: 26919786
- Witzenrath, M.; Kuebler, W.M. The lung-brain axis in ventilator- induced brain injury: Enter IL-6. Am. J. Respir. Cell Mol. Biol., 2021, 65(4), 339-340. doi: 10.1165/rcmb.2021-0233ED PMID: 34153209
- Rubenfeld, G.D.; Caldwell, E.; Peabody, E.; Weaver, J.; Martin, D.P.; Neff, M.; Stern, E.J.; Hudson, L.D. Incidence and outcomes of acute lung injury. N. Engl. J. Med., 2005, 353(16), 1685-1693. doi: 10.1056/NEJMoa050333 PMID: 16236739
- Guérin, C.; Reignier, J.; Richard, J.C.; Beuret, P.; Gacouin, A.; Boulain, T.; Mercier, E.; Badet, M.; Mercat, A.; Baudin, O.; Clavel, M.; Chatellier, D.; Jaber, S.; Rosselli, S.; Mancebo, J.; Sirodot, M.; Hilbert, G.; Bengler, C.; Richecoeur, J.; Gainnier, M.; Bayle, F.; Bourdin, G.; Leray, V.; Girard, R.; Baboi, L.; Ayzac, L. Prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med., 2013, 368(23), 2159-2168. doi: 10.1056/NEJMoa1214103 PMID: 23688302
- Matthay, M.A.; Ware, L.B.; Zimmerman, G.A. The acute respiratory distress syndrome. J. Clin. Invest., 2012, 122(8), 2731-2740. doi: 10.1172/JCI60331 PMID: 22850883
- Zambon, M.; Vincent, J.L. Mortality rates for patients with acute lung injury/ARDS have decreased over time. Chest, 2008, 133(5), 1120-1127. doi: 10.1378/chest.07-2134 PMID: 18263687
- Messika, J.; Ben Ahmed, K.; Gaudry, S.; Miguel-Montanes, R.; Rafat, C.; Sztrymf, B.; Dreyfuss, D.; Ricard, J.D. Use of high-flow nasal cannula oxygen therapy in subjects with ARDS: A 1-year observational study. Respir. Care, 2015, 60(2), 162-169. doi: 10.4187/respcare.03423 PMID: 25371400
- Muñoz, J.; Santa-Teresa, P.; Tomey, M.J.; Visedo, L.C.; Keough, E.; Barrios, J.C.; Sabell, S.; Morales, A. Extracorporeal membrane oxygenation (ECMO) in adults with acute respiratory distress syndrome (ARDS). Heart Lung, 2017, 46(2), 100-105. doi: 10.1016/j.hrtlng.2017.01.003 PMID: 28215409
- Matute-Bello, G.; Downey, G.; Moore, B.B.; Groshong, S.D.; Matthay, M.A.; Slutsky, A.S.; Kuebler, W.M. An official American Thoracic Society workshop report: Features and measurements of experimental acute lung injury in animals. Am. J. Respir. Cell Mol. Biol., 2011, 44(5), 725-738. doi: 10.1165/rcmb.2009-0210ST PMID: 21531958
- Yang, J.; Sundrud, M.S.; Skepner, J.; Yamagata, T. Targeting Th17 cells in autoimmune diseases. Trends Pharmacol. Sci., 2014, 35(10), 493-500. doi: 10.1016/j.tips.2014.07.006 PMID: 25131183
- Li, J.T.; Melton, A.C.; Su, G.; Hamm, D.E.; LaFemina, M.; Howard, J.; Fang, X.; Bhat, S.; Huynh, K.M.; OKane, C.M.; Ingram, R.J.; Muir, R.R.; McAuley, D.F.; Matthay, M.A.; Sheppard, D. Unexpected role for adaptive αβTh17 cells in acute respiratory distress syndrome. J. Immunol., 2015, 195(1), 87-95. doi: 10.4049/jimmunol.1500054 PMID: 26002979
- Matute-Bello, G.; Frevert, C.W.; Martin, T.R. Animal models of acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol., 2008, 295(3), L379-L399. doi: 10.1152/ajplung.00010.2008 PMID: 18621912
- Kim, M.R.; Hong, S.W.; Choi, E.B.; Lee, W.H.; Kim, Y.S.; Jeon, S.G.; Jang, M.H.; Gho, Y.S.; Kim, Y.K. Staphylococcus aureus -derived extracellular vesicles induce neutrophilic pulmonary inflammation via both Th1 and Th17 cell responses. Allergy, 2012, 67(10), 1271-1281. doi: 10.1111/all.12001 PMID: 22913540
- Iwakura, Y.; Ishigame, H.; Saijo, S.; Nakae, S. Functional specialization of interleukin-17 family members. Immunity, 2011, 34(2), 149-162. doi: 10.1016/j.immuni.2011.02.012 PMID: 21349428
- Halwani, R.; Al-Muhsen, S.; Hamid, Q. T helper 17 cells in airway diseases: From laboratory bench to bedside. Chest, 2013, 143(2), 494-501. doi: 10.1378/chest.12-0598 PMID: 23381314
- Li, Q.; Gu, Y.; Tu, Q.; Wang, K.; Gu, X.; Ren, T. Blockade of Interlukin-17 restrains the development of acute lung injury. Scand. J. Immunol., 2016, 83(3), 203-211. doi: 10.1111/sji.12408 PMID: 26709006
- Sakaguchi, S.; Sakaguchi, N.; Asano, M.; Itoh, M.; Toda, M. Pillars article: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 1995. J. Immunol., 2011, 186(7), 3808-3821. PMID: 21422251
- Yu, Z.; Ji, M.; Yan, J.; Cai, Y.; Liu, J.; Yang, H.; Li, Y.; Jin, Z.; Zheng, J. The ratio of Th17/Treg cells as a risk indicator in early acute respiratory distress syndrome. Crit. Care, 2015, 19(1), 82. doi: 10.1186/s13054-015-0811-2 PMID: 25887535
- Risso, K.; Kumar, G.; Ticchioni, M. Early infectious acute respiratory distress syndrome is characterized by activation and proliferation of alveolar T-cells. Eur. J. Clin. Microbiol., 2015, 34, 1111-1118.
- Noack, M.; Miossec, P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun. Rev., 2014, 13(6), 668-677. doi: 10.1016/j.autrev.2013.12.004 PMID: 24418308
Дополнительные файлы
