Identification of circRNA-miRNA-mRNA Network Regulated by Hsp90 in Human Melanoma A375 Cells
- Авторы: Fu Q.1, Gao H.1, Liu K.1, Su J.2, Zhang J.1, Guo X.3, Yang F.1
-
Учреждения:
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics,, Shenzhen Peoples Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)
- Department of Dermatology, Xiangya Hospital, Central South University
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics,, Shenzhen Peoples Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology),
- Выпуск: Том 27, № 2 (2024)
- Страницы: 307-316
- Раздел: Chemistry
- URL: https://rjraap.com/1386-2073/article/view/644633
- DOI: https://doi.org/10.2174/1386207326666230609145247
- ID: 644633
Цитировать
Полный текст
Аннотация
Background:Melanoma is the deadliest form of skin cancer. Heat shock protein 90 (Hsp90) is highly expressed in human melanoma. Hsp90 inhibitors can suppress the growth of human melanoma A375 cells; however, the underlying mechanism remains unclear.
Methods:A375 cells were treated with SNX-2112, an Hsp90 inhibitor, for 48 h, and wholetranscriptome sequencing was performed
Results:A total of 2,528 differentially expressed genes were identified, including 895 upregulated and 1,633 downregulated genes. Pathway enrichment analyses of differentially expressed mRNAs identified the extracellular matrix (ECM)-receptor interaction pathway as the most significantly enriched pathway. The ECM receptor family mainly comprises integrins (ITGs) and collagens (COLs), wherein ITGs function as the major cell receptors for COLs. 19 upregulated miRNAs were found to interact with 6 downregulated ITG genes and 8 upregulated miRNAs were found to interact with 3 downregulated COL genes. 9 differentially expressed circRNAs in SNX-2112- treated A375 cells were identified as targets of the ITG- and COL-related miRNAs. Based on the differentially expressed circRNAs, miRNAs, and mRNAs, ITGs- and COL-based circRNAmiRNA- mRNA regulatory networks were mapped, revealing a novel regulatory mechanism of Hsp90-regulated melanoma.
Conclusion:Targeting the ITG-COL network is a promising approach to the treatment of melanoma.
Об авторах
Qiang Fu
Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics,, Shenzhen Peoples Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)
Email: info@benthamscience.net
Hengyuan Gao
Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics,, Shenzhen Peoples Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)
Email: info@benthamscience.net
Kaisheng Liu
Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics,, Shenzhen Peoples Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)
Email: info@benthamscience.net
Juan Su
Department of Dermatology, Xiangya Hospital, Central South University
Email: info@benthamscience.net
Jianglin Zhang
Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics,, Shenzhen Peoples Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)
Email: info@benthamscience.net
Xiaojing Guo
Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics,, Shenzhen Peoples Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology),
Автор, ответственный за переписку.
Email: info@benthamscience.net
Fang Yang
Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics,, Shenzhen Peoples Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Takiddin, A.; Schneider, J.; Yang, Y.; Abd-Alrazaq, A.; Househ, M. Artificial intelligence for skin cancer detection: Scoping review. J. Med. Internet Res., 2021, 23(11), e22934. doi: 10.2196/22934 PMID: 34821566
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The human skin microbiome. Nat. Rev. Microbiol., 2018, 16(3), 143-155. doi: 10.1038/nrmicro.2017.157 PMID: 29332945
- Elgamal, M. Automatic skin cancer images classification. Int. J. Adv. Comput, 2013, 4(3)
- Pop, T.D.; Diaconeasa, Z. Recent advances in phenolic metabolites and skin cancer. Int. J. Mol. Sci., 2021, 22(18), 9707. doi: 10.3390/ijms22189707 PMID: 34575899
- Dildar, M.; Akram, S.; Irfan, M.; Khan, H.U.; Ramzan, M.; Mahmood, A.R.; Alsaiari, S.A.; Saeed, A.H.M.; Alraddadi, M.O.; Mahnashi, M.H. Skin cancer detection: A review using deep learning techniques. Int. J. Environ. Res. Public Health, 2021, 18(10), 5479. doi: 10.3390/ijerph18105479 PMID: 34065430
- Banerjee, M.; Hatial, I.; Keegan, B.M.; Blagg, B.S.J. Assay design and development strategies for finding Hsp90 inhibitors and their role in human diseases. Pharmacol. Ther., 2021, 221, 107747. doi: 10.1016/j.pharmthera.2020.107747 PMID: 33245994
- Li, L.; Chen, N.N.; You, Q.D.; Xu, X.L. An updated patent review of anticancer Hsp90 inhibitors (2013-present). Expert Opin. Ther. Pat., 2021, 31(1), 67-80. doi: 10.1080/13543776.2021.1829595 PMID: 32990109
- Schopf, F.H.; Biebl, M.M.; Buchner, J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol., 2017, 18(6), 345-360. doi: 10.1038/nrm.2017.20 PMID: 28429788
- Pearl, L.H.; Prodromou, C.; Workman, P. The Hsp90 molecular chaperone: An open and shut case for treatment. Biochem. J., 2008, 410(3), 439-453. doi: 10.1042/BJ20071640 PMID: 18290764
- Vartholomaiou, E.; Echeverría, P.C.; Picard, D. Unusual suspects in the twilight zone between the hsp90 interactome and carcinogenesis. Adv. Cancer Res., 2016, 129, 1-30. doi: 10.1016/bs.acr.2015.08.001 PMID: 26915999
- Hoter, A.; El-Sabban, M.; Naim, H. The HSP90 Family: Structure, regulation, function, and implications in health and disease. Int. J. Mol. Sci., 2018, 19(9), 2560. doi: 10.3390/ijms19092560 PMID: 30158430
- Birbo, B.; Madu, E.E.; Madu, C.O.; Jain, A.; Lu, Y. Role of HSP90 in Cancer. Int. J. Mol. Sci., 2021, 22(19), 10317. doi: 10.3390/ijms221910317 PMID: 34638658
- McCarthy, M.M.; Pick, E.; Kluger, Y.; Gould-Rothberg, B.; Lazova, R.; Camp, R.L.; Rimm, D.L.; Kluger, H.M. HSP90 as a marker of progression in melanoma. Ann. Oncol., 2008, 19(3), 590-594. doi: 10.1093/annonc/mdm545 PMID: 18037622
- Mielczarek-Lewandowska, A.; Hartman, M.L.; Czyz, M. Inhibitors of HSP90 in melanoma. Apoptosis, 2020, 25(1-2), 12-28. doi: 10.1007/s10495-019-01577-1 PMID: 31659567
- Savoia, P.; Fava, P.; Casoni, F.; Cremona, O. Targeting the ERK signaling pathway in melanoma. Int. J. Mol. Sci., 2019, 20(6), 1483. doi: 10.3390/ijms20061483 PMID: 30934534
- Shannan, B.; Chen, Q.; Watters, A.; Perego, M.; Krepler, C.; Thombre, R.; Li, L.; Rajan, G.; Peterson, S.; Gimotty, P.A.; Wilson, M.; Nathanson, K.L.; Gangadhar, T.C.; Schuchter, L.M.; Weeraratna, A.T.; Herlyn, M.; Vultur, A. Enhancing the evaluation of PI3K inhibitors through 3D melanoma models. Pigment Cell Melanoma Res., 2016, 29(3), 317-328. doi: 10.1111/pcmr.12465 PMID: 26850518
- Sinnberg, T.; Levesque, M.P.; Krochmann, J.; Cheng, P.F.; Ikenberg, K.; Meraz-Torres, F.; Niessner, H.; Garbe, C.; Busch, C. Wnt-signaling enhances neural crest migration of melanoma cells and induces an invasive phenotype. Mol. Cancer, 2018, 17(1), 59. doi: 10.1186/s12943-018-0773-5 PMID: 29454361
- Madonna, G. Ullman, C.D.; Gentilcore, G.; Palmieri, G.; Ascierto, P.A. NF-κB as potential target in the treatment of melanoma. J. Transl. Med., 2012, 10(1), 53. doi: 10.1186/1479-5876-10-53 PMID: 22433222
- Campbell, I.D.; Humphries, M.J. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol., 2011, 3(3), a004994. doi: 10.1101/cshperspect.a004994 PMID: 21421922
- Barczyk, M.; Carracedo, S.; Gullberg, D. Integrins. Cell Tissue Res., 2010, 339(1), 269-280. doi: 10.1007/s00441-009-0834-6 PMID: 19693543
- Hughes, P.E.; Pfaff, M. Integrin affinity modulation. Trends Cell Biol., 1998, 8(9), 359-364. doi: 10.1016/S0962-8924(98)01339-7 PMID: 9728397
- Li, Z.H.; Zhou, Y.; Ding, Y.X.; Guo, Q.L.; Zhao, L. Roles of integrin in tumor development and the target inhibitors. Chin. J. Nat. Med., 2019, 17(4), 241-251. doi: 10.1016/S1875-5364(19)30028-7 PMID: 31076128
- Ramsay, A.G.; Marshall, J.F.; Hart, I.R. Integrin trafficking and its role in cancer metastasis. Cancer Metastasis Rev., 2007, 26(3-4), 567-578. doi: 10.1007/s10555-007-9078-7 PMID: 17786537
- Hamidi, H.; Ivaska, J. Author Correction: Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer, 2019, 19(3), 179. doi: 10.1038/s41568-019-0112-1 PMID: 30705430
- Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol., 2011, 3(1), a004978. doi: 10.1101/cshperspect.a004978 PMID: 21421911
- Xu, S.; Xu, H.; Wang, W.; Li, S.; Li, H.; Li, T.; Zhang, W.; Yu, X.; Liu, L. The role of collagen in cancer: From bench to bedside. J. Transl. Med., 2019, 17(1), 309. doi: 10.1186/s12967-019-2058-1 PMID: 31521169
- de Almeida, R.B.M.; Barbosa, D.B.; do Bomfim, M.R.; Amparo, J.A.O.; Andrade, B.S.; Costa, S.L.; Campos, J.M.; Cruz, J.N.; Santos, C.B.R.; Leite, F.H.A.; Botura, M.B. Identification of a Novel Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase: in vitro and in silico Studies; Pharmaceuticals: Basel, 2023, Vol. 16, .
- Almeida, V.M.; Dias, Ê.R.; Souza, B.C.; Cruz, J.N.; Santos, C.B.R.; Leite, F.H.A.; Queiroz, R.F.; Branco, A. Methoxylated flavonols from Vellozia dasypus Seub ethyl acetate active myeloperoxidase extract: in vitro and in silico assays. J. Biomol. Struct. Dyn., 2022, 40(16), 7574-7583. doi: 10.1080/07391102.2021.1900916 PMID: 33739225
- Rego, C.M.A.; Francisco, A.F.; Boeno, C.N.; Paloschi, M.V.; Lopes, J.A.; Silva, M.D.S.; Santana, H.M.; Serrath, S.N.; Rodrigues, J.E.; Lemos, C.T.L.; Dutra, R.S.S.; da Cruz, J.N.; Dos Santos, C.B.R. da S Setúbal, S.; Fontes, M.R.M.; Soares, A.M.; Pires, W.L.; Zuliani, J.P. Inflammasome NLRP3 activation induced by Convulxin, a C-type lectin-like isolated from Crotalus durissus terrificus snake venom. Sci. Rep., 2022, 12(1), 4706. doi: 10.1038/s41598-022-08735-7 PMID: 35304541
- Santos, C.B.R.; Santos, K.L.B.; Cruz, J.N.; Leite, F.H.A.; Borges, R.S.; Taft, C.A.; Campos, J.M.; Silva, C.H.T.P. Molecular modeling approaches of selective adenosine receptor type 2A agonists as potential anti-inflammatory drugs. J. Biomol. Struct. Dyn., 2021, 39(9), 3115-3127. PMID: 32338151
- Wang, X.; Wang, S.; Liu, Y.; Ding, W.; Zheng, K.; Xiang, Y.; Liu, K.; Wang, D.; Zeng, Y.; Xia, M.; Yang, D.; Wang, Y. The Hsp90 inhibitor SNX-2112 induces apoptosis of human hepatocellular carcinoma cells: The role of ER stress. Biochem. Biophys. Res. Commun., 2014, 446(1), 160-166. doi: 10.1016/j.bbrc.2014.02.081 PMID: 24582562
- Wang, R.; Shao, F.; Liu, Z.; Zhang, J.; Wang, S.; Liu, J.; Liu, H.; Chen, H.; Liu, K.; Xia, M.; Wang, Y. The Hsp90 inhibitor SNX-2112, induces apoptosis in multidrug resistant K562/ADR cells through suppression of Akt/NF-κB and disruption of mitochondria-dependent pathways. Chem. Biol. Interact., 2013, 205(1), 1-10. doi: 10.1016/j.cbi.2013.06.007 PMID: 23777986
- Liu, K.S.; Ding, W.C.; Wang, S.X.; Liu, Z.; Xing, G.W.; Wang, Y.; Wang, Y.F. The heat shock protein 90 inhibitor SNX-2112 inhibits B16 melanoma cell growth in vitro and in vivo. Oncol. Rep., 2012, 27(6), 1904-1910. PMID: 22447251
- Liu, K.S.; Liu, H.; Qi, J.H.; Liu, Q.Y.; Liu, Z.; Xia, M.; Xing, G.W.; Wang, S.X.; Wang, Y.F. SNX-2112, an Hsp90 inhibitor, induces apoptosis and autophagy via degradation of Hsp90 client proteins in human melanoma A-375 cells. Cancer Lett., 2012, 318(2), 180-188. doi: 10.1016/j.canlet.2011.12.015 PMID: 22182451
- Wang, S.X.; Ju, H.Q.; Liu, K.S.; Zhang, J.X.; Wang, X.; Xiang, Y.F.; Wang, R.; Liu, J.Y.; Liu, Q.Y.; Xia, M.; Xing, G.W.; Liu, Z.; Wang, Y.F. SNX-2112, a novel Hsp90 inhibitor, induces G2/M cell cycle arrest and apoptosis in MCF-7 cells. Biosci. Biotechnol. Biochem., 2011, 75(8), 1540-1545. doi: 10.1271/bbb.110225 PMID: 21821931
- Sidera, K.; Patsavoudi, E. HSP90 inhibitors: Current development and potential in cancer therapy. Recent Patents Anticancer Drug Discov., 2014, 9(1), 1-20. PMID: 23312026
- Trepel, J.; Mollapour, M.; Giaccone, G.; Neckers, L. Targeting the dynamic HSP90 complex in cancer. Nat. Rev. Cancer, 2010, 10(8), 537-549. doi: 10.1038/nrc2887 PMID: 20651736
- Kechagia, J.Z.; Ivaska, J.; Roca-Cusachs, P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol., 2019, 20(8), 457-473. doi: 10.1038/s41580-019-0134-2 PMID: 31182865
- Mishra, S.; Yadav, T.; Rani, V. Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit. Rev. Oncol. Hematol., 2016, 98, 12-23. doi: 10.1016/j.critrevonc.2015.10.003 PMID: 26481951
- Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222. doi: 10.1038/nrd.2016.246 PMID: 28209991
- Lin, Z.; He, R.; Luo, H.; Lu, C.; Ning, Z.; Wu, Y.; Han, C.; Tan, G.; Wang, Z. Integrin-β5, a miR-185-targeted gene, promotes hepatocellular carcinoma tumorigenesis by regulating β-catenin stability. J. Exp. Clin. Cancer Res., 2018, 37(1), 17. doi: 10.1186/s13046-018-0691-9 PMID: 29386044
- Xiong, D.; Dang, Y.; Lin, P.; Wen, D.; He, R.; Luo, D.; Feng, Z.; Chen, G. A circRNAmiRNAmRNA network identification for exploring underlying pathogenesis and therapy strategy of hepatocellular carcinoma. J. Transl. Med., 2018, 16(1), 220. doi: 10.1186/s12967-018-1593-5 PMID: 30092792
- Liang, Z.Z.; Guo, C.; Zou, M.M.; Meng, P.; Zhang, T.T. circRNA-miRNA-mRNA regulatory network in human lung cancer: an update. Cancer Cell Int., 2020, 20(1), 173. doi: 10.1186/s12935-020-01245-4 PMID: 32467668
- Zhang, M.; Bai, X.; Zeng, X.; Liu, J.; Liu, F.; Zhang, Z. circRNA-miRNA-mRNA in breast cancer. Clin. Chim. Acta, 2021, 523, 120-130. doi: 10.1016/j.cca.2021.09.013 PMID: 34537217
- Yu, M.; Chu, S.; Fei, B.; Fang, X.; Liu, Z. O-GlcNAcylation of ITGA5 facilitates the occurrence and development of colorectal cancer. Exp. Cell Res., 2019, 382(2), 111464. doi: 10.1016/j.yexcr.2019.06.009 PMID: 31202709
- Liu, D.; Liu, S.; Fang, Y.; Liu, L.; Hu, K. Comprehensive analysis of the expression and prognosis for ITGBs: Identification of ITGB5 as a biomarker of poor prognosis and correlated with immune infiltrates in gastric cancer. Front. Cell Dev. Biol., 2022, 9, 816230. doi: 10.3389/fcell.2021.816230 PMID: 35223869
- Yang, Y.; Feng, Q.; Hu, K.; Cheng, F. Using CRISPRa and CRISPRi technologies to study the biological functions of ITGB5, TIMP1, and TMEM176B in prostate cancer cells. Front. Mol. Biosci., 2021, 8, 676021. doi: 10.3389/fmolb.2021.676021 PMID: 34109215
- Zhu, C.; Kong, Z.; Wang, B.; Cheng, W.; Wu, A.; Meng, X. ITGB3/CD61: A hub modulator and target in the tumor microenvironment. Am. J. Transl. Res., 2019, 11(12), 7195-7208. PMID: 31934272
- Ren, D.; Zhao, J.; Sun, Y.; Li, D.; Meng, Z.; Wang, B.; Fan, P.; Liu, Z.; Jin, X.; Wu, H. Overexpressed ITGA2 promotes malignant tumor aggression by up-regulating PD-L1 expression through the activation of the STAT3 signaling pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 485. doi: 10.1186/s13046-019-1496-1 PMID: 31818309
- Budden, T.; Gaudy-Marqueste, C.; Porter, A.; Kay, E.; Gurung, S.; Earnshaw, C.H.; Roeck, K.; Craig, S.; Traves, V.; Krutmann, J.; Muller, P.; Motta, L.; Zanivan, S.; Malliri, A.; Furney, S.J.; Nagore, E.; Virós, A. Ultraviolet light-induced collagen degradation inhibits melanoma invasion. Nat. Commun., 2021, 12(1), 2742. doi: 10.1038/s41467-021-22953-z PMID: 33980846
- Raglow, Z.; Thomas, S.M. Tumor matrix protein collagen XIα1 in cancer. Cancer Lett., 2015, 357(2), 448-453. doi: 10.1016/j.canlet.2014.12.011 PMID: 25511741
- Chen, P.; Cescon, M.; Bonaldo, P. Collagen VI in cancer and its biological mechanisms. Trends Mol. Med., 2013, 19(7), 410-417. doi: 10.1016/j.molmed.2013.04.001 PMID: 23639582
- Liu, J.; Shen, J.X.; Wu, H.T.; Li, X.L.; Wen, X.F.; Du, C.W.; Zhang, G.J. Collagen 1A1 (COL1A1) promotes metastasis of breast cancer and is a potential therapeutic target. Discov. Med., 2018, 25(139), 211-223. PMID: 29906404
- Oudart, J.B.; Villemin, M.; Brassart, B.; Sellier, C.; Terryn, C.; Dupont-Deshorgue, A.; Monboisse, J.C.; Maquart, F.X.; Ramont, L.; Brassart-Pasco, S. F4, a collagen XIX-derived peptide, inhibits tumor angiogenesis through αvβ3 and α5β1 integrin interaction. Cell Adhes. Migr., 2021, 15(1), 215-223. doi: 10.1080/19336918.2021.1951425 PMID: 34308743
- Zeltz, C.; Gullberg, D. The integrin-collagen connection--a glue for tissue repair? J. Cell Sci., 2016, 129(4), 653-664. PMID: 26857815
- Koivunen, J.; Tu, H.; Kemppainen, A.; Anbazhagan, P.; Finnilä, M.A.; Saarakkala, S.; Käpylä, J.; Lu, N.; Heikkinen, A.; Juffer, A.H.; Heino, J.; Gullberg, D.; Pihlajaniemi, T. Integrin α11β1 is a receptor for collagen XIII. Cell Tissue Res., 2021, 383(3), 1135-1153. doi: 10.1007/s00441-020-03300-y PMID: 33306155
- Cao, L.; Chen, Y.; Zhang, M.; Xu, D.; Liu, Y.; Liu, T.; Liu, S.; Wang, P. Identification of hub genes and potential molecular mechanisms in gastric cancer by integrated bioinformatics analysis. PeerJ, 2018, 6, e5180. doi: 10.7717/peerj.5180 PMID: 30002985
- Lv, Y.; Lv, Y.; Wang, Z.; Yuan, K.; Zeng, Y. Noncoding RNAs as sensors of tumor microenvironmental stress. J. Exp. Clin. Cancer Res., 2022, 41(1), 224. doi: 10.1186/s13046-022-02433-y PMID: 35842651
- Sun, X.; Zhao, X.; Xu, S.; Zhou, Y.; Jia, Z.; Li, Y. CircSRSF4 enhances proliferation, invasion, and migration to promote the progression of osteosarcoma via Rac1. Int. J. Mol. Sci., 2022, 23(11), 6200. doi: 10.3390/ijms23116200 PMID: 35682879
- Tan, Q.; Liu, C.; Shen, Y.; Huang, T. Circular RNA circ_0000517 Facilitates The Growth and Metastasis of Non-Small Cell Lung Cancer by Sponging miR-326/miR-330-5p. Cell J., 2021, 23(5), 552-561. PMID: 34837683
Дополнительные файлы
