Molecular Mechanisms and Therapeutic Potential of Resolvins in Cancer - Current Status and Perspectives


Дәйексөз келтіру

Толық мәтін

Аннотация

:Resolvins are specialized pro-resolving mediators derived from omega-3 fatty acids that can suppress several cancer-related molecular pathways, including important activation of transcription parameters in the tumor cells and their microenvironment, inflammatory cell infiltration, cytokines as well as chemokines. Recently, an association between resolvins and an important anti-inflammatory process in apoptotic tumor cell clearance (efferocytosis) was shown. The inflammation status or the oncogene activation increases the risk of cancer development via triggering the transcriptional agents, including nuclear factor kappa-light-chain-enhancer of activated B cells by generating the pro-inflammatory lipid molecules and infiltrating the tumor cells along with the high level of pro-inflammatory signaling. These events can cause an inflammatory microenvironment. Resolvins might decrease the leukocyte influx into the inflamed tissues. It is widely accepted that resolvins prohibit the development of debris-triggered cancer via increasing the clearance of debris, especially by macrophage phagocytosis in tumors without any side effects. Resolvins D2, D1, and E1 might suppress tumor-growing inflammation by activation of macrophages clearance of cell debris in the tumor. Resolvin D5 can assist patients with pain during treatment. However, the effects of resolvins as anti-inflammatory mediators in cancers are not completely explained. Thus, based on the most recent studies, we tried to summarize the most recent knowledge on resolvins in cancers.

Авторлар туралы

Amir Tajbakhsh

Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences

Email: info@benthamscience.net

Fatemeh Yousefi

Department of Biological Sciences, Tarbiat Modares University

Email: info@benthamscience.net

Najmeh Farahani

Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences

Email: info@benthamscience.net

Amir Savardashtaki

Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences

Email: info@benthamscience.net

Željko Reiner

Department of Internal Medicine, University Hospital Center Zagreb, School of Medicine, University of Zagreb

Email: info@benthamscience.net

Tannaz Jamialahmadi

Applied Biomedical Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Amirhossein Sahebkar

Applied Biomedical Research Center, Mashhad University of Medical Sciences

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Jiang, L.; Poon, I.K.H. Methods for monitoring the progression of cell death, cell disassembly and cell clearance. Apoptosis, 2019, 24(3-4), 208-220. doi: 10.1007/s10495-018-01511-x PMID: 30684146
  2. Benish, M.; Ben-Eliyahu, S. Surgery as a double-edged sword: A clinically feasible approach to overcome the metastasis-promoting effects of surgery by blunting stress and prostaglandin responses. Cancers, 2010, 2(4), 1929-1951. doi: 10.3390/cancers2041929 PMID: 24281210
  3. Magge, R.S.; DeAngelis, L.M. The double-edged sword: Neurotoxicity of chemotherapy. Blood Rev., 2015, 29(2), 93-100. doi: 10.1016/j.blre.2014.09.012 PMID: 25445718
  4. Panigrahy, D.; Gartung, A.; Yang, J.; Yang, H.; Gilligan, M.M.; Sulciner, M.L.; Bhasin, S.S.; Bielenberg, D.R.; Chang, J.; Schmidt, B.A.; Piwowarski, J.; Fishbein, A.; Soler-Ferran, D.; Sparks, M.A.; Staffa, S.J.; Sukhatme, V.; Hammock, B.D.; Kieran, M.W.; Huang, S.; Bhasin, M.; Serhan, C.N.; Sukhatme, V.P. Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases. J. Clin. Invest., 2019, 129(7), 2964-2979. doi: 10.1172/JCI127282 PMID: 31205032
  5. Krall, J.A.; Reinhardt, F.; Mercury, O.A.; Pattabiraman, D.R.; Brooks, M.W.; Dougan, M.; Lambert, A.W.; Bierie, B.; Ploegh, H.L.; Dougan, S.K.; Weinberg, R.A. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Sci. Transl. Med., 2018, 10(436), eaan3464. doi: 10.1126/scitranslmed.aan3464 PMID: 29643230
  6. de Boer, M.; van Deurzen, C.H.M.; van Dijck, J.A.A.M.; Borm, G.F.; van Diest, P.J.; Adang, E.M.M.; Nortier, J.W.R.; Rutgers, E.J.T.; Seynaeve, C.; Menke-Pluymers, M.B.E.; Bult, P.; Tjan-Heijnen, V.C.G. Micrometastases or isolated tumor cells and the outcome of breast cancer. N. Engl. J. Med., 2009, 361(7), 653-663. doi: 10.1056/NEJMoa0904832 PMID: 19675329
  7. Gilroy, D.W.; Lawrence, T.; Perretti, M.; Rossi, A.G. Inflammatory resolution: New opportunities for drug discovery. Nat. Rev. Drug Discov., 2004, 3(5), 401-416. doi: 10.1038/nrd1383 PMID: 15136788
  8. Nathan, C.; Ding, A. Nonresolving inflammation. Cell, 2010, 140(6), 871-882. doi: 10.1016/j.cell.2010.02.029 PMID: 20303877
  9. Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature, 2008, 454(7203), 436-444. doi: 10.1038/nature07205 PMID: 18650914
  10. Pisco, A.O.; Huang, S. Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse: ‘What does not kill me strengthens me’. Br. J. Cancer, 2015, 112(11), 1725-1732. doi: 10.1038/bjc.2015.146 PMID: 25965164
  11. Brock, A.; Huang, S. Precision oncology: Between vaguely right and precisely wrong. Cancer Res., 2017, 77(23), 6473-6479. doi: 10.1158/0008-5472.CAN-17-0448 PMID: 29162615
  12. Serhan, C.N. Resolution phase of inflammation: Novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu. Rev. Immunol., 2007, 25, 101-137. doi: 10.1146/annurev.immunol.25.022106.141647
  13. Serhan, C.N.; Brain, S.D.; Buckley, C.D.; Gilroy, D.W.; Haslett, C.; O’Neill, L.A.J.; Perretti, M.; Rossi, A.G.; Wallace, J.L. Resolution of in flammation: State of the art, definitions and terms. FASEB J., 2007, 21(2), 325-332. doi: 10.1096/fj.06-7227rev PMID: 17267386
  14. Razi, S.; Yaghmoorian Khojini, J.; Kargarijam, F.; Panahi, S.; Tahershamsi, Z.; Tajbakhsh, A.; Gheibihayat, S.M. Macrophage efferocytosis in health and disease. Cell Biochem. Funct., 2023, 41(2), 152-165. doi: 10.1002/cbf.3780 PMID: 36794573
  15. Janakiram, N.B.; Mohammed, A.; Rao, C.V. Role of lipoxins, resolvins, and other bioactive lipids in colon and pancreatic cancer. Cancer Metastasis Rev., 2011, 30(3-4), 507-523. doi: 10.1007/s10555-011-9311-2 PMID: 22015691
  16. Sulciner, M.L.; Serhan, C.N.; Gilligan, M.M.; Mudge, D.K.; Chang, J.; Gartung, A.; Lehner, K.A.; Bielenberg, D.R.; Schmidt, B.; Dalli, J.; Greene, E.R.; Gus-Brautbar, Y.; Piwowarski, J.; Mammoto, T.; Zurakowski, D.; Perretti, M.; Sukhatme, V.P.; Kaipainen, A.; Kieran, M.W.; Huang, S.; Panigrahy, D. Resolvins suppress tumor growth and enhance cancer therapy. J. Exp. Med., 2018, 215(1), 115-140. doi: 10.1084/jem.20170681 PMID: 29191914
  17. Pirault, J.; Bäck, M. Lipoxin and resolvin receptors transducing the resolution of inflammation in cardiovascular disease. Front. Pharmacol., 2018, 9(1273), 1273. doi: 10.3389/fphar.2018.01273 PMID: 30487747
  18. Sun, Y.P.; Oh, S.F.; Uddin, J.; Yang, R.; Gotlinger, K.; Campbell, E.; Colgan, S.P.; Petasis, N.A.; Serhan, C.N. Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation. J. Biol. Chem., 2007, 282(13), 9323-9334. doi: 10.1074/jbc.M609212200 PMID: 17244615
  19. Serhan, C.N.; Hong, S.; Gronert, K.; Colgan, S.P.; Devchand, P.R.; Mirick, G.; Moussignac, R.L. Resolvins. J. Exp. Med., 2002, 196(8), 1025-1037. doi: 10.1084/jem.20020760 PMID: 12391014
  20. Krishnamoorthy, S.; Recchiuti, A.; Chiang, N.; Yacoubian, S.; Lee, C.H.; Yang, R.; Petasis, N.A.; Serhan, C.N. Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc. Natl. Acad. Sci. USA, 2010, 107(4), 1660-1665. doi: 10.1073/pnas.0907342107 PMID: 20080636
  21. Merched, A.J.; Ko, K.; Gotlinger, K.H.; Serhan, C.N.; Chan, L. Atherosclerosis: Evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. FASEB J., 2008, 22(10), 3595-3606. doi: 10.1096/fj.08-112201 PMID: 18559988
  22. Tajbakhsh, A.; Rezaee, M.; Kovanen, P.T.; Sahebkar, A. A. Efferocytosis in atherosclerotic lesions: Malfunctioning regulatory pathways and control mechanisms. Pharmacol. Ther., 188, 12-25.2018,
  23. Kobayashi, N.; Karisola, P.; Peña-Cruz, V.; Dorfman, D.M.; Jinushi, M.; Umetsu, S.E.; Butte, M.J.; Nagumo, H.; Chernova, I.; Zhu, B.; Sharpe, A.H.; Ito, S.; Dranoff, G.; Kaplan, G.G.; Casasnovas, J.M.; Umetsu, D.T.; DeKruyff, R.H.; Freeman, G.J. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity, 2007, 27(6), 927-940. doi: 10.1016/j.immuni.2007.11.011 PMID: 18082433
  24. Krishnamoorthy, N.; Abdulnour, R.E.E.; Walker, K.H.; Engstrom, B.D.; Levy, B.D. Specialized proresolving mediators in innate and adaptive immune responses in airway diseases. Physiol. Rev., 2018, 98(3), 1335-1370. doi: 10.1152/physrev.00026.2017 PMID: 29717929
  25. Lund, T.; Mangsbo, S.M.; Scholz, H.; Gjorstrup, P.; Tötterman, T.H.; Korsgren, O.; Foss, A. Resolvin E1 reduces proinflammatory markers in human pancreatic islets in vitro. Exp. Clin. Endocrinol. Diabetes, 2010, 118(4), 237-244. doi: 10.1055/s-0029-1241825 PMID: 20119897
  26. Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis, 2009, 30(7), 1073-1081. doi: 10.1093/carcin/bgp127 PMID: 19468060
  27. Liu, X.; Yin, L.; Shen, S.; Hou, Y. Inflammation and cancer: Paradoxical roles in tumorigenesis and implications in immunotherapies. Genes Dis., 2023, 10(1), 151-164. doi: 10.1016/j.gendis.2021.09.006 PMID: 37013041
  28. Malekghasemi, S.; Majidi, J.; Baghbanzadeh, A.; Abdolalizadeh, J.; Baradaran, B.; Aghebati-Maleki, L. Tumor-associated macrophages: Protumoral macrophages in inflammatory tumor microenvironment. Adv. Pharm. Bull., 2020, 10(4), 556-565. doi: 10.34172/apb.2020.066 PMID: 33062602
  29. Negus, R.P.; Stamp, G.W.; Hadley, J.; Balkwill, F.R. Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines. Am. J. Pathol., 1997, 150(5), 1723-1734. PMID: 9137096
  30. Singh, N.; Baby, D.; Rajguru, J.; Patil, P.; Thakkannavar, S.; Pujari, V. Inflammation and cancer. Ann. Afr. Med., 2019, 18(3), 121-126. doi: 10.4103/aam.aam_56_18 PMID: 31417011
  31. Aggarwal, B.B.; Vijayalekshmi, R.V.; Sung, B. Targeting inflammatory pathways for prevention and therapy of cancer: Short-term friend, long-term foe. Clin. Cancer Res., 2009, 15(2), 425-430. doi: 10.1158/1078-0432.CCR-08-0149 PMID: 19147746
  32. Zhang, Y.; Kong, W.; Jiang, J. Prevention and treatment of cancer targeting chronic inflammation: Research progress, potential agents, clinical studies and mechanisms. Sci. China Life Sci., 2017, 60(6), 601-616. doi: 10.1007/s11427-017-9047-4 PMID: 28639101
  33. Cordon-Cardo, C.; Prives, C. At the crossroads of inflammation and tumorigenesis. J. Exp. Med., 1999, 190(10), 1367-1370. doi: 10.1084/jem.190.10.1367 PMID: 10562311
  34. Lee, S.H.; Cho, S.Y.; Yoon, Y.; Park, C.; Sohn, J.; Jeong, J.J.; Jeon, B.N.; Jang, M.; An, C.; Lee, S.; Kim, Y.Y.; Kim, G.; Kim, S.; Kim, Y.; Lee, G.B.; Lee, E.J.; Kim, S.G.; Kim, H.S.; Kim, Y.; Kim, H.; Yang, H.S.; Kim, S.; Kim, S.; Chung, H.; Moon, M.H.; Nam, M.H.; Kwon, J.Y.; Won, S.; Park, J.S.; Weinstock, G.M.; Lee, C.; Yoon, K.W.; Park, H. Bifidobacterium bifidum strains synergize with immune checkpoint inhibitors to reduce tumour burden in mice. Nat. Microbiol., 2021, 6(3), 277-288. doi: 10.1038/s41564-020-00831-6 PMID: 33432149
  35. Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther., 2021, 6(1), 263. doi: 10.1038/s41392-021-00658-5 PMID: 34248142
  36. Philip, M.; Rowley, D.A.; Schreiber, H. Inflammation as a tumor promoter in cancer induction. Semin. Cancer Biol., 2004, 14(6), 433-439. doi: 10.1016/j.semcancer.2004.06.006 PMID: 15489136
  37. Lin, A.; Karin, M. NF-κB in cancer: A marked target. Semin. Cancer Biol., 2003, 13(2), 107-114. doi: 10.1016/S1044-579X(02)00128-1 PMID: 12654254
  38. Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer, 2009, 9(5), 361-371. doi: 10.1038/nrc2628 PMID: 19343034
  39. Micheau, O.; Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell, 2003, 114(2), 181-190. doi: 10.1016/S0092-8674(03)00521-X PMID: 12887920
  40. Vacca, P.; Munari, E.; Tumino, N.; Moretta, F.; Pietra, G.; Vitale, M.; Del Zotto, G.; Mariotti, F.R.; Mingari, M.C.; Moretta, L. Human natural killer cells and other innate lymphoid cells in cancer: friends or foes? Immunol. Lett., 2018, 201, 14-19. doi: 10.1016/j.imlet.2018.11.004 PMID: 30439479
  41. Chrisikos, T.T.; Zhou, Y.; Slone, N.; Babcock, R.; Watowich, S.S.; Li, H.S. Molecular regulation of dendritic cell development and function in homeostasis, inflammation, and cancer. Mol. Immunol., 2019, 110, 24-39. doi: 10.1016/j.molimm.2018.01.014
  42. Mottola, G.; Chatterjee, A.; Wu, B.; Chen, M.; Conte, M.S. Aspirin-triggered resolvin D1 attenuates PDGF-induced vascular smooth muscle cell migration via the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway. PLoS One, 2017, 12(3), e0174936. doi: 10.1371/journal.pone.0174936 PMID: 28362840
  43. Yin, C.; Argintaru, D.; Heit, B. Rab17 mediates intermixing of phagocytosed apoptotic cells with recycling endosomes. Small GTPases, 2019, 10(3), 218-226. doi: 10.1080/21541248.2017.1308852 PMID: 28471261
  44. Gordon, S.; Martinez, F.O. Alternative activation of macrophages: Mechanism and functions. Immunity, 2010, 32(5), 593-604. doi: 10.1016/j.immuni.2010.05.007 PMID: 20510870
  45. Ishida, T.; Yoshida, M.; Arita, M.; Nishitani, Y.; Nishiumi, S.; Masuda, A.; Mizuno, S.; Takagawa, T.; Morita, Y.; Kutsumi, H.; Inokuchi, H.; Serhan, C.N.; Blumberg, R.S.; Azuma, T. Resolvin E1, an endogenous lipid mediator derived from eicosapentaenoic acid, prevents dextran sulfate sodium–induced colitis. Inflamm. Bowel Dis., 2010, 16(1), 87-95. doi: 10.1002/ibd.21029 PMID: 19572372
  46. Connor, K.M.; SanGiovanni, J.P.; Lofqvist, C.; Aderman, C.M.; Chen, J.; Higuchi, A.; Hong, S.; Pravda, E.A.; Majchrzak, S.; Carper, D.; Hellstrom, A.; Kang, J.X.; Chew, E.Y.; Salem, N., Jr; Serhan, C.N.; Smith, L.E.H. Increased dietary intake of ω-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat. Med., 2007, 13(7), 868-873. doi: 10.1038/nm1591 PMID: 17589522
  47. Serhan, C.N. Novel lipid mediators and resolution mechanisms in acute inflammation: To resolve or not? Am. J. Pathol., 2010, 177(4), 1576-1591. doi: 10.2353/ajpath.2010.100322 PMID: 20813960
  48. Norris, P.C.; Libreros, S.; Serhan, C.N. Resolution metabolomes activated by hypoxic environment. Sci. Adv., 2019, 5(10), eaax4895. doi: 10.1126/sciadv.aax4895 PMID: 31681846
  49. Shepelin, D.; Korzinkin, M.; Vanyushina, A.; Aliper, A.; Borisov, N.; Vasilov, R.; Zhukov, N.; Sokov, D.; Prassolov, V.; Gaifullin, N.; Zhavoronkov, A.; Bhullar, B.; Buzdin, A. Molecular pathway activation features linked with transition from normal skin to primary and metastatic melanomas in human. Oncotarget, 2016, 7(1), 656-670. doi: 10.18632/oncotarget.6394 PMID: 26624979
  50. Zhong, X.; Lee, H.N.; Surh, Y.J. RvD1 inhibits TNFα-induced c-Myc expression in normal intestinal epithelial cells and destabilizes hyper-expressed c-Myc in colon cancer cells. Biochem. Biophys. Res. Commun., 2018, 496(2), 316-323. doi: 10.1016/j.bbrc.2017.12.171 PMID: 29305860
  51. Polavarapu, S.; Dwarakanath, B.S.; Das, U.N. Differential action of polyunsaturated fatty acids and eicosanoids on bleomycin-induced cytotoxicity to neuroblastoma cells and lymphocytes. Arch. Med. Sci., 2018, 1(1), 207-229. doi: 10.5114/aoms.2018.72244 PMID: 29379552
  52. Lu, Y.; Xu, Q.; Yin, G.; Xu, W.; Jiang, H. Resolvin D1 inhibits the proliferation of lipopolysaccharide-treated HepG2 hepatoblastoma and PLC/PRF/5 hepatocellular carcinoma cells by targeting the MAPK pathway. Exp. Ther. Med., 2018, 16(4), 3603-3610. doi: 10.3892/etm.2018.6651 PMID: 30233715
  53. Prevete, N.; Liotti, F.; Illiano, A.; Amoresano, A.; Pucci, P.; de Paulis, A.; Melillo, R.M. Formyl peptide receptor 1 suppresses gastric cancer angiogenesis and growth by exploiting inflammation resolution pathways. OncoImmunology, 2017, 6(4), e1293213. doi: 10.1080/2162402X.2017.1293213 PMID: 28507800
  54. Fedirko, V.; McKeown-Eyssen, G.; Serhan, C.N.; Barry, E.L.; Sandler, R.S.; Figueiredo, J.C.; Ahnen, D.J.; Bresalier, R.S.; Robertson, D.J.; Anderson, C.W.; Baron, J.A. Plasma lipoxin A4 and resolvin D1 are not associated with reduced adenoma risk in a randomized trial of aspirin to prevent colon adenomas. Mol. Carcinog., 2017, 56(8), 1977-1983. doi: 10.1002/mc.22629 PMID: 28218420
  55. Eritja, N.; Jové, M.; Fasmer, K.E.; Gatius, S.; Portero-Otin, M.; Trovik, J.; Krakstad, C.; Sol, J.; Pamplona, R.; Haldorsen, I.S.; Matias-Guiu, X. Tumour-microenvironmental blood flow determines a metabolomic signature identifying lysophospholipids and resolvin D as biomarkers in endometrial cancer patients. Oncotarget, 2017, 8(65), 109018-109026. doi: 10.18632/oncotarget.22558 PMID: 29312587
  56. Mohri, Y.; Tanaka, K.; Imaoka, H.; Miki, C.; Fujikawa, H.; Shimura, T.; Toiyama, Y.; Araki, T.; Inoue, Y.; Kusunoki, M. DHA-enriched supplement ameliorates cancer-associated systemic inflammatory response via resolvin D1 production: A single institutional study. Biomed. Res. Ther., 2016, 1(3), 120-125.
  57. Kuang, H.; Hua, X.; Zhou, J.; Yang, R. Resolvin D1 and E1 alleviate the progress of hepatitis toward liver cancer in long-term concanavalin A-induced mice through inhibition of NF-κB activity. Oncol. Rep., 2016, 35(1), 307-317. doi: 10.3892/or.2015.4389 PMID: 26531230
  58. Liu, Y.; Yuan, X.; Li, W.; Cao, Q.; Shu, Y. Aspirin-triggered resolvin D1 inhibits TGF-β1-induced EMT through the inhibition of the mTOR pathway by reducing the expression of PKM2 and is closely linked to oxidative stress. Int. J. Mol. Med., 2016, 38(4), 1235-1242. doi: 10.3892/ijmm.2016.2721 PMID: 27573422
  59. Halder, R.C.; Almasi, A.; Sagong, B.; Leung, J.; Jewett, A.; Fiala, M. Curcuminoids and omega-3 fatty acids with anti-oxidants potentiate cytotoxicity of natural killer cells against pancreatic ductal adenocarcinoma cells and inhibit interferon gamma production. Front Physiol., 2015, 6, 129. doi: 10.3389/fphys.2015.00129 PMID: 26052286
  60. Cholkar, K.; Trinh, H.M.; Vadlapudi, A.D.; Wang, Z.; Pal, D.; Mitra, A.K. Interaction studies of resolvin E1 analog (RX-10045) with efflux transporters. J. Ocul. Pharmacol. Ther., 2015, 31(4), 248-255. doi: 10.1089/jop.2014.0144 PMID: 25844889
  61. Al-Zaubai, N.; Johnstone, C.N.; Leong, M.M.; Li, J.; Rizzacasa, M.; Stewart, A.G. Resolvin D2 supports MCF-7 cell proliferation via activation of estrogen receptor. J. Pharmacol. Exp. Ther., 2014, 351(1), 172-180. doi: 10.1124/jpet.114.214403 PMID: 25077525
  62. Lee, H.J.; Park, M.K.; Lee, E.J.; Lee, C.H. Resolvin D1 inhibits TGF-β1-induced epithelial mesenchymal transition of A549 lung cancer cells via lipoxin A4 receptor/formyl peptide receptor 2 and GPR32. Int. J. Biochem. Cell Biol., 2013, 45(12), 2801-2807. doi: 10.1016/j.biocel.2013.09.018 PMID: 24120851
  63. Ye, Y.; Scheff, N.N.; Bernabe, D.; Salvo, E.; Ono, K.; Liu, C.; Veeramachaneni, R.; Viet, C.T.; Viet, D.T.; Dolan, J.C.; Schmidt, B.L. Anti-cancer and analgesic effects of resolvin D2 in oral squamous cell carcinoma. Neuropharmacology., 2018, 139, 182-193. doi: 10.1016/j.neuropharm.2018.07.016
  64. Mattoscio, D.; Ferri, G.; Miccolo, C.; Chiocca, S.; Romano, M.; Recchiuti, A. Gene expression of the D-series resolvin pathway predicts activation of anti-tumor immunity and clinical outcomes in head and neck cancer. Int. J. Mol. Sci., 2022, 23(12), 6473. doi: 10.3390/ijms23126473 PMID: 35742918
  65. Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90. doi: 10.3322/caac.20107 PMID: 21296855
  66. Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell, 2010, 140(6), 883-899. doi: 10.1016/j.cell.2010.01.025 PMID: 20303878
  67. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674. doi: 10.1016/j.cell.2011.02.013 PMID: 21376230
  68. Baumgarten, S.C.; Frasor, J. Minireview: Inflammation: An instigator of more aggressive estrogen receptor (ER) positive breast cancers. Mol. Endocrinol., 2012, 26(3), 360-371. doi: 10.1210/me.2011-1302 PMID: 22301780
  69. Kang, G.J.; Lee, H.J.; Kang, Y.P.; Kim, E.J.; Kim, H.J.; Byun, H.J.; Park, M.K.; Cho, H.; Kwon, S.W.; Lee, C.H. High-mobility group box 1 suppresses resolvin D1-induced phagocytosis via induction of resolvin D1-inactivating enzyme, 15-hydroxyprostaglandin dehydrogenase. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(9), 1981-1988. doi: 10.1016/j.bbadis.2015.07.005 PMID: 26170058
  70. Assaraf, Y.G. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resist. Updat., 2006, 9(4-5), 227-246. doi: 10.1016/j.drup.2006.09.001 PMID: 17092765
  71. Robey, R.W.; Polgar, O.; Deeken, J.; To, K.W.; Bates, S.E. ABCG2: Determining its relevance in clinical drug resistance. Cancer Metastasis Rev., 2007, 26(1), 39-57. doi: 10.1007/s10555-007-9042-6 PMID: 17323127
  72. Cancer IAfRo. Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. 2018. Available from: https://www.iarc.who.int/wp-content/uploads/2018/09/pr263_E.pdf
  73. Gomes, M.; Teixeira, A.L.; Coelho, A.; Araujo, A.; Medeiros, R. The role of inflammation in lung cancer. Adv. Exp. Med. Biol., 2014, 816, 1-23. doi: 10.1007/978-3-0348-0837-8_1
  74. Cho, W.C.S.; Kwan, C.K.; Yau, S.; So, P.P.F.; Poon, P.C.M.; Au, J.S.K. The role of inflammation in the pathogenesis of lung cancer. Expert Opin. Ther. Targets, 2011, 15(9), 1127-1137. doi: 10.1517/14728222.2011.599801 PMID: 21751938
  75. Walser, T.; Cui, X.; Yanagawa, J.; Lee, J.M.; Heinrich, E.; Lee, G.; Sharma, S.; Dubinett, S.M. Smoking and lung cancer: The role of inflammation. Proc. Am. Thorac. Soc., 2008, 5(8), 811-815. doi: 10.1513/pats.200809-100TH PMID: 19017734
  76. Kim, M.J.; Lee, Y.J.; Yoon, Y.S.; Kim, M.; Choi, J.H.; Kim, H.S.; Kang, J.L. Apoptotic cells trigger the ABCA1/STAT6 pathway leading to PPAR-γ expression and activation in macrophages. J. Leukoc. Biol., 2018, 103(5), 885-895. doi: 10.1002/JLB.2A0817-341RR PMID: 29603355
  77. Huber, M.A.; Kraut, N.; Beug, H. Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr. Opin. Cell Biol., 2005, 17(5), 548-558. doi: 10.1016/j.ceb.2005.08.001 PMID: 16098727
  78. Gilligan, M.M.; Gartung, A.; Sulciner, M.L.; Norris, P.C.; Sukhatme, V.P.; Bielenberg, D.R.; Huang, S.; Kieran, M.W.; Serhan, C.N.; Panigrahy, D. Aspirin-triggered proresolving mediators stimulate resolution in cancer. Proc. Natl. Acad. Sci. USA, 2019, 116(13), 6292-6297. doi: 10.1073/pnas.1804000116 PMID: 30862734
  79. Itzkowitz, S.H.; Yio, X. Inflammation and Cancer IV. Colorectal cancer in inflammatory bowel disease: The role of inflammation. Am. J. Physiol. Gastrointest. Liver Physiol., 2004, 287(1), G7-G17. doi: 10.1152/ajpgi.00079.2004 PMID: 15194558
  80. Kraus, S.; Arber, N. Inflammation and colorectal cancer. Curr. Opin. Pharmacol., 2009, 9(4), 405-410. doi: 10.1016/j.coph.2009.06.006 PMID: 19589728
  81. Wang, S.; Liu, Z.; Wang, L.; Zhang, X. NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell. Mol. Immunol., 2009, 6(5), 327-334. doi: 10.1038/cmi.2009.43 PMID: 19887045
  82. Sitarz, R.; Skierucha, M.; Mielko, J.; Offerhaus, G.J.A.; Maciejewski, R.; Polkowski, W.P. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag. Res., 2018, 10, 239-248. doi: 10.2147/CMAR.S149619 PMID: 29445300
  83. Cheng, T-Y.; Wu, M-S.; Lin, J-T.; Lin, M-T.; Shun, C-T.; Hua, K-T.; Kuo, M-L. Formyl Peptide receptor 1 expression is associated with tumor progression and survival in gastric cancer. Anticancer Res., 2014, 34(5), 2223-2229. PMID: 24778024
  84. Prevete, N.; Liotti, F.; Visciano, C.; Marone, G.; Melillo, R.M.; de Paulis, A. The formyl peptide receptor 1 exerts a tumor suppressor function in human gastric cancer by inhibiting angiogenesis. Oncogene, 2015, 34(29), 3826-3838. doi: 10.1038/onc.2014.309 PMID: 25263443
  85. Blot, W.J.; McLaughlin, J.K.; Winn, D.M.; Austin, D.F.; Greenberg, R.S.; Preston-Martin, S.; Bernstein, L.; Schoenberg, J.B.; Stemhagen, A.; Fraumeni, J.F., Jr Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res., 1988, 48(11), 3282-3287. PMID: 3365707
  86. Ji, R.R.; Xu, Z.Z.; Strichartz, G.; Serhan, C.N. Emerging roles of resolvins in the resolution of inflammation and pain. Trends Neurosci., 2011, 34(11), 599-609. doi: 10.1016/j.tins.2011.08.005 PMID: 21963090
  87. Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature, 2014, 510(7503), 92-101. doi: 10.1038/nature13479 PMID: 24899309
  88. Park, C.K.; Xu, Z.Z.; Liu, T.; Lü, N.; Serhan, C.N.; Ji, R.R. Resolvin D2 is a potent endogenous inhibitor for transient receptor potential subtype V1/A1, inflammatory pain, and spinal cord synaptic plasticity in mice: Distinct roles of resolvin D1, D2, and E1. J. Neurosci., 2011, 31(50), 18433-18438. doi: 10.1523/JNEUROSCI.4192-11.2011 PMID: 22171045
  89. Bang, S.; Yoo, S.; Yang, T.J.; Cho, H.; Kim, Y.G.; Hwang, S.W. Resolvin D1 attenuates activation of sensory transient receptor potential channels leading to multiple anti-nociception. Br. J. Pharmacol., 2010, 161(3), 707-720. doi: 10.1111/j.1476-5381.2010.00909.x PMID: 20880407
  90. Katoonizadeh, A.; Poustchi, H.; Malekzadeh, R. Hepatic progenitor cells in liver regeneration: Current advances and clinical perspectives. Liver Int., 2014, 34(10), 1464-1472. doi: 10.1111/liv.12573 PMID: 24750779
  91. Carbone, M.; Neuberger, J.M. Autoimmune liver disease, autoimmunity and liver transplantation. J. Hepatol., 2014, 60(1), 210-223. doi: 10.1016/j.jhep.2013.09.020 PMID: 24084655
  92. Rognant, N. Acute kidney injury in patients with chronic liver disease. World J. Hepatol., 2015, 7(7), 993-1000. doi: 10.4254/wjh.v7.i7.993 PMID: 25954481
  93. Sun, L.; Wang, Y.; Wang, L.; Yao, B.; Chen, T.; Li, Q.; Liu, Z.; Liu, R.; Niu, Y.; Song, T.; Liu, Q.; Tu, K. Resolvin D1 prevents epithelial-mesenchymal transition and reduces the stemness features of hepatocellular carcinoma by inhibiting paracrine of cancer-associated fibroblast-derived COMP. J. Exp. Clin. Cancer Res., 2019, 38(1), 170. doi: 10.1186/s13046-019-1163-6 PMID: 30999932
  94. Park, H.J.; Carr, J.R.; Wang, Z.; Nogueira, V.; Hay, N.; Tyner, A.L.; Lau, L.F.; Costa, R.H.; Raychaudhuri, P. FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO J., 2009, 28(19), 2908-2918. doi: 10.1038/emboj.2009.239 PMID: 19696738
  95. Maris, J.M. Recent advances in neuroblastoma. N. Engl. J. Med., 2010, 362(23), 2202-2211. doi: 10.1056/NEJMra0804577 PMID: 20558371
  96. Brodeur, G.M. Neuroblastoma: Biological insights into a clinical enigma. Nat. Rev. Cancer, 2003, 3(3), 203-216. doi: 10.1038/nrc1014 PMID: 12612655
  97. Ogo, A.; Miyake, S.; Kubota, H.; Higashida, M.; Matsumoto, H.; Teramoto, F.; Hirai, T. Synergistic effect of eicosapentaenoic acid on antiproliferative action of anticancer drugs in a cancer cell line model. Ann. Nutr. Metab., 2017, 71(3-4), 247-252. doi: 10.1159/000484618 PMID: 29136623
  98. Wang, J.; Luo, T.; Li, S.; Zhao, J. The powerful applications of polyunsaturated fatty acids in improving the therapeutic efficacy of anticancer drugs. Expert Opin. Drug Deliv., 2012, 9(1), 1-7. doi: 10.1517/17425247.2011.618183 PMID: 22171694
  99. Yin, P.; Wei, Y.; Wang, X.; Zhu, M.; Feng, J. Roles of specialized pro-resolving lipid mediators in cerebral ischemia reperfusion injury. Front Neurol., 2018, 9, 617. doi: 10.3389/fneur.2018.00617 PMID: 30131754
  100. Dalli, J.; Serhan, C.N. Specific lipid mediator signatures of human phagocytes: Microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood, 2012, 120(15), e60-e72. doi: 10.1182/blood-2012-04-423525 PMID: 22904297
  101. Hallisey, V.; Barksdale, C.A.; Chang, J.; Sulciner, M.L.; Bielenberg, D.R.; Schmidt, B.A.; Keiran, N.; Haung, S.; Serhan, C.N.; Keiran, M.W.; Panigrahy, D. Brain cancer: Failure of resolution of inflammation? FASEB J., 2019, 33(1), 250-254. doi: 10.1016/j.pharmthera.2020.107670 PMID: 32891711
  102. Tajbakhsh, A.; Gheibi Hayat, S.M.; Movahedpour, A.; Savardashtaki, A.; Loveless, R.; Barreto, G.E.; Teng, Y.; Sahebkar, A. The complex roles of efferocytosis in cancer development, metastasis, and treatment. Biomed. Pharmacother., 2021, 140, 111776. doi: 10.1016/j.biopha.2021.111776
  103. Amant, F.; Moerman, P.; Neven, P.; Timmerman, D.; Van Limbergen, E.; Vergote, I. Endometrial cancer. Lancet, 2005, 366(9484), 491-505. doi: 10.1016/S0140-6736(05)67063-8 PMID: 16084259
  104. Armitage, E.G.; Barbas, C. Metabolomics in cancer biomarker discovery: Current trends and future perspectives. J. Pharm. Biomed. Anal., 2014, 87, 1-11. doi: 10.1016/j.jpba.2013.08.041
  105. Li, D.; Xie, K.; Wolff, R.; Abbruzzese, J.L. Pancreatic cancer. Lancet, 2004, 363(9414), 1049-1057. doi: 10.1016/S0140-6736(04)15841-8 PMID: 15051286
  106. Hidalgo, M. Pancreatic cancer. N. Engl. J. Med., 2010, 362(17), 1605-1617. doi: 10.1056/NEJMra0901557 PMID: 20427809
  107. Jakubowska, K.; Guzińska-Ustymowicz, K.; Famulski, W.; Cepowicz, D.; Jagodzińska, D.; Pryczynicz, A. Reduced expression of caspase-8 and cleaved caspase-3 in pancreatic ductal adenocarcinoma cells. Oncol. Lett., 2016, 11(3), 1879-1884. doi: 10.3892/ol.2016.4125 PMID: 26998093
  108. Taylor, P.R.; Carugati, A.; Fadok, V.A.; Cook, H.T.; Andrews, M.; Carroll, M.C.; Savill, J.S.; Henson, P.M.; Botto, M.; Walport, M.J. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J. Exp. Med., 2000, 192(3), 359-366. doi: 10.1084/jem.192.3.359 PMID: 10934224
  109. Gunjal, P.M.; Schneider, G.; Ismail, A.A.; Kakar, S.S.; Kucia, M.; Ratajczak, M.Z. Evidence for induction of a tumor metastasis-receptive microenvironment for ovarian cancer cells in bone marrow and other organs as an unwanted and underestimated side effect of chemotherapy/radiotherapy. J. Ovarian Res., 2015, 8, 20. doi: 10.1186/s13048-015-0141-7 PMID: 25887079
  110. Chaurio, R.; Janko, C.; Schorn, C.; Maueröder, C.; Bilyy, R.; Gaipl, U.; Schett, G.; Berens, C.; Frey, B.; Munoz, L.E. UVB-irradiated apoptotic cells induce accelerated growth of co-implanted viable tumor cells in immune competent mice. Autoimmunity, 2013, 46(5), 317-322. doi: 10.3109/08916934.2012.754433 PMID: 23194071
  111. Pearson, R.M.; Casey, L.M.; Hughes, K.R.; Miller, S.D.; Shea, L.D. In vivo reprogramming of immune cells: Technologies for induction of antigen-specific tolerance. Adv. Drug Deliv. Rev., 2017, 114, 240-255. doi: 10.1016/j.addr.2017.04.005 PMID: 28414079
  112. Greene, E.R.; Huang, S.; Serhan, C.N.; Panigrahy, D. Regulation of inflammation in cancer by eicosanoids. Prostaglandins Other Lipid Mediat., 2011, 96(1-4), 27-36. doi: 10.1016/j.prostaglandins.2011.08.004 PMID: 21864702
  113. Rothwell, P.M.; Wilson, M.; Price, J.F.; Belch, J.F.F.; Meade, T.W.; Mehta, Z. Effect of daily aspirin on risk of cancer metastasis: A study of incident cancers during randomised controlled trials. Lancet, 2012, 379(9826), 1591-1601. doi: 10.1016/S0140-6736(12)60209-8 PMID: 22440947
  114. Fullerton, J.N.; Gilroy, D.W. Resolution of inflammation: A new therapeutic frontier. Nat. Rev. Drug Discov., 2016, 15(8), 551-567. doi: 10.1038/nrd.2016.39 PMID: 27020098
  115. Birge, R.B.; Boeltz, S.; Kumar, S.; Carlson, J.; Wanderley, J.; Calianese, D.; Barcinski, M.; Brekken, R.A.; Huang, X.; Hutchins, J.T.; Freimark, B.; Empig, C.; Mercer, J.; Schroit, A.J.; Schett, G.; Herrmann, M. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ., 2016, 23(6), 962-978. doi: 10.1038/cdd.2016.11 PMID: 26915293
  116. Jing, J.; Yang, I.V.; Hui, L.; Patel, J.A.; Evans, C.M.; Prikeris, R.; Kobzik, L.; O’Connor, B.P.; Schwartz, D.A. Role of macrophage receptor with collagenous structure in innate immune tolerance. J. Immunol., 2013, 190(12), 6360-6367. doi: 10.4049/jimmunol.1202942 PMID: 23667110
  117. Jacinto, R.; Hartung, T.; McCall, C.; Li, L. Lipopolysaccharide- and lipoteichoic acid-induced tolerance and cross-tolerance: Distinct alterations in IL-1 receptor-associated kinase. J. Immunol., 2002, 168(12), 6136-6141. doi: 10.4049/jimmunol.168.12.6136 PMID: 12055225
  118. Getts, D.R.; McCarthy, D.P.; Miller, S.D. Exploiting apoptosis for therapeutic tolerance induction. J. Immunol., 2013, 191(11), 5341-5346. doi: 10.4049/jimmunol.1302070 PMID: 24244028
  119. Francisco, L.M.; Sage, P.T.; Sharpe, A.H. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev., 2010, 236, 219-242. doi: 10.1111/j.1600-065X.2010.00923.x
  120. Zhang, Q.; Zhu, B.; Li, Y. Resolution of cancer-promoting inflammation: a new approach for anticancer therapy. Front Immunol., 2017, 8, 71. doi: 10.3389/fimmu.2017.00071 PMID: 28210259
  121. Mickle, A.D.; Shepherd, A.J.; Mohapatra, D.P. Sensory TRP channels: The key transducers of nociception and pain. Prog. Mol. Biol. Transl. Sci., 2015, 131, 73-118. doi: 10.3389/fimmu.2017.00071 PMID: 28210259
  122. Caraceni, A.; Portenoy, R.K. An international survey of cancer pain characteristics and syndromes. Pain, 1999, 82(3), 263-274. doi: 10.1016/S0304-3959(99)00073-1 PMID: 10488677
  123. Lara-Solares, A.; Ahumada Olea, M.; Basantes Pinos, A.Á.; Bistre Cohén, S.; Bonilla Sierra, P.; Duarte Juárez, E.R.; Símon Escudero, O.A.; Santacruz Escudero, J.G.; Flores Cantisani, J.A. Latin-American guidelines for cancer pain management. Pain Manag., 2017, 7(4), 287-298. doi: 10.2217/pmt-2017-0006 PMID: 28326952
  124. Falk, S.; Dickenson, A.H. Pain and nociception: Mechanisms of cancer-induced bone pain. J. Clin. Oncol., 2014, 32(16), 1647-1654. doi: 10.1200/JCO.2013.51.7219 PMID: 24799469
  125. Elinav, E.; Nowarski, R.; Thaiss, C.A.; Hu, B.; Jin, C.; Flavell, R.A. Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer, 2013, 13(11), 759-771. doi: 10.1038/nrc3611 PMID: 24154716
  126. Shinko, D.; Diakos, C.I.; Clarke, S.J.; Charles, K.A. Cancer-related systemic inflammation: The challenges and therapeutic opportunities for personalized medicine. Clin. Pharmacol. Ther., 2017, 102(4), 599-610. doi: 10.1002/cpt.789 PMID: 28699186
  127. Freitas, R.; Campos, M.M. Protective effects of omega-3 fatty acids in cancer-related complications. Nutrients, 2019, 11(5), 945. doi: 10.3390/nu11050945 PMID: 31035457
  128. Luo, X.; Gu, Y.; Tao, X.; Serhan, C.N.; Ji, R.R. Resolvin D5 inhibits neuropathic and inflammatory pain in male but not female mice: distinct actions of D-series resolvins in chemotherapy-induced peripheral neuropathy. Front. Pharmacol., 2019, 10, 745. doi: 10.3389/fphar.2019.00745 PMID: 31333464
  129. Choi, G.; Hwang, S.W. Modulation of the activities of neuronal ion channels by fatty acid-derived pro-resolvents. Front Physiol., 2016, 7, 523. doi: 10.3389/fphys.2016.00523
  130. Kantarci, A.; Kansal, S.; Hasturk, H.; Stephens, D.; Van Dyke, T.E. Resolvin E1 reduces tumor growth in a xenograft model of lung cancer. Am. J. Pathol., 2022, 192(10), 1470-1484. doi: 10.1016/j.ajpath.2022.07.004 PMID: 35944728
  131. Choi, M.K.; Kim, J.; Park, H.M.; Lim, C.M.; Pham, T.H.; Shin, H.Y.; Kim, S.E.; Oh, D.K.; Yoon, D.Y. The DPA-derivative 11S, 17S-dihydroxy 7,9,13,15,19 (Z,E,Z,E,Z)- docosapentaenoic acid inhibits IL-6 production by inhibiting ROS production and ERK/NF-κB pathway in keratinocytes HaCaT stimulated with a fine dust PM(10). Ecotoxicol Environ Saf., 2022, 232, 113252. doi: 10.1016/j.ecoenv.2022.113252 PMID: 35104780
  132. Blogowski, W.; Dolegowska, K.; Deskur, A.; Dolegowska, B.; Starzynska, T. Lipoxins and resolvins in patients with pancreatic cancer: A preliminary report. Front Oncol., 2021, 11, 757073. doi: 10.3389/fonc.2021.757073 PMID: 35087747
  133. Bilodeau, J.F.; Gevariya, N.; Larose, J.; Robitaille, K.; Roy, J.; Oger, C.; Galano, J.M.; Bergeron, A.; Durand, T.; Fradet, Y.; Julien, P.; Fradet, V. Long chain omega-3 fatty acids and their oxidized metabolites are associated with reduced prostate tumor growth. Prostaglandins Leukot Essent Fatty Acids., 2021, 164, 102215. doi: 10.1016/j.plefa.2020.102215 PMID: 35087747
  134. Khasabova, I.A.; Golovko, M.Y.; Golovko, S.A.; Simone, D.A.; Khasabov, S.G. Intrathecal administration of Resolvin D1 and E1 decreases hyperalgesia in mice with bone cancer pain: Involvement of endocannabinoid signaling. Prostaglandins Other Lipid Mediat., 2020. doi: 10.1016/j.prostaglandins.2020.106479 PMID: 32745525

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024