Bioinformatics Analysis and Verification of Metabolic Abnormalities in Esophageal Squamous Carcinoma
- Authors: Tang D.1, Wang G.2, Liu Z.1, Zheng Y.C.1, Sheng C.1, Wang B.1, Hou X.1, Zhang Y.C.1, Yao M.1, Zhou Z.1
-
Affiliations:
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life,, Beijing University of Technology
- Issue: Vol 27, No 2 (2024)
- Pages: 273-283
- Section: Chemistry
- URL: https://rjraap.com/1386-2073/article/view/644614
- DOI: https://doi.org/10.2174/1386207326666230331083724
- ID: 644614
Cite item
Full Text
Abstract
Background:Although esophageal carcinoma (EC) is one of the most common cancers in the world, details of its pathogenesis remain unclear. Metabolic reprogramming is a main feature of EC. Mitochondrial dysfunction, especially the decrease in mitochondrial complex I (MTCI), plays an important role in the occurrence and development of EC.
Objective:The objective of the study was to analyze and validate the metabolic abnormalities and the role of MTCI in esophageal squamous cell carcinoma.
Methods:In this work, we collected transcriptomic data from 160 esophageal squamous carcinoma samples and 11 normal tissue samples from The Cancer Genome Atlas (TCGA). The OmicsBean and GEPIA2 were used to conduct an analysis of differential gene expression and survival in clinical samples. Rotenone was used to inhibit the MTCI activity. Subsequently, we detected lactate production, glucose uptake, and ATP production.
Results:A total of 1710 genes were identified as being significantly differentially expressed. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis suggested that these differentially expressed genes (DEGs) were significantly enriched in various pathways related to carcinoma tumorigenesis and progression. Moreover, we further identified abnormalities in metabolic pathways, in particular, the significantly low expression of multiple subunits of MTCI genes (ND1, ND2, ND3, ND4, ND4L, ND5, and ND6). Rotenone was used to inhibit the MTCI activity of EC109 cells, and it was found that the decrease in MTCI activity promoted HIF1A expression, glucose consumption, lactate production, ATP production, and cell migration.
Conclusion:Our results indicated the occurrence of abnormal metabolism involving decreased mitochondrial complex I activity and increased glycolysis in esophageal squamous cell carcinoma (ESCC), which might be related to its development and degree of malignancy.
About the authors
Duo Tang
Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology
Email: info@benthamscience.net
Guozhen Wang
Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life,, Beijing University of Technology
Email: info@benthamscience.net
Zijia Liu
Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology
Email: info@benthamscience.net
Yu Chen Zheng
Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology
Email: info@benthamscience.net
Chao Sheng
Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology
Email: info@benthamscience.net
Biqi Wang
Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology
Email: info@benthamscience.net
Xiaonan Hou
Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology
Email: info@benthamscience.net
Yu Chen Zhang
Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology
Email: info@benthamscience.net
Mengfei Yao
Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology
Email: info@benthamscience.net
Zhixiang Zhou
Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology
Author for correspondence.
Email: info@benthamscience.net
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Short, M.W.; Burgers, K.G.; Fry, V.T. Esophageal cancer. Am. Fam. Physician, 2017, 95(1), 22-28. PMID: 28075104
- Harada, K.; Rogers, J.E.; Iwatsuki, M.; Yamashita, K.; Baba, H.; Ajani, J.A. Recent advances in treating oesophageal cancer. F1000 Res., 2020, 9, 1189. doi: 10.12688/f1000research.22926.1 PMID: 33042518
- Uhlenhopp, D.J.; Then, E.O.; Sunkara, T.; Gaduputi, V. Epidemiology of esophageal cancer: update in global trends, etiology and risk factors. Clin. J. Gastroenterol., 2020, 13(6), 1010-1021. doi: 10.1007/s12328-020-01237-x PMID: 32965635
- Hochwald, J.; Zhang, J. Glucose oncometabolism of esophageal cancer. Anticancer. Agents Med. Chem., 2017, 17(3), 385-394. doi: 10.2174/1871520616666160627092716 PMID: 27357541
- Kalyanaraman, B.; Cheng, G.; Hardy, M. Therapeutic targeting of tumor cells and tumor immune microenvironment vulnerabilities. Front. Oncol., 2022, 12, 816504. doi: 10.3389/fonc.2022.816504 PMID: 35756631
- Nie, Y.; Yun, X.; Zhang, Y.; Wang, X. Targeting metabolic reprogramming in chronic lymphocytic leukemia. Exp. Hematol. Oncol., 2022, 11(1), 39. doi: 10.1186/s40164-022-00292-z PMID: 35761419
- Zhou, Y.; Zhan, Y.; Jiang, W.; Liu, H.; Wei, S. Long noncoding RNAs and circular RNAs in the metabolic reprogramming of lung cancer: functions, mechanisms, and clinical potential. Oxid. Med. Cell. Longev., 2022, 2022, 1-17. doi: 10.1155/2022/4802338 PMID: 35757505
- Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47. doi: 10.1016/j.cmet.2015.12.006 PMID: 26771115
- Warburg, O.; Wind, F.; Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol., 1927, 8(6), 519-530. doi: 10.1085/jgp.8.6.519 PMID: 19872213
- Som, P.; Atkins, H.L.; Bandoypadhyay, D.; Fowler, J.S.; MacGregor, R.R.; Matsui, K.; Oster, Z.H.; Sacker, D.F.; Shiue, C.Y.; Turner, H.; Wan, C.N.; Wolf, A.P.; Zabinski, S.V. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J. Nucl. Med., 1980, 21(7), 670-675. PMID: 7391842
- Liu, T.; Yin, H. PDK1 promotes tumor cell proliferation and migration by enhancing the Warburg effect in non-small cell lung cancer. Oncol. Rep., 2017, 37(1), 193-200. doi: 10.3892/or.2016.5253 PMID: 27878287
- Sha, L.; Lv, Z.; Liu, Y.; Zhang, Y.; Sui, X.; Wang, T.; Zhang, H. Shikonin inhibits the Warburg effect, cell proliferation, invasion and migration by downregulating PFKFB2 expression in lung cancer. Mol. Med. Rep., 2021, 24(2), 560. doi: 10.3892/mmr.2021.12199 PMID: 34109434
- Yang, L.; Zhang, W.; Wang, Y.; Zou, T.; Zhang, B.; Xu, Y.; Pang, T.; Hu, Q.; Chen, M.; Wang, L.; Lv, Y.; Yin, K.; Liang, H.; Chen, X.; Xu, G.; Zou, X. Hypoxia-induced miR-214 expression promotes tumour cell proliferation and migration by enhancing the Warburg effect in gastric carcinoma cells. Cancer Lett., 2018, 414, 44-56. doi: 10.1016/j.canlet.2017.11.007 PMID: 29129783
- Ohnishi, T.; Ohnishi, S.T.; Salerno, J.C. Five decades of research on mitochondrial NADH-quinone oxidoreductase (complex I). Biol. Chem., 2018, 399(11), 1249-1264. doi: 10.1515/hsz-2018-0164 PMID: 30243012
- Wirth, C.; Brandt, U.; Hunte, C.; Zickermann, V. Structure and function of mitochondrial complex I. Biochim. Biophys. Acta Bioenerg., 2016, 1857(7), 902-914. doi: 10.1016/j.bbabio.2016.02.013 PMID: 26921811
- Zong, W.X.; Rabinowitz, J.D.; White, E. Mitochondria and Cancer. Mol. Cell, 2016, 61(5), 667-676. doi: 10.1016/j.molcel.2016.02.011 PMID: 26942671
- Iommarini, L.; Calvaruso, M.A.; Kurelac, I.; Gasparre, G.; Porcelli, A.M. Complex I impairment in mitochondrial diseases and cancer: Parallel roads leading to different outcomes. Int. J. Biochem. Cell Biol., 2013, 45(1), 47-63. doi: 10.1016/j.biocel.2012.05.016 PMID: 22664328
- Calabrese, C.; Iommarini, L.; Kurelac, I.; Calvaruso, M.A.; Capristo, M.; Lollini, P.L.; Nanni, P.; Bergamini, C.; Nicoletti, G.; De Giovanni, C.; Ghelli, A.; Giorgio, V.; Caratozzolo, M.F.; Marzano, F.; Manzari, C.; Betts, C.M.; Carelli, V.; Ceccarelli, C.; Attimonelli, M.; Romeo, G.; Fato, R.; Rugolo, M.; Tullo, A.; Gasparre, G.; Porcelli, A.M. Respiratory complex I is essential to induce a Warburg profile in mitochondria-defective tumor cells. Cancer Metab., 2013, 1(1), 11. doi: 10.1186/2049-3002-1-11 PMID: 24280190
- Vatrinet, R.; Iommarini, L.; Kurelac, I.; De Luise, M.; Gasparre, G.; Porcelli, A.M. Targeting respiratory complex I to prevent the Warburg effect. Int. J. Biochem. Cell Biol., 2015, 63, 41-45. doi: 10.1016/j.biocel.2015.01.017 PMID: 25668477
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant, 2020, 13(8), 1194-1202. doi: 10.1016/j.molp.2020.06.009 PMID: 32585190
- Kishore Kumar, S.N.; Deepthy, J.; Saraswathi, U.; Thangarajeswari, M.; Yogesh Kanna, S.; Ezhil, P.; Kalaiselvi, P. Morinda citrifolia mitigates rotenone-induced striatal neuronal loss in male Sprague-Dawley rats by preventing mitochondrial pathway of intrinsic apoptosis. Redox Rep., 2017, 22(6), 418-429. doi: 10.1080/13510002.2016.1253449 PMID: 27882828
- Li, N.; Ragheb, K.; Lawler, G.; Sturgis, J.; Rajwa, B.; Melendez, J.A.; Robinson, J.P. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem., 2003, 278(10), 8516-8525. doi: 10.1074/jbc.M210432200 PMID: 12496265
- Liu, A.; Xu, J. Circ_03955 promotes pancreatic cancer tumorigenesis and Warburg effect by targeting the miR-3662/HIF-1α axis. Clin. Transl. Oncol., 2021, 23(9), 1905-1914. doi: 10.1007/s12094-021-02599-5 PMID: 33864618
- Meng, F.; Luo, X.; Li, C.; Wang, G. LncRNA LINC00525 activates HIF-1α through miR-338-3p / UBE2Q1 / β-catenin axis to regulate the Warburg effect in colorectal cancer. Bioengineered, 2022, 13(2), 2552-2565. doi: 10.1080/21655979.2021.2018538 PMID: 35156520
- Kotlyar, A.B.; Vinogradov, A.D. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. Biochim. Biophys. Acta Bioenerg., 1990, 1019(2), 151-158. doi: 10.1016/0005-2728(90)90137-S PMID: 2119805
- Kahlhöfer, F.; Gansen, M.; Zickermann, V. Accessory subunits of the matrix arm of mitochondrial complex I with a Focus on Subunit NDUFS4 and its role in complex I function and assembly. Life, 2021, 11(5), 455. doi: 10.3390/life11050455 PMID: 34069703
- Ishikawa, K.; Takenaga, K.; Akimoto, M.; Koshikawa, N.; Yamaguchi, A.; Imanishi, H.; Nakada, K.; Honma, Y.; Hayashi, J.I. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science, 2008, 320(5876), 661-664. doi: 10.1126/science.1156906 PMID: 18388260
- Sharma, L.K.; Fang, H.; Liu, J.; Vartak, R.; Deng, J.; Bai, Y. Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation. Hum. Mol. Genet., 2011, 20(23), 4605-4616. doi: 10.1093/hmg/ddr395 PMID: 21890492
- Sun, W.; Zhou, S.; Chang, S.S.; McFate, T.; Verma, A.; Califano, J.A. Mitochondrial mutations contribute to HIF1alpha accumulation via increased reactive oxygen species and up-regulated pyruvate dehydrogenease kinase 2 in head and neck squamous cell carcinoma. Clin. Cancer Res., 2009, 15(2), 476-484. doi: 10.1158/1078-0432.CCR-08-0930 PMID: 19147752
- Guan, Q.; Wang, X.; Jiang, Y.; Zhao, L.; Nie, Z.; Jin, L. RNA-Seq expression analysis of enteric neuron cells with rotenone treatment and prediction of regulated pathways. Neurochem. Res., 2017, 42(2), 572-582. doi: 10.1007/s11064-016-2112-9 PMID: 27900601
- Khadrawy, Y.A.; Mourad, I.M.; Mohammed, H.S.; Noor, N.A.; Aboul, H.S. Cerebellar neurochemical and histopathological changes in rat model of Parkinsons disease induced by intrastriatal injection of rotenone. Gen. Physiol. Biophys., 2017, 36(1), 99-108. doi: 10.4149/gpb_2016031 PMID: 27901474
- Zhang, Z.N.; Zhang, J.S.; Xiang, J.; Yu, Z.H.; Zhang, W.; Cai, M.; Li, X.T.; Wu, T.; Li, W.W.; Cai, D.F. Subcutaneous rotenone rat model of Parkinsons disease: Dose exploration study. Brain Res., 2017, 1655, 104-113. doi: 10.1016/j.brainres.2016.11.020 PMID: 27876560
- Noser, A.A.; Abdelmonsef, A.H.; El-Naggar, M.; Salem, M.M. New amino acid schiff bases as anticancer agents via potential mitochondrial complex I-Associated hexokinase inhibition and targeting AMP-protein kinases/mTOR signaling pathway. Molecules, 2021, 26(17), 5332. doi: 10.3390/molecules26175332 PMID: 34500765
- DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv., 2016, 2(5), e1600200. doi: 10.1126/sciadv.1600200 PMID: 27386546
- Desquiret-Dumas, V.; Leman, G.; Wetterwald, C.; Chupin, S.; Lebert, A.; Khiati, S.; Le Mao, M.; Geffroy, G.; Kane, M.S.; Chevrollier, A.; Goudenege, D.; Gadras, C.; Tessier, L.; Barth, M.; Leruez, S.; Amati-Bonneau, P.; Henrion, D.; Bonneau, D.; Procaccio, V.; Reynier, P.; Lenaers, G.; Gueguen, N. Warburg-like effect is a hallmark of complex I assembly defects. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(9), 2475-2489. doi: 10.1016/j.bbadis.2019.05.011 PMID: 31121247
- Bai, M.L.; Li, H.J.; Zhang, L.X. Effects of deguelin on the proliferation and apoptosis of human esophageal cancer cell Ec-109: An experimental research. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih, 2013, 33(3), 397-400. PMID: 23713258
- Yu, X.; Liang, Q.; Liu, W.; Zhou, L.; Li, W.; Liu, H. Deguelin, an Aurora B kinase inhibitor, exhibits potent anti-tumor effect in human esophageal squamous cell carcinoma. EBioMedicine, 2017, 26, 100-111. doi: 10.1016/j.ebiom.2017.10.030 PMID: 29129699
- Levine, A.J.; Puzio-Kuter, A.M. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science, 2010, 330(6009), 1340-1344. doi: 10.1126/science.1193494 PMID: 21127244
- Doe, M.R.; Ascano, J.M.; Kaur, M.; Cole, M.D. Myc posttranscriptionally induces HIF1 protein and target gene expression in normal and cancer cells. Cancer Res., 2012, 72(4), 949-957. doi: 10.1158/0008-5472.CAN-11-2371 PMID: 22186139
- Elzakra, N.; Kim, Y. HIF-1α metabolic pathways in human cancer. Adv. Exp. Med. Biol., 2021, 1280, 243-260. doi: 10.1007/978-3-030-51652-9_17 PMID: 33791987
- Hayashi, M.; Sakata, M.; Takeda, T.; Yamamoto, T.; Okamoto, Y.; Sawada, K.; Kimura, A.; Minekawa, R.; Tahara, M.; Tasaka, K.; Murata, Y. Induction of glucose transporter 1 expression through hypoxia-inducible factor 1α under hypoxic conditions in trophoblast-derived cells. J. Endocrinol., 2004, 183(1), 145-154. doi: 10.1677/joe.1.05599 PMID: 15525582
- Liu, Y.; Li, Y.; Tian, R.; Liu, W.; Fei, Z.; Long, Q.; Wang, X.; Zhang, X. The expression and significance of HIF-1α and GLUT-3 in glioma. Brain Res., 2009, 1304, 149-154. doi: 10.1016/j.brainres.2009.09.083 PMID: 19782666
- Jing, S.; Wang, J.; Liu, Q.; Cheng, Y.; Yang, C.; Wang, Y.; Cao, F.; Wen, B.; Jiao, W.; Guo, Y. Relationship between hypoxia inducible factor-1α and esophageal squamous cell carcinoma: a meta analysis. Zhonghua Bing Li Xue Za Zhi, 2014, 43(9), 593-599. PMID: 25471499
- Li, W.; Xue, D.; Xue, M.; Zhao, J.; Liang, H.; Liu, Y.; Sun, T. Fucoidan inhibits epithelial to mesenchymal transition via regulation of the HIF-1α pathway in mammary cancer cells under hypoxia. Oncol. Lett., 2019, 18(1), 330-338. doi: 10.3892/ol.2019.10283 PMID: 31289504
- Peng, J. Shen, S.; Wang, J.; Jiang, H.; Wang, Y. Ηypoxia-inducible factor -1α promotes colon cell proliferation and migration by upregulating AMPK-related protein kinase 5 under hypoxic conditions. Oncol. Lett., 2018, 15(3), 3639-3645. doi: 10.3892/ol.2018.7748 PMID: 29467884
Supplementary files
