Bioinformatics Analysis and Verification of Metabolic Abnormalities in Esophageal Squamous Carcinoma


Cite item

Full Text

Abstract

Background:Although esophageal carcinoma (EC) is one of the most common cancers in the world, details of its pathogenesis remain unclear. Metabolic reprogramming is a main feature of EC. Mitochondrial dysfunction, especially the decrease in mitochondrial complex I (MTCI), plays an important role in the occurrence and development of EC.

Objective:The objective of the study was to analyze and validate the metabolic abnormalities and the role of MTCI in esophageal squamous cell carcinoma.

Methods:In this work, we collected transcriptomic data from 160 esophageal squamous carcinoma samples and 11 normal tissue samples from The Cancer Genome Atlas (TCGA). The OmicsBean and GEPIA2 were used to conduct an analysis of differential gene expression and survival in clinical samples. Rotenone was used to inhibit the MTCI activity. Subsequently, we detected lactate production, glucose uptake, and ATP production.

Results:A total of 1710 genes were identified as being significantly differentially expressed. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis suggested that these differentially expressed genes (DEGs) were significantly enriched in various pathways related to carcinoma tumorigenesis and progression. Moreover, we further identified abnormalities in metabolic pathways, in particular, the significantly low expression of multiple subunits of MTCI genes (ND1, ND2, ND3, ND4, ND4L, ND5, and ND6). Rotenone was used to inhibit the MTCI activity of EC109 cells, and it was found that the decrease in MTCI activity promoted HIF1A expression, glucose consumption, lactate production, ATP production, and cell migration.

Conclusion:Our results indicated the occurrence of abnormal metabolism involving decreased mitochondrial complex I activity and increased glycolysis in esophageal squamous cell carcinoma (ESCC), which might be related to its development and degree of malignancy.

About the authors

Duo Tang

Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology

Email: info@benthamscience.net

Guozhen Wang

Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life,, Beijing University of Technology

Email: info@benthamscience.net

Zijia Liu

Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology

Email: info@benthamscience.net

Yu Chen Zheng

Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology

Email: info@benthamscience.net

Chao Sheng

Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology

Email: info@benthamscience.net

Biqi Wang

Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology

Email: info@benthamscience.net

Xiaonan Hou

Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology

Email: info@benthamscience.net

Yu Chen Zhang

Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology

Email: info@benthamscience.net

Mengfei Yao

Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology

Email: info@benthamscience.net

Zhixiang Zhou

Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  2. Short, M.W.; Burgers, K.G.; Fry, V.T. Esophageal cancer. Am. Fam. Physician, 2017, 95(1), 22-28. PMID: 28075104
  3. Harada, K.; Rogers, J.E.; Iwatsuki, M.; Yamashita, K.; Baba, H.; Ajani, J.A. Recent advances in treating oesophageal cancer. F1000 Res., 2020, 9, 1189. doi: 10.12688/f1000research.22926.1 PMID: 33042518
  4. Uhlenhopp, D.J.; Then, E.O.; Sunkara, T.; Gaduputi, V. Epidemiology of esophageal cancer: update in global trends, etiology and risk factors. Clin. J. Gastroenterol., 2020, 13(6), 1010-1021. doi: 10.1007/s12328-020-01237-x PMID: 32965635
  5. Hochwald, J.; Zhang, J. Glucose oncometabolism of esophageal cancer. Anticancer. Agents Med. Chem., 2017, 17(3), 385-394. doi: 10.2174/1871520616666160627092716 PMID: 27357541
  6. Kalyanaraman, B.; Cheng, G.; Hardy, M. Therapeutic targeting of tumor cells and tumor immune microenvironment vulnerabilities. Front. Oncol., 2022, 12, 816504. doi: 10.3389/fonc.2022.816504 PMID: 35756631
  7. Nie, Y.; Yun, X.; Zhang, Y.; Wang, X. Targeting metabolic reprogramming in chronic lymphocytic leukemia. Exp. Hematol. Oncol., 2022, 11(1), 39. doi: 10.1186/s40164-022-00292-z PMID: 35761419
  8. Zhou, Y.; Zhan, Y.; Jiang, W.; Liu, H.; Wei, S. Long noncoding RNAs and circular RNAs in the metabolic reprogramming of lung cancer: functions, mechanisms, and clinical potential. Oxid. Med. Cell. Longev., 2022, 2022, 1-17. doi: 10.1155/2022/4802338 PMID: 35757505
  9. Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47. doi: 10.1016/j.cmet.2015.12.006 PMID: 26771115
  10. Warburg, O.; Wind, F.; Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol., 1927, 8(6), 519-530. doi: 10.1085/jgp.8.6.519 PMID: 19872213
  11. Som, P.; Atkins, H.L.; Bandoypadhyay, D.; Fowler, J.S.; MacGregor, R.R.; Matsui, K.; Oster, Z.H.; Sacker, D.F.; Shiue, C.Y.; Turner, H.; Wan, C.N.; Wolf, A.P.; Zabinski, S.V. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J. Nucl. Med., 1980, 21(7), 670-675. PMID: 7391842
  12. Liu, T.; Yin, H. PDK1 promotes tumor cell proliferation and migration by enhancing the Warburg effect in non-small cell lung cancer. Oncol. Rep., 2017, 37(1), 193-200. doi: 10.3892/or.2016.5253 PMID: 27878287
  13. Sha, L.; Lv, Z.; Liu, Y.; Zhang, Y.; Sui, X.; Wang, T.; Zhang, H. Shikonin inhibits the Warburg effect, cell proliferation, invasion and migration by downregulating PFKFB2 expression in lung cancer. Mol. Med. Rep., 2021, 24(2), 560. doi: 10.3892/mmr.2021.12199 PMID: 34109434
  14. Yang, L.; Zhang, W.; Wang, Y.; Zou, T.; Zhang, B.; Xu, Y.; Pang, T.; Hu, Q.; Chen, M.; Wang, L.; Lv, Y.; Yin, K.; Liang, H.; Chen, X.; Xu, G.; Zou, X. Hypoxia-induced miR-214 expression promotes tumour cell proliferation and migration by enhancing the Warburg effect in gastric carcinoma cells. Cancer Lett., 2018, 414, 44-56. doi: 10.1016/j.canlet.2017.11.007 PMID: 29129783
  15. Ohnishi, T.; Ohnishi, S.T.; Salerno, J.C. Five decades of research on mitochondrial NADH-quinone oxidoreductase (complex I). Biol. Chem., 2018, 399(11), 1249-1264. doi: 10.1515/hsz-2018-0164 PMID: 30243012
  16. Wirth, C.; Brandt, U.; Hunte, C.; Zickermann, V. Structure and function of mitochondrial complex I. Biochim. Biophys. Acta Bioenerg., 2016, 1857(7), 902-914. doi: 10.1016/j.bbabio.2016.02.013 PMID: 26921811
  17. Zong, W.X.; Rabinowitz, J.D.; White, E. Mitochondria and Cancer. Mol. Cell, 2016, 61(5), 667-676. doi: 10.1016/j.molcel.2016.02.011 PMID: 26942671
  18. Iommarini, L.; Calvaruso, M.A.; Kurelac, I.; Gasparre, G.; Porcelli, A.M. Complex I impairment in mitochondrial diseases and cancer: Parallel roads leading to different outcomes. Int. J. Biochem. Cell Biol., 2013, 45(1), 47-63. doi: 10.1016/j.biocel.2012.05.016 PMID: 22664328
  19. Calabrese, C.; Iommarini, L.; Kurelac, I.; Calvaruso, M.A.; Capristo, M.; Lollini, P.L.; Nanni, P.; Bergamini, C.; Nicoletti, G.; De Giovanni, C.; Ghelli, A.; Giorgio, V.; Caratozzolo, M.F.; Marzano, F.; Manzari, C.; Betts, C.M.; Carelli, V.; Ceccarelli, C.; Attimonelli, M.; Romeo, G.; Fato, R.; Rugolo, M.; Tullo, A.; Gasparre, G.; Porcelli, A.M. Respiratory complex I is essential to induce a Warburg profile in mitochondria-defective tumor cells. Cancer Metab., 2013, 1(1), 11. doi: 10.1186/2049-3002-1-11 PMID: 24280190
  20. Vatrinet, R.; Iommarini, L.; Kurelac, I.; De Luise, M.; Gasparre, G.; Porcelli, A.M. Targeting respiratory complex I to prevent the Warburg effect. Int. J. Biochem. Cell Biol., 2015, 63, 41-45. doi: 10.1016/j.biocel.2015.01.017 PMID: 25668477
  21. Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant, 2020, 13(8), 1194-1202. doi: 10.1016/j.molp.2020.06.009 PMID: 32585190
  22. Kishore Kumar, S.N.; Deepthy, J.; Saraswathi, U.; Thangarajeswari, M.; Yogesh Kanna, S.; Ezhil, P.; Kalaiselvi, P. Morinda citrifolia mitigates rotenone-induced striatal neuronal loss in male Sprague-Dawley rats by preventing mitochondrial pathway of intrinsic apoptosis. Redox Rep., 2017, 22(6), 418-429. doi: 10.1080/13510002.2016.1253449 PMID: 27882828
  23. Li, N.; Ragheb, K.; Lawler, G.; Sturgis, J.; Rajwa, B.; Melendez, J.A.; Robinson, J.P. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem., 2003, 278(10), 8516-8525. doi: 10.1074/jbc.M210432200 PMID: 12496265
  24. Liu, A.; Xu, J. Circ_03955 promotes pancreatic cancer tumorigenesis and Warburg effect by targeting the miR-3662/HIF-1α axis. Clin. Transl. Oncol., 2021, 23(9), 1905-1914. doi: 10.1007/s12094-021-02599-5 PMID: 33864618
  25. Meng, F.; Luo, X.; Li, C.; Wang, G. LncRNA LINC00525 activates HIF-1α through miR-338-3p / UBE2Q1 / β-catenin axis to regulate the Warburg effect in colorectal cancer. Bioengineered, 2022, 13(2), 2552-2565. doi: 10.1080/21655979.2021.2018538 PMID: 35156520
  26. Kotlyar, A.B.; Vinogradov, A.D. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. Biochim. Biophys. Acta Bioenerg., 1990, 1019(2), 151-158. doi: 10.1016/0005-2728(90)90137-S PMID: 2119805
  27. Kahlhöfer, F.; Gansen, M.; Zickermann, V. Accessory subunits of the matrix arm of mitochondrial complex I with a Focus on Subunit NDUFS4 and its role in complex I function and assembly. Life, 2021, 11(5), 455. doi: 10.3390/life11050455 PMID: 34069703
  28. Ishikawa, K.; Takenaga, K.; Akimoto, M.; Koshikawa, N.; Yamaguchi, A.; Imanishi, H.; Nakada, K.; Honma, Y.; Hayashi, J.I. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science, 2008, 320(5876), 661-664. doi: 10.1126/science.1156906 PMID: 18388260
  29. Sharma, L.K.; Fang, H.; Liu, J.; Vartak, R.; Deng, J.; Bai, Y. Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation. Hum. Mol. Genet., 2011, 20(23), 4605-4616. doi: 10.1093/hmg/ddr395 PMID: 21890492
  30. Sun, W.; Zhou, S.; Chang, S.S.; McFate, T.; Verma, A.; Califano, J.A. Mitochondrial mutations contribute to HIF1alpha accumulation via increased reactive oxygen species and up-regulated pyruvate dehydrogenease kinase 2 in head and neck squamous cell carcinoma. Clin. Cancer Res., 2009, 15(2), 476-484. doi: 10.1158/1078-0432.CCR-08-0930 PMID: 19147752
  31. Guan, Q.; Wang, X.; Jiang, Y.; Zhao, L.; Nie, Z.; Jin, L. RNA-Seq expression analysis of enteric neuron cells with rotenone treatment and prediction of regulated pathways. Neurochem. Res., 2017, 42(2), 572-582. doi: 10.1007/s11064-016-2112-9 PMID: 27900601
  32. Khadrawy, Y.A.; Mourad, I.M.; Mohammed, H.S.; Noor, N.A.; Aboul, H.S. Cerebellar neurochemical and histopathological changes in rat model of Parkinson’s disease induced by intrastriatal injection of rotenone. Gen. Physiol. Biophys., 2017, 36(1), 99-108. doi: 10.4149/gpb_2016031 PMID: 27901474
  33. Zhang, Z.N.; Zhang, J.S.; Xiang, J.; Yu, Z.H.; Zhang, W.; Cai, M.; Li, X.T.; Wu, T.; Li, W.W.; Cai, D.F. Subcutaneous rotenone rat model of Parkinson’s disease: Dose exploration study. Brain Res., 2017, 1655, 104-113. doi: 10.1016/j.brainres.2016.11.020 PMID: 27876560
  34. Noser, A.A.; Abdelmonsef, A.H.; El-Naggar, M.; Salem, M.M. New amino acid schiff bases as anticancer agents via potential mitochondrial complex I-Associated hexokinase inhibition and targeting AMP-protein kinases/mTOR signaling pathway. Molecules, 2021, 26(17), 5332. doi: 10.3390/molecules26175332 PMID: 34500765
  35. DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv., 2016, 2(5), e1600200. doi: 10.1126/sciadv.1600200 PMID: 27386546
  36. Desquiret-Dumas, V.; Leman, G.; Wetterwald, C.; Chupin, S.; Lebert, A.; Khiati, S.; Le Mao, M.; Geffroy, G.; Kane, M.S.; Chevrollier, A.; Goudenege, D.; Gadras, C.; Tessier, L.; Barth, M.; Leruez, S.; Amati-Bonneau, P.; Henrion, D.; Bonneau, D.; Procaccio, V.; Reynier, P.; Lenaers, G.; Gueguen, N. Warburg-like effect is a hallmark of complex I assembly defects. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(9), 2475-2489. doi: 10.1016/j.bbadis.2019.05.011 PMID: 31121247
  37. Bai, M.L.; Li, H.J.; Zhang, L.X. Effects of deguelin on the proliferation and apoptosis of human esophageal cancer cell Ec-109: An experimental research. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih, 2013, 33(3), 397-400. PMID: 23713258
  38. Yu, X.; Liang, Q.; Liu, W.; Zhou, L.; Li, W.; Liu, H. Deguelin, an Aurora B kinase inhibitor, exhibits potent anti-tumor effect in human esophageal squamous cell carcinoma. EBioMedicine, 2017, 26, 100-111. doi: 10.1016/j.ebiom.2017.10.030 PMID: 29129699
  39. Levine, A.J.; Puzio-Kuter, A.M. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science, 2010, 330(6009), 1340-1344. doi: 10.1126/science.1193494 PMID: 21127244
  40. Doe, M.R.; Ascano, J.M.; Kaur, M.; Cole, M.D. Myc posttranscriptionally induces HIF1 protein and target gene expression in normal and cancer cells. Cancer Res., 2012, 72(4), 949-957. doi: 10.1158/0008-5472.CAN-11-2371 PMID: 22186139
  41. Elzakra, N.; Kim, Y. HIF-1α metabolic pathways in human cancer. Adv. Exp. Med. Biol., 2021, 1280, 243-260. doi: 10.1007/978-3-030-51652-9_17 PMID: 33791987
  42. Hayashi, M.; Sakata, M.; Takeda, T.; Yamamoto, T.; Okamoto, Y.; Sawada, K.; Kimura, A.; Minekawa, R.; Tahara, M.; Tasaka, K.; Murata, Y. Induction of glucose transporter 1 expression through hypoxia-inducible factor 1α under hypoxic conditions in trophoblast-derived cells. J. Endocrinol., 2004, 183(1), 145-154. doi: 10.1677/joe.1.05599 PMID: 15525582
  43. Liu, Y.; Li, Y.; Tian, R.; Liu, W.; Fei, Z.; Long, Q.; Wang, X.; Zhang, X. The expression and significance of HIF-1α and GLUT-3 in glioma. Brain Res., 2009, 1304, 149-154. doi: 10.1016/j.brainres.2009.09.083 PMID: 19782666
  44. Jing, S.; Wang, J.; Liu, Q.; Cheng, Y.; Yang, C.; Wang, Y.; Cao, F.; Wen, B.; Jiao, W.; Guo, Y. Relationship between hypoxia inducible factor-1α and esophageal squamous cell carcinoma: a meta analysis. Zhonghua Bing Li Xue Za Zhi, 2014, 43(9), 593-599. PMID: 25471499
  45. Li, W.; Xue, D.; Xue, M.; Zhao, J.; Liang, H.; Liu, Y.; Sun, T. Fucoidan inhibits epithelial to mesenchymal transition via regulation of the HIF-1α pathway in mammary cancer cells under hypoxia. Oncol. Lett., 2019, 18(1), 330-338. doi: 10.3892/ol.2019.10283 PMID: 31289504
  46. Peng, J. Shen, S.; Wang, J.; Jiang, H.; Wang, Y. Ηypoxia-inducible factor -1α promotes colon cell proliferation and migration by upregulating AMPK-related protein kinase 5 under hypoxic conditions. Oncol. Lett., 2018, 15(3), 3639-3645. doi: 10.3892/ol.2018.7748 PMID: 29467884

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers